説明

船舶用自動航法援助システム

【課題】潮流の有無に関わらず、船舶を予定航路に沿って正確に航行させることを可能とする船舶用自動航法援助システムを提供する。
【解決手段】命令半径演算部16は、予定航路データ記憶部12より入力された予定航路データと、GPS航法装置14より取得した対地速度・方位情報と、ジャイロ装置20より取得した対水方位及び船速測定器22より取得した対水速度(対水速度・方位情報)とから潮流速度・方位情報を算出し、オートパイロット装置18は、命令半径演算部16より入力された前記潮流速度・方位情報と、取得した前記対水速度・方位情報とに基づいて舵角量を算出し、算出した前記舵角量を舵器24に出力する。これにより、舵器24は、入力された前記舵角量に基づいて船舶を所定方位に旋回させ、この結果、該船舶を予定航路に沿って正確に航行させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の航法装置から取得した船舶の対地速度・方位情報(対地速度及び対地方位)及び対水速度・方位情報(対水速度及び対水方位)に基づいて、予定航路に沿った前記船舶の航行を自動制御することを可能とする船舶用自動航法援助システムに関する。
【背景技術】
【0002】
従来技術に係る船舶用自動航法援助システムは、図8に示す船舶101に搭載され、予定航路100に沿った該船舶101の航行を自動制御する装置であり、該予定航路100は、船舶101の目標位置102(1)〜102(n)と、該船舶101が各目標位置102(1)〜102(n)間を航行するために必要な個々の予定航路104(1)〜104(n−1)とから構成される。
【0003】
この場合、前記船舶用自動航法援助システムでは、図9に示すように、予定航路104(n−1)に沿って航行する船舶101が、その針路を変更して予定航路104(n)の先の目標位置102(n+1)にまでスムーズに向かわせる場合には、目標位置102(n)近傍の予定航路104(n−1)、104(n)の一部を円弧状の予定航路110に変更するようにしている。この結果、船舶101は、円弧状の予定航路110を予定航路100の一部とみなし、この予定航路110に沿って円弧状に航行する。なお、予定航路110は、中心106及び半径を有する仮想円108の一部であり、該予定航路110の始点112は予定航路104(n−1)に連結し、終点114は予定航路104(n)に連結している。
【0004】
図10は、予定航路110(図8及び図9参照)に沿って船舶101を円弧状に航行させるための従来技術に係る船舶用自動航法援助システム120のブロック図である(特許文献1参照)。
【0005】
この船舶用自動航法援助システム120では、予定航路データ記憶部122に記憶された予定航路100(図8及び図9参照)に関するデータが命令半径演算部126に出力される。ここで、前記データには、目標位置102(i)(i=1〜n+1)の緯度及び経度や仮想円108の半径等が含まれる。一方、GPS航法装置124は、船舶101の対地速度・方位情報(対地速度及び対地方位)を命令半径演算部126に出力する。
【0006】
命令半径演算部126は、入力された目標位置102(i)の緯度及び経度並びに半径Rと前記対地速度・方位情報とを比較して、船舶101が予定航路100上において円弧状の航行を開始する始点112の位置(針路変更開始位置)を算出し、船舶101が始点112に到達したときに前記針路変更開始位置及び半径Rをオートパイロット装置128に出力する。
【0007】
オートパイロット装置128は、ジャイロ装置130から入力された船舶101の対水方位より該船舶101の実方位変化率[°/min]を算出すると共に、命令半径演算部126から入力された前記針路変更開始位置及び半径Rと、船速測定器132から入力された船舶101の対水速度より該船舶101の設定方位変化率[°/min]を算出する。
【0008】
ここで、前記各方位変化率[°/min]とは、船舶101が予定航路110に沿って円弧状に航行するときの単位時間(1分)当たりの該船舶101の旋回角度(角速度)である。すなわち、前記実方位変化率とは、水上を航行する船舶101が実際に旋回するときの角速度であり、前記設定方位変化率とは、予定航路110に沿って船舶101を旋回させるために必要な理論上の角速度である。この場合、前記設定方位変化率は、対水速度を|VW|[kt]とし且つ仮想円108の半径をR[NM]とすれば、下記の(1)式より求められる。
【0009】
(設定方位変化率)=360[°]×(|VW|/60[min])
×{1/(2πR)} (1)
オートパイロット装置128は、算出した前記実方位変化率と前記設定方位変化率との差を求め、求めた前記差が予定航路110に沿って船舶101を円弧状に航行させるために必要な舵角量として、舵器134に出力する。該舵器134は、入力された前記舵角量に基づいて船舶101を旋回させ、この結果、前記実方位変化率が前記設定方位変化率に補正され、船舶101は、予定航路110に沿って円弧状に航行する。
【0010】
【特許文献1】特公平6−33076号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
通常、船舶101が水上を航行する場合、潮流によって船舶101の対地速度が変化する。
【0012】
すなわち、図11に示すように、対水速度ベクトル(対水速度及び対水方位から構成されるベクトル)142に基づいて船舶101が予定航路100上を航行する場合、該船舶101に対して潮流ベクトル(潮流速度及び潮流方位から構成されるベクトル)144が作用すると、該船舶101の対地速度ベクトル(対地速度及び対地方位から構成されるベクトル)146をVG、対水速度ベクトル142をVW及び潮流ベクトル144をVDとしたときに、対地速度ベクトルVGは、下記の(2)式で表わされる。
【0013】
VG=VW+VD (2)
すなわち、潮流ベクトルVDによって、船舶101の対水方位(船首方位)と、船舶101が実際に進行する方向(対地方位)とが一致しなくなると共に、船舶101の対水速度と対地速度とについても一致しなくなる。
【0014】
すなわち、対地速度を|VG|としたときに、|VW|>|VG|であれば、設定方位変化率が実方位変化率よりも大きくので、船舶101は、図11に示すように、仮想円108の内側に形成された他の仮想円148の円弧150上を航行し、この結果、船舶101は、当初の予定航路100から内側に外れて航行する。一方、|VW|<|VG|であれば、設定方位変化率が実方位変化率よりも小さくなるので、船舶101は、当初の予定航路100から外側に外れて航行する。
【0015】
このように、従来技術に係る船舶用自動航法援助システム120では、船舶101に対する潮流の影響を考慮していないので、予定航路100に対して船舶101を正確に航行させることができない。
【0016】
本発明は、上述した課題を解決するためになされたものであり、潮流の有無に関わらず、船舶を予定航路に沿って正確に航行させることを可能とする船舶用自動航法援助システムを提供することを目的とする。
【課題を解決するための手段】
【0017】
本発明に係る船舶用自動航法援助システムは、船舶の予定航路を記憶する予定航路記憶手段と、複数の航法装置から取得した前記船舶の対地速度・方位情報及び対水速度・方位情報と、前記予定航路記憶手段より入力された前記予定航路とに基づいて潮流速度・方位情報を算出する潮流情報算出手段と、前記各航法装置から取得した前記対水速度・方位情報と、前記潮流情報算出手段より入力された前記潮流速度・方位情報とに基づいて前記船舶の舵角量を算出し、算出した前記舵角量を舵器に出力するオートパイロット手段とを有することを特徴とする。
【0018】
上記した構成によれば、前記潮流情報算出手段は、前記潮流速度・方位情報を算出し、前記オートパイロット手段は、前記潮流速度・方位情報及び前記対水速度・方位情報に基づいて前記舵角量を算出し、算出した前記舵角量を用いて前記舵器を自動制御する。すなわち、前記オートパイロット手段は、前記潮流速度・方位情報を考慮して前記舵器を自動制御するので、潮流が存在する場合でも前記船舶を前記予定航路に沿って正確に航行させることが可能となる。
【0019】
また、前記潮流情報算出手段が前記潮流速度・方位情報を自動的に算出するので、前記潮流を考慮せずに前記予定航路を作成することが可能となり、この結果、該予定航路の作成作業の簡略化や省力化を実現することができる。
【0020】
ここで、前記予定航路は、前記船舶の目標位置と前記船舶が前記予定航路に沿って円弧状に航行するときの前記円弧の第1半径とを含み、前記潮流情報算出手段は、前記対地速度・方位情報と前記目標位置及び前記第1半径とに基づいて前記船舶が前記予定航路に沿って円弧状の航行を開始する針路変更開始位置を算出し、算出した前記針路変更開始位置と前記対地速度・方位情報及び前記対水速度・方位情報とに基づいて前記潮流速度・方位情報を算出し、算出した前記潮流速度・方位情報及び前記第1半径を前記オートパイロット手段に出力し、前記オートパイロット手段は、入力された前記潮流速度・方位情報及び取得した前記対水速度・方位情報に基づいて前記船舶の対地速度・方位情報を算出し、入力された前記第1半径及び算出した前記対地速度・方位情報を構成する対地速度に基づいて前記船舶の設定方位変化率を算出し、前記対地速度・方位情報を構成する対地速度より前記船舶の実方位変化率を算出し、算出された前記設定方位変化率と前記実方位変化率との差を前記船舶が前記針路変更開始位置から前記予定航路に沿って円弧状に航行するために必要な前記舵角量として前記舵器に出力することが好ましい。
【0021】
この場合、前記オートパイロット手段は、前記潮流速度・方位情報に基づいて前記対地速度を算出して、算出した前記対地速度より前記設定方位変化率を算出する一方で、前記潮流速度・方位情報に基づいて前記対地方位を算出して、算出した前記対地方位より前記実方位変化率を算出するので、前記設定方位変化率と前記実方位変化率との差である前記舵角量には、前記潮流の影響が考慮されている。この結果、前記潮流が存在する場合でも、前記船舶を円弧状の前記予定航路に沿って正確に航行させることが可能となる。
【0022】
また、前記対水速度・方位情報が前記予定航路に沿って変化する場合、前記潮流情報算出手段は、前記対地速度・方位情報及び前記第1半径に基づいて前記針路変更開始位置における前記円弧の接線方向速度・方位情報を算出し、算出した前記接線方向速度・方位情報と取得した前記対地速度・方位情報との差の絶対値を|E|、前記潮流速度・方位情報を構成する潮流速度を|VD|及び前記第1半径をR1として該R1を補正した第2半径をR2としたときに、R2=R1×|VD|/(|VD|−|E|)の関係式より前記第2半径R2を算出し、前記第1半径R1及び前記対地速度・方位情報の代わりに前記第2半径R2及び前記接線方向速度・方位情報を用いて前記潮流速度・方位情報を補正し、算出した前記第2半径R2及び補正した前記潮流速度・方位情報を前記オートパイロット手段に出力し、前記オートパイロット手段は、前記第1半径R1の代わりに入力された前記第2半径R2を用いて前記設定方位変化率を算出することが好ましい。
【0023】
この場合、前記対水速度・方位情報の変化に対応して前記第1半径R1を前記第2半径R2に補正し、且つ前記第2半径R2及び前記接線方向速度・方位情報を用いて前記潮流速度・方位情報を補正することにより、前記予定航路における円弧状の航路部分が変更され、この結果、変更された前記予定航路に沿って前記船舶をより正確に航行させることができる。
【発明の効果】
【0024】
上述したように、本発明に係る船舶用自動航法援助システムによれば、潮流情報算出手段は、潮流速度・方位情報を算出し、オートパイロット手段は、前記潮流速度・方位情報及び対水速度・方位情報に基づいて舵角量を算出し、算出した前記舵角量を用いて舵器を自動制御する。すなわち、前記オートパイロット手段は、前記潮流速度・方位情報を考慮して前記舵器を自動制御するので、潮流が存在する場合でも船舶を予定航路に沿って正確に航行させることが可能となる。
【0025】
また、前記潮流情報算出手段が前記潮流速度・方位情報を自動的に算出するので、前記潮流を考慮せずに前記予定航路を作成することが可能となり、この結果、該予定航路の作成作業の簡略化や省力化を実現することができる。
【発明を実施するための最良の形態】
【0026】
本発明に係る船舶用自動航法援助システムについて、好適な実施の形態を挙げ、添付の図面を参照しながら以下に説明する。
【0027】
図1は、本実施形態に係る船舶用自動航法援助システム(以下、航法援助システムともいう。)10のブロック図であり、図2は、該航法援助システム10を用いて船舶36を予定航路30(2)に沿って円弧状に航行させるときの航法制御を説明するための平面図である。
【0028】
航法援助システム10は、図1に示すように、予定航路データ記憶部(予定航路データ記憶手段)12と、命令半径演算部(潮流情報算出手段)16と、オートパイロット装置(オートパイロット手段)18と、舵器24と、航法装置としてのGPS航法装置14、ジャイロ装置20及び船速測定器22とから構成され、図2に示す船舶36内に配置されている。
【0029】
予定航路データ記憶部12は、水上を航行する船舶36の予定航路30(i)(i=1〜n、n:整数)に関するデータを予め記憶しており、該船舶36を予定航路30(i)に沿って航行させる際に前記データを命令半径演算部16に出力する。ここで、前記データとしては、予定航路30(i)上における船舶36の図示しない複数の目標位置の緯度及び経度や、該船舶36を予定航路30(2)に沿って円弧状に航行させるときに円弧状の該予定航路30(2)を含む仮想円34の半径等が含まれている。
【0030】
なお、直線状の予定航路30(1)と円弧状の予定航路30(2)との連結点は、船舶36がその針路を変更して予定航路30(2)に沿って円弧状に航行する際の針路変更開始位置31であり、船舶36は、図2に示すように、針路変更開始位置31上に位置している。この場合、船舶36は、予定航路30(2)に沿って航行するので、予定航路30(1)、30(3)の交点である目標位置38を通過することなく、予定航路30(i)上を航行する。また、以下の説明では、予定航路30(2)を含む仮想円34において、中心32からの半径を第1半径R1[NM]とする。
【0031】
GPS航法装置14は、図示しないGPS衛星から所定時間(例えば、1.0[s])毎に受信した信号に基づいて前記船舶の現在時刻における緯度及び経度を順次算出し、算出結果を対地速度・位置情報(船舶36の対地速度及び対地方位)として命令半径演算部16に順次出力する。
【0032】
ジャイロ装置20は、船舶36の現在時刻における対水方位(船首方位)を所定時間(例えば、1.0[s])毎に計測し、計測結果を命令半径演算部16及びオートパイロット装置18に順次出力する。
【0033】
船速測定器22は、船舶36の現在時刻における対水速度を所定時間(例えば、1.0[s])毎に計測し、計測結果を命令半径演算部16及びオートパイロット装置18に順次出力する。
【0034】
命令半径演算部16は、予定航路データ記憶部12より入力された前記各目標位置及び第1半径R1と、GPS航法装置14から所定時間毎に取得した前記対地速度・位置情報とを比較して針路変更開始位置31を順次算出し、算出した針路変更開始位置31と、ジャイロ装置20から所定時間毎に取得した対水方位及び船速測定器22から所定時間毎に取得した対水速度(対水速度・方位情報)と、算出した前記対地速度・位置情報とに基づいて、船舶36の現在時刻における潮流速度・方位情報(船舶36に作用する潮流の潮流速度及び潮流方位)を順次算出する。
【0035】
ここで、前記対水速度及び前記対水方位(前記対水速度・方位情報)が予定航路30(i)に対して変化しない場合、命令半径演算部16は、算出した前記各潮流速度・方位情報と第1半径R1とをオートパイロット装置18に所定時間(例えば、1[s])毎に出力する。
【0036】
オートパイロット装置18は、命令半径演算部16より所定時間(例えば、1.0[s])毎に入力された前記潮流速度・方位情報と、ジャイロ装置20から所定時間(例えば、0.2[s])毎に取得した対水方位と、船速測定器22から所定時間(例えば、0.2[s])毎に取得した対水速度とに基づいて、船舶36の対地速度・方位情報を順次算出し、算出した前記対地速度・方位情報の対地速度と第1半径R1とに基づいて船舶36の所定時間(例えば、0.2[s])毎の設定方位変化率[°/min]を順次算出する。
【0037】
ここで、前記設定方位変化率とは、船舶36を予定航路30(i)に沿って航行させるために必要な単位時間(例えば、1[min])当たりの船舶36の理論上の旋回角度(角速度)であり、前記対地速度を|VG|[kt]とすれば、前記設定方位変化率[°/min]は、下記の(3)式で表わされる。
【0038】
(設定方位変化率)=360[°]×(|VG|/60[min])
×{1/(2π×R1)} (3)
この場合、例えば、R1=1[NM]及び|VG|=10[kt]であれば、前記設定方位変化率は、略9.5[°/min]となる。
【0039】
また、オートパイロット装置18は、5万トン以上の大型船舶に配置される回転角速度計と同様の機能を有し、前記対地速度・方位情報の対地方位より船舶36の所定時間毎の実方位変化率[°/min]を順次算出する。ここで、前記実方位変化率とは、対地方位の単位時間(例えば、1[min])当たりの変化量であり、換言すれば、水上を航行する船舶36が予定航路30(i)に沿って実際に旋回するときの単位時間当たりの旋回角度(回頭角速度)である。この場合、オートパイロット装置18は、前記対地方位を前記実方位変化率(回頭角速度)に変換し、変換した前記回頭角速度を図示しない表示装置に順次出力する。前記表示装置は、所定時間毎に入力された前記回頭角速度を表示する。
【0040】
なお、前記表示装置を、例えば、3[°/min]毎の目盛りの刻みで且つ60[°/min](1[°/s])の回頭角速度まで表示可能な指示計から構成すれば、微小量の回転角速度を表示することが可能となり、狭水路や輻輳した水域における船舶36の操船に有用である。
【0041】
そして、オートパイロット装置18は、所定時間毎に算出した前記設定方位変化率と前記実方位変化率との差を算出し、算出した前記差を船舶36が針路変更開始位置31から予定航路30(2)に沿って円弧状に航行するために必要な舵角量[°/min]として舵器24に順次出力する。
【0042】
舵器24は、所定時間(例えば、0.2[s])毎に入力された前記舵角量に基づいて船舶36を所定方位に旋回させる。これにより、前記実方位変化率が前記設定方位変化率に補正され、船舶36は、針路変更開始位置31から予定航路30(2)に沿って円弧状に航行する。
【0043】
図2に示すように、対水速度及び対水方位から構成される対水速度ベクトルをVW、潮流速度及び潮流方位から構成される潮流速度ベクトルをVD並びに対地速度及び対地方位から構成される対地速度ベクトルをVGとすれば、予定航路30(i)上を航行する船舶36は、舵器24(図1参照)による操舵で対水速度ベクトルVWの方向に船首を向けているが、該船舶36には潮流速度ベクトルVDが作用しているので、船舶36は、実際には、前述した(2)式に基づいて対地速度ベクトルVGの向きに航行する。
【0044】
従って、対地速度ベクトルVGの向きを予定航路30(i)の接線方向と略一致させれば、船舶36を針路変更開始位置31から予定航路30(2)に沿って円弧状に航行させることができる。前述したように、前記実方位変化率を前記設定方位変化率に補正すれば、針路変更開始位置31から予定航路30(2)に沿って船舶36を円弧状に航行することができるので、換言すれば、前記実方位変化率を前記設定方位変化率に補正することは、対地速度ベクトルVGの向きを船舶36の理想的な航行方向である予定航路30(i)の接線方向と略一致させることを意味している。
【0045】
次に、本実施形態に係る航法援助システム10を用いて船舶36を予定航路30(2)に沿って円弧状に航行させるときの航法制御動作について、図1及び図2並びに図3及び図4のフローチャートを参照しながら説明する。
【0046】
ここでは、船舶36が針路変更開始位置31に位置し、且つ対水速度・方位情報が予定航路30(i)に対して変化しない場合における所定時刻での船舶36の航法制御について説明する。
【0047】
先ず、予定航路データ記憶部12は、予定航路30(i)上における複数の目標位置の緯度及び経度並びに半径(命令半径)R1を命令半径演算部16に出力する(ステップS1)。
【0048】
次いで、命令半径演算部16は、ジャイロ装置20より船舶36の現在時刻における対水方位(船首方位)を取得し(ステップS2)、船速測定器22より該船舶36の現在時刻における対水速度(対水船速)を取得し(ステップS3)、さらに、GPS航法装置14より船舶36の現在時刻における対地速度・位置情報{対地速度(対地船速)及び対地方位}を取得する(ステップS4)。
【0049】
次いで、命令半径演算部16は、予定航路データ記憶部12より入力された前記各目標位置及び半径R1と、取得した前記対地速度・位置情報及び前記対水速度・方位情報(対水速度及び対水方位)とを比較して針路変更開始位置31を算出し、算出した針路変更開始位置31と、ジャイロ装置20から取得した対水方位及び船速測定器22から取得した対水速度(対水速度・方位情報)と、前記対地速度・位置情報とに基づいて、船舶36の現在時刻における潮流速度・方位情報(潮流速度及び潮流方位)を算出する(ステップS5)。
【0050】
次いで、命令半径演算部16は、算出した前記潮流速度・方位情報と第1半径R1とをオートパイロット装置18に出力する(ステップS6)。
【0051】
オートパイロット装置18は、船速測定器22から対水速度(対水船速)を取得する(ステップS7)と共に、ジャイロ装置20から対水方位(船首方位)を取得し(ステップS8)、命令半径演算部16より入力された前記潮流速度・方位情報及び第1半径R1と、取得した対水速度・方位情報(前記対水速度及び前記対水方位)とに基づいて対地速度・方位情報を算出する(ステップS9)。
【0052】
次いで、オートパイロット装置18は、算出した前記対地速度・方位情報の対地速度と第1半径R1とを用いて(3)式より設定方位変化率を算出し(ステップS10)、一方で、前記対地速度・方位情報の対地方位より実方位変化率を算出する(ステップS11)。
【0053】
次いで、オートパイロット装置18は、算出した前記設定方位変化率と前記実方位変化率との差(舵角量)を算出し(ステップS12)、算出した前記舵角量を命令舵角量として舵器24に出力する(ステップS13)。
【0054】
舵器24は、入力された前記舵角量に基づいて船舶36を所定方位に旋回させる。これにより、前記実方位変化率が前記設定方位変化率に補正され、換言すれば、対地速度ベクトルVGが予定航路30(2)の接線方向に略一致され、この結果、船舶36は、針路変更開始位置31から予定航路30(2)に沿って円弧状に航行することが可能となる。
【0055】
なお、上記したステップS1〜S13は、所定時刻における航法援助システム10の処理動作であり、該航法援助システム10は、実際には、予定航路30(i)上において、所定時間毎にステップS2〜S13を繰り返し行っている。また、航法援助システム10では、ステップS2〜S6の処理時間間隔とステップS7〜S13の処理時間間隔とを異なる時間間隔で設定してもよい。すなわち、命令半径演算部16におけるステップS2〜S6の処理動作を、例えば、1.0[s]間隔で行い、オートパイロット装置18及び舵器24におけるステップS7〜S13の処理を、例えば、0.2[s]間隔で行う。
【0056】
次に、対水速度・方位情報(対水速度及び対水方位)が予定航路30(i)に対して変化する場合における船舶36の航法制御動作について、図5〜図7を参照しながら説明する。
【0057】
先ず、従来技術に係る船舶用自動航法援助システム120(図10参照)において、図5に示すように、対水速度・方位情報が予定航路30(i)に対して変化し、針路変更開始位置31において対水速度ベクトルがVWよりVW1に変化した際に、該針路変更開始位置31における対地速度ベクトルがVGよりVG1に変化すれば、対水速度ベクトルVWの対水速度を|VW|とし、且つ対水速度ベクトルVW1の対水速度を|VW1|とすると、該対地速度ベクトルVG1は、下記の(4)式で表わされる。
【0058】
VG1=VW1+VD(|VW|>|VW1|) (4)
この場合、潮流ベクトルVDが変化しないので、対水速度が|VW|から|VW1|にまで低下すると、対地速度ベクトルVG1は、対地ベクトルVGと比較して仮想円34の内側に向くことになり、この結果、船舶36は、予定航路30(2)とは異なる円弧状の航路40に沿って航行する。すなわち、従来技術に係る船舶用自動航法援助システム120では、対水速度が|VW|より|VW1|に変化した場合、船舶36を予定航路30(i)に沿って正確に航行させることができない。
【0059】
これに対して、本実施形態に係る航法援助システム10では、前述したように、対地ベクトルVGの向きと予定航路30(i)の接線方向とを略一致させることにより、船舶36を予定航路30(i)に沿って正確に航行させることが可能となることに鑑み、命令半径演算部16(図1参照)において、上記した対水速度の変化に対応して予定航路30(i)の一部を補正することにより、前記対水速度が|VW|より|VW1|に変化しても船舶36を予定航路30(i)に沿って正確に航行させるようにしている。
【0060】
次に、命令半径演算部16における具体的な補正処理について、図6の平面図及び図7のフローチャートを参照し、また、必要に応じて、図1〜図5を参照しながら説明する。
【0061】
ここでは、前記対水速度が|VW|より|VW1|に低下したことに対応して、予定航路30(2)、30(3)を予定航路30(4)、30(5)に変更する場合について説明する。
【0062】
先ず、命令半径演算部16では、ステップS1〜S4の処理を行った後に、GPS航法装置14より取得した対地速度・方位情報と、予定航路データ記憶部12から入力された第1半径R1とに基づいて針路変更開始位置31における仮想円34{予定航路30(2)}の接線方向速度・方位情報を算出する(ステップS14)。
【0063】
この場合、前記接線方向速度・方位情報とは、前記対地速度・方位情報の接線方向成分であり、換言すれば、前記接線方向速度・方位情報を算出することは、対地速度ベクトルVGを針路変更開始位置31の接線42に投影して接線速度ベクトルVTを求めることである(図6参照)。なお、接線速度ベクトルVTは、針路変更開始位置31を始点とし、接線42と潮流ベクトルVDとの交点を終点とするベクトルである。
【0064】
次いで、命令半径演算部16は、前記接線方向速度・方位情報(接線速度ベクトルVT)と前記対地速度・方位情報(対地速度ベクトルVG)との差の絶対値を算出し(ステップS15)、算出した前記絶対値が所定の閾値以下(略0)であるか否かを判定する(ステップS16)。
【0065】
ステップS16において、命令半径演算部16は、前記絶対値が前記閾値以下であれば、接線速度ベクトルVTと対地速度ベクトルVGとが略一致し、該対地速度ベクトルVGによって船舶36が予定航路30(2)に沿って円弧状に航行するものと判断し、ステップS5以降の処理を実行する。
【0066】
一方、前記絶対値が前記閾値を越えた場合、命令半径演算部16は、接線速度ベクトルVTと対地速度ベクトルVGとが一致せず、船舶36が予定航路30(2)から外れて航行するものと判断し、第1半径R1を補正して第2半径に変換する処理を行う(ステップS17)。
【0067】
ステップS17において、算出した前記絶対値を|E|、潮流速度を|VD|、及び前記第2半径をR2[NM]とすれば、該第2半径R2は、下記の(5)式で表わされる。
【0068】
R2=R1×|VD|/(|VD|−|E|) (5)
次いで、命令半径演算部16は、針路変更開始位置31と前記接線方向速度・方位情報と前記対水速度・方位情報とに基づいて、船舶36の現在時刻における潮流速度・方位情報を算出する(ステップS18)。この場合、命令半径演算部16は、ステップS5(図3参照)とは異なり、前記対地速度・位置情報の代わりに前記接線方向速度・方位情報を用いて前記潮流速度・方位情報を算出している。これは、対地速度ベクトルVGの代わりに前記接線方向速度・方位情報から構成される接線速度ベクトルVTを用いることにより、対水速度ベクトルVWの変化を考慮して潮流速度ベクトルVDの補正を行うことを意味している。
【0069】
次いで、命令半径演算部16は、第1半径R1の代わりに第2半径R2をオートパイロット装置18に出力すると共に、前記接線方向速度・方位情報を用いて補正された前記潮流速度・方位情報をオートパイロット装置18に出力する(ステップS6)。
【0070】
オートパイロット装置18では、ステップS7〜S13の処理を行うが、これらのステップS7〜S13において第1半径R1の代わりに第2半径R2を用い、且つ補正された前記潮流速度・方位情報を用いているので、実方位変化率、設定方位変化率及び舵角量は、前記第2半径R2及び前記接線方向速度・方位情報に基づいて算出されたものとなる。従って、舵器24により前記舵角量に基づいて旋回された船舶36は、第1半径R1を有する仮想円34上の予定航路30(2)ではなく、中心46からの第2半径R2を有する仮想円44上の予定航路30(4)に沿って航行し、該予定航路30(4)から予定航路30(5)を経由して目標位置にまで航行する。
【0071】
このように、本実施形態に係る航法援助システム10によれば、命令半径演算部16が潮流速度・方位情報を算出し、オートパイロット装置18が前記潮流速度・方位情報及び対水速度・方位情報に基づいて舵角量を算出し、算出した前記舵角量を用いて舵器24を自動制御する。すなわち、オートパイロット装置18は、前記潮流速度・方位情報を考慮して舵器24を自動制御するので、潮流が存在する場合でも船舶36を予定航路30(i)に沿って正確に航行させることが可能となる。
【0072】
この場合、船舶36が航行する水域において障害物や前記水域の水深が予め分かっており、これらを考慮した予定航路30(i)が予定航路データ記憶部12に記憶されていれば、航法援助システム10は、予定航路30(i)に基づいて前記水域において船舶36を安全に航行させることができるので、該船舶36の安全航行性能を向上させることが可能となる。
【0073】
また、命令半径演算部16が前記潮流速度・方位情報を自動的に算出するので、前記潮流を考慮せずに予定航路30(i)を作成することが可能となり、この結果、該予定航路30(i)の作成作業の簡略化や省力化を実現することができる。
【0074】
さらに、オートパイロット装置18は、前記潮流速度・方位情報に基づいて対地速度を算出し、算出した前記対地速度より設定方位変化率を算出する一方で、前記潮流速度・方位情報に基づいて対地方位を算出し、算出した前記対地方位より実方位変化率を算出するので、前記設定方位変化率と前記実方位変化率との差である前記舵角量には、前記潮流の影響が考慮されている。この結果、前記潮流が存在する場合でも、船舶36を円弧状の予定航路30(2)に沿って正確に航行させることが可能となる。
【0075】
さらにまた、前記対水速度・方位情報が予定航路30(i)に沿って変化する場合、命令半径演算部16では、前記対水速度・方位情報の変化に対応して第1半径R1を第2半径R2に補正すると共に、対地速度・方位情報の代わりに接線速度・方位情報を用いて潮流速度・方位情報を算出するので、オートパイロット装置18では、第2半径R2及び接線速度・方位情報を考慮して実方位変化率、設定方位変化率及び舵角量が算出される。これにより、船舶36の予定航路30(i)の一部は、円弧状の予定航路30(2)及び予定航路30(3)より円弧状の予定航路30(4)及び予定航路30(5)に変更され、この結果、船舶36は、目標位置に向かい円弧状の予定航路30(4)及び予定航路30(5)に沿ってより正確に航行させることができる。
【0076】
なお、本発明に係る船舶用自動航法援助システムは、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。
【図面の簡単な説明】
【0077】
【図1】本実施形態に係る航法援助システムのブロック図である。
【図2】図1の航法援助システムによる船舶の航法制御を示す平面図である。
【図3】図1の命令半径演算部における処理を示すフローチャートである。
【図4】図1のオートパイロット装置における処理を示すフローチャートである。
【図5】従来技術に係る航法援助システムにおいて、対水速度ベクトルが予定航路に沿って変化した場合の船舶の航行を示す平面図である。
【図6】図1の航法援助システムにおいて、対水速度ベクトルが予定航路に沿って変化した場合の船舶の航行を示す平面図である。
【図7】図6に示す船舶の航法制御を実現するために命令半径演算部内で行われる処理を示すフローチャートである。
【図8】従来技術に係る航法援助システムにおける船舶の予定航路を示す平面図である。
【図9】図8において、船舶の針路を変更する場合を説明するための平面図である。
【図10】従来技術に係る航法援助システムのブロック図である。
【図11】図10の航法援助システムによる船舶の航法制御を示す平面図である。
【符号の説明】
【0078】
10…航法援助システム 12…予定航路データ記憶部
14…GPS航法装置 16…命令半径演算部
18…オートパイロット装置 20…ジャイロ装置
22…船速測定器 24…舵器
30(i)、40…航路 31…針路変更開始位置
34、44…仮想円 36…船舶
38…目標位置 42…接線

【特許請求の範囲】
【請求項1】
船舶の予定航路を記憶する予定航路記憶手段と、
複数の航法装置から取得した前記船舶の対地速度・方位情報及び対水速度・方位情報と、前記予定航路記憶手段より入力された前記予定航路とに基づいて潮流速度・方位情報を算出する潮流情報算出手段と、
前記各航法装置から取得した前記対水速度・方位情報と、前記潮流情報算出手段より入力された前記潮流速度・方位情報とに基づいて前記船舶の舵角量を算出し、算出した前記舵角量を舵器に出力するオートパイロット手段と、
を有する
ことを特徴とする船舶用自動航法援助システム。
【請求項2】
請求項1記載の船舶用自動航法援助システムにおいて、
前記予定航路は、前記船舶の目標位置と、前記船舶が前記予定航路に沿って円弧状に航行するときの前記円弧の第1半径とを含み、
前記潮流情報算出手段は、前記対地速度・方位情報と前記目標位置及び前記第1半径とに基づいて、前記船舶が前記予定航路に沿って円弧状の航行を開始する針路変更開始位置を算出し、算出した前記針路変更開始位置と前記対地速度・方位情報及び前記対水速度・方位情報とに基づいて前記潮流速度・方位情報を算出し、算出した前記潮流速度・方位情報及び前記第1半径を前記オートパイロット手段に出力し、
前記オートパイロット手段は、入力された前記潮流速度・方位情報及び取得した前記対水速度・方位情報に基づいて前記船舶の対地速度・方位情報を算出し、入力された前記第1半径及び算出した前記対地速度・方位情報を構成する対地速度に基づいて前記船舶の設定方位変化率を算出し、前記対地速度・方位情報を構成する対地速度より前記船舶の実方位変化率を算出し、算出された前記設定方位変化率と前記実方位変化率との差を前記船舶が前記針路変更開始位置から前記予定航路に沿って円弧状に航行するために必要な前記舵角量として前記舵器に出力する
ことを特徴とする船舶用自動航法援助システム。
【請求項3】
請求項2記載の船舶用自動航法援助システムにおいて、
前記対水速度・方位情報が前記予定航路に沿って変化する場合、前記潮流情報算出手段は、前記対地速度・方位情報及び前記第1半径に基づいて前記針路変更開始位置における前記円弧の接線方向速度・方位情報を算出し、算出した前記接線方向速度・方位情報と取得した前記対地速度・方位情報との差の絶対値を|E|、前記潮流速度・方位情報を構成する潮流速度を|VD|及び前記第1半径をR1として該R1を補正した第2半径をR2としたときに、
R2=R1×|VD|/(|VD|−|E|)
の関係式より前記第2半径R2を算出し、前記第1半径R1及び前記対地速度・方位情報の代わりに前記第2半径R2及び前記接線方向速度・方位情報を用いて前記潮流速度・方位情報を補正し、算出した前記第2半径R2及び補正した前記潮流速度・方位情報を前記オートパイロット手段に出力し、
前記オートパイロット手段は、前記第1半径R1の代わりに入力された前記第2半径R2を用いて前記設定方位変化率を算出する
ことを特徴とする船舶用自動航法援助システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2006−315474(P2006−315474A)
【公開日】平成18年11月24日(2006.11.24)
【国際特許分類】
【出願番号】特願2005−138202(P2005−138202)
【出願日】平成17年5月11日(2005.5.11)
【出願人】(000004330)日本無線株式会社 (1,186)
【Fターム(参考)】