説明

色素増感型太陽電池の対向電極およびその製造方法並びに電池

【課題】色素増感型太陽電池の対向電極において、可視光透過性を有し、導電性に優れ、且つ低コストのものを提供する。
【解決手段】貫通穴を有するステンレス鋼シートと、その少なくとも片面に形成された触媒層で構成される色素増感型太陽電池の対向電極において、ステンレス鋼シートとして、Cr:16質量%以上、Mo:0.3質量%以上を含有し、当該ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5%以上、且つ貫通部の平均径が5〜500μmである貫通穴を有するものを適用する。その貫通穴は、ステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させる手法により形成できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、色素増感型太陽電池の対向電極であって、集電部材としてステンレス鋼を用いたもの、およびその製造方法、並びにその対向電極を用いた色素増感型太陽電池に関する。
【背景技術】
【0002】
太陽電池は従来、主としてシリコンを光電変換素子に用いたものが使われているが、より経済的な次世代太陽電池として「色素増感型太陽電池」の実用化が研究されている。
【0003】
図1に、一般的な色素増感型太陽電池の構成を模式的に示す。透光性板状体2の表面に透光性導電膜3が設けられ、透光性導電膜3の表面には増感色素を担持した多孔質半導体層4が形成されている。透光性導電膜3と多孔質半導体層4により光電極10が構成されている。透光性導電膜3は、例えばITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)、ZnO(酸化亜鉛)等の酸化物導電膜で構成され、透光性板状体2にはガラスやプラスチックフィルムなどが使用される。光電極10と向かい合うように対向電極20が配置されており、光電極10、対向電極20、および両電極間に介在する電解液8によって色素増感型太陽電池1が構成されている。対向電極20は導電材料6とその表面に設けられた触媒層7によって構成される。必要に応じて対向電極20を支持するための基板5が設けられる。
【0004】
光電極10を構成する多孔質半導体層4は比表面積の大きいTiO2等の半導体粒子を用いた多孔質層であり、半導体粒子の表面にはルテニウム錯体等の増感色素が担持されている。電解液としてはヨウ素(I2)およびヨウ化物イオンを含むものを使用することが一般的である。入射光30が多孔質半導体層4に担持されている増感色素に到達すると、増感色素(例えばルテニウム錯体)は光を吸収して励起され、その電子が半導体粒子(例えばTiO2)へと注入される。励起電子を注入して酸化状態になった増感色素は電解液8のイオン(例えばヨウ化物イオンI-)から電子を受け取り、基底状態に戻る。このとき液中のイオン(例えばI-)は酸化されて価数の異なるイオン(例えばI3-)となり、対向電極20へ拡散し、対向電極20から電子を受け取って元のイオン(例えばI-)に戻る。これにより、電子は「多孔質半導体層4→透光性導電膜3→負荷40→導電材料6→触媒層7→電解液8→多孔質半導体層4」の経路で移動する。その結果、負荷40を作動させる電流が発生する。
【0005】
対向電極20を構成する導電材料6としては、前記透光性導電膜3と同様にITO、FTO等の透光性を有する酸化物導電膜が使用されることがある。この場合、触媒層7がピンホールの多い薄膜層である場合には、対向電極20を可視光が透過することにより、色素増感型太陽電池1そのものに可視光透過性を持たせることができる。すなわち色素増感型太陽電池1を通して反対側がある程度透けて見えるという、いわゆる「シースルー」の外観が得られ、この性質は意匠性の面で活用されることがある。また、対向電極側から差し込む入射光も発電に利用できるというメリットがある。
【0006】
しかしながら、透光性の酸化物導電膜は金属材料と比較して導電性が低いので、そのような透光性導電膜を対向電極に使用すると色素増感型太陽電池の光電変換効率を向上させる上で不利となっていた。また、触媒層7が導電材料6の表面を覆っていることにより、対向電極20の可視光透過性が弱められ、所望のシースルー外観が得られにくい場合も多い。
【0007】
一方、対向電極にステンレス鋼板を用いたタイプの色素増感型太陽電池がある(特許文献1)。このタイプの色素増感型太陽電池では、酸化物導電膜を用いたものより対向電極での導電性が向上し、白金触媒層の厚さを薄くしても良好な光電変換効率が得られることが知られている。ただし、シースルーの外観を得ることはできない。
【0008】
透光性を有するステンレス鋼材料として、ステンレス鋼メッシュが知られている。しかし、これはステンレス鋼の細線からなる織物であることから高価であり、色素増感型太陽電池の普及を図る上では容易に採用することはできない。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2009−26532号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、色素増感型太陽電池の対向電極において、可視光透過性を有し、導電性に優れ、且つ低コストのものを提供すること、およびそれを用いたシースルーの外観を呈する色素増感型太陽電池を提供することを目的とする。
【課題を解決するための手段】
【0011】
発明者らは詳細な研究の結果、上記目的は、対向電極の導電材料として多数の貫通穴を有するステンレス鋼シートを使用することによって達成できることを見出した。また、そのようなステンレス鋼シートは、塩化第二鉄水溶液中でのエッチングによって効率良く生産できることがわかった。
【0012】
すなわち本発明では、
貫通穴を有するステンレス鋼シートと、その少なくとも片面に形成された触媒層で構成される色素増感型太陽電池の対向電極であって、
前記ステンレス鋼シートは、Cr:16質量%以上、Mo:0.3質量%以上を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当する化学組成を有し、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有するものである色素増感型太陽電池の対向電極が提供される。
ステンレス鋼シートの貫通穴は、圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものが好ましい。
【0013】
ステンレス鋼シートの鋼種として、規格鋼種を挙げると以下のものが好適な対象となる。
(1)Cr:16〜32質量%、Mo:0.3〜3質量%を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当するもの。
(2)Cr:16〜32質量%、Mo:0.3〜7質量%を含有し、且つJIS G4305:2005に規定されるオーステナイト鋼種に相当するもの。
【0014】
具体的に各元素の含有量範囲を示すと、以下のものが好適な対象となる。
(3)質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼。
(4)質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼。
ここで、含有量の下限を0%とした元素は、任意選択元素である。
【0015】
触媒層としては、白金、ニッケル、ポリアニリン、カーボンのいずれかを使用したものが好適な対象となる。
【0016】
また、上記の対向電極の製造方法として、
板厚0.005〜0.2mmのステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させることにより、当該シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を形成させる工程(貫通穴形成工程)、
前記貫通穴を形成したステンレス鋼シートの少なくとも片面に触媒層を形成する工程(触媒層形成工程)、
を有する色素増感型太陽電池の対向電極の製造方法が提供される。
【0017】
また本発明では、上記の対向電極を備える色素増感型太陽電池が提供される。
【発明の効果】
【0018】
本発明によれば、以下のようなメリットが得られる。
(1)対向電極の導電材料が金属材料であるため、従来の透光性導電膜を使用した対向電極と比べ導電性が良好であり、光電変換効率の向上に有利となる。
(2)対向電極に多数設けられた貫通穴の部分を通して、触媒層に邪魔されることなく可視光が透過するので、シースルー性(可視光透過性)に優れた色素増感型太陽電池を構築することができる。
(3)本発明で使用する穴あきステンレス鋼シートは、レジスト法を適用することなく、ステンレス鋼圧延シートを水溶液中でエッチングすることにより得られるので、生産性が高く、大量生産に適する。このため、シースルーの外観を呈する色素増感型太陽電池の低コスト化に有利である。
【図面の簡単な説明】
【0019】
【図1】一般的な色素増感型太陽電池の構成を模式的に示した図。
【図2】本発明の対向電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示した図。
【図3】本発明の対向電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示した図。
【発明を実施するための形態】
【0020】
図2に、本発明の対向電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示する。対向電極20は、貫通穴50を有するステンレス鋼シート9と、その片面に形成された触媒層7によって構成されている。貫通穴50は触媒層7によって塞がれていない。この対向電極20を用いた色素増感型太陽電池1では、必要に応じて貫通穴50を通して入射してくる入射光30’を発電に利用することができる。すなわち、光電極10側からの入射光30、および対向電極20側からの入射光30’のいずれか一方または双方を発電に利用することができる。対向電極20の外側には、電解液8を封止する目的で透光性板状体2’が設けられる。この透光性板状体2’は、光電極10側の透光性板状体2と同様、ガラスやプラスチックなどの透光性材料の板あるいはフィルムを適用することができる。
【0021】
図2に示した電池の例では、電子は「多孔質半導体層4→透光性導電膜3→負荷40→ステンレス鋼シート9→触媒層7→電解液8→多孔質半導体層4」の経路で移動する。その結果、負荷40を作動させる電流が発生する。
【0022】
本発明の対向電極20は、光電極10との間に間隙が確保されている限り、必ずしも透光性板状体2’の表面上に密着させる必要はない。意匠性や生産性を加味して、最適な位置に保持すればよい。
図3に、透光性板状体2’に接触していない状態で本発明の対向電極20を配置したタイプの色素増感型太陽電池の構成を例示する。この場合、触媒層7は図示されるようにステンレス鋼シート9の片面に形成されていても構わないし、両面に形成されていても構わない。
【0023】
〔ステンレス鋼シートの鋼種〕
色素増感型太陽電池の電解液には通常、ヨウ素(I2)およびヨウ化物イオン等を含む有機溶媒が使用される。本発明に適用するステンレス鋼シートはこのような電解液中で長期間安定して優れた耐食性を呈する素材で構成する必要がある。発明者らの検討の結果、80℃に加熱した当該電解液中に500時間浸漬したときの腐食減量が1g/m2以下となる性質のステンレス鋼を適用することが極めて有効であることがわかった。いわゆる裸の状態(被覆層を形成していない状態)で上記の厳しい試験環境における腐食減量が1g/m2以下となるステンレス鋼は、パーソナルユースの機器に搭載する普及型の色素増感型太陽電池を構築する上で、通常は十分な耐久性を有する。また、上記液中に1000時間浸漬したときの腐食減量が1g/m2以下となる性質のステンレス鋼は特に信頼性の高い色素増感型太陽電池を構築する上で一層有利である。
【0024】
発明者らは詳細な検討の結果、ステンレス鋼において、一定量以上のCrとMoを含有させることによって、有機溶媒を用いたヨウ素(I2)およびヨウ化物イオン含有電解質溶液中での溶解がほとんど進行しない優れた耐食性が付与できることを確認している。具体的には、ステンレス鋼材料においてCr含有量を16質量%以上とし、且つMo含有量を0.3質量%以上としたとき、色素増感型太陽電池に適用されるヨウ素(I2)およびヨウ化物イオン含有電解液中での溶解がほとんど生じない優れた耐食性を呈することを見出した。また、Cr含有量を17質量%以上とし、且つMo含有量を0.8質量%以上としたときには、より信頼性の高い色素増感型太陽電池を構築できる。この傾向はオーステナイト系やフェライト系といった鋼種の影響をあまり受けず、その他の添加元素の影響も少ない。
【0025】
本発明では、フェライト系鋼種と、オーステナイト系鋼種において、それぞれ以下の組成範囲のステンレス鋼を適用することができる。合金元素の含有量に関する「%」は特に断らない限り「質量%」を意味する。
【0026】
フェライト系鋼種;
「C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%好ましくは17〜32%、Mo:0.3〜3%好ましくは0.8〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物の組成を有するフェライト系ステンレス鋼」
規格鋼種を利用する場合は例えばJIS G4305:2005に規定されるフェライト系鋼種であってCr:16〜32質量%好ましくは17〜32質量%、Mo:0.3〜3質量%好ましくは0.8〜3質量%を含有するステンレス鋼を適用すればよい。
【0027】
オーステナイト系鋼種;
「C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%好ましくは17〜32%、Mo:0.3〜7%好ましくは0.8〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部がFeおよび不可避的不純物の組成を有するオーステナイト系ステンレス鋼」
規格鋼種を利用する場合は例えばJIS G4305:2005に規定されるオーステナイト系鋼種であってCr:16〜32質量%好ましくは17〜32質量%、Mo:0.3〜7質量%好ましくは0.8〜7質量%を含有するステンレス鋼を適用すればよい。
【0028】
Cr含有量が16%未満またはMo含有量が0.3%未満だと、色素増感型太陽電池に適用されるヨウ素(I2)およびヨウ化物含有電解質溶液中において、当該材料の溶解がほとんど生じないような優れた耐食性を安定して得ることが難しくなる。より信頼性を向上させるには、フェライト系の場合Crを17%以上且つMoを0.8%以上含有させることが好ましく、Crを18%以上且つMoを1%以上含有させることが一層好ましい。オーステナイト系の場合Crを17%以上且つMoを0.8%以上含有させることが好ましく、Crを18%以上且つMoを2%以上含有させることが一層好ましい。ただし、CrやMoの含有量が過剰に多くなると製造性を害する等の弊害が顕著になる。このため、Cr含有量は32%以下とすることが望ましく、30%以下が一層好ましい。またMo含有量は、フェライト系の場合3%以下とすることが望ましく、オーステナイト系の場合7%以下とすることが望ましい。なお、元素含有量の下限「0%」は、当該元素の含有量が通常の製鋼現場での分析手法において測定限界以下であることを意味する。
【0029】
上記以外の元素として、V:0.3%以下、Zr:0.3%以下、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下といった元素の混入が許容される。これらはスクラップ等の原料から不可避的に混入する場合があるが上記範囲の混入であれば本発明の効果を阻害するものではない。
【0030】
種々の組成のステンレス鋼について、色素増感型太陽電池の電解液を模擬したヨウ素(I2)およびヨウ化物イオンを含む試験液に対する耐食性を調べた結果を例示する。
表1に示す組成の各種ステンレス鋼を溶製し、一般的なステンレス鋼板製造工程により板厚0.28〜0.81mmの冷延焼鈍鋼板(2D仕上げ材)を製造し、これを供試材とした。表1中、組織の欄は、「α」がフェライト系、「γ」がオーステナイト系を意味する。表中におけるハイフン「−」は、製鋼現場における通常の分析手法にて測定限界以下であることを意味する。
【0031】
【表1】

【0032】
各供試材から35×35mmの試験片を切り出し、表面(端面を含む)を#600乾式エメリー研磨で仕上げることにより、耐食性試験片とした。
色素増感型太陽電池の電解質溶液を模擬した試験液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
【0033】
テフロン(登録商標)製の容器に前記試験液10mLを入れ、この液中に前記耐食性試験片を浸漬した。容器には蓋をして溶媒の揮発を抑えた。この容器を80℃の恒温槽中に保持し、浸漬開始から500時間経過後に試験片を取り出した。各鋼種ともサンプル数n=3で実施した。
【0034】
500時間浸漬後の各試験片について、腐食減量(初期の試験片質量−浸漬後の試験片質量)を測定した。n=3の腐食減量値のうち最も大きい値(すなわち金属の溶出量が最も大きかったもの)をその鋼種の腐食減量の成績として採用した。この500時間浸漬試験における腐食減量が1g/m2以下のものを合格と判定した。また、500時間浸漬試験後の試験片表面を目視観察し、外観を調べた。この場合も、n=3のうち最も腐食の程度が激しかった試験片の外観をその鋼種の成績として採用した。
参考のため、500時間浸漬後の外観において全面腐食または端面の腐食が認められた鋼種を除き、観察後の試験片を再び上記の浸漬試験に供し、トータル1000時間の浸漬試験における腐食減量および外観を調べた。
結果を表2に示す。
【0035】
【表2】

【0036】
表1、表2からわかるように、Cr:16%以上、且つMo:0.3%以上を含有する本発明対象鋼は、裸のままでヨウ化物イオン含有電解液中に80℃×500hという厳しい条件で浸漬した場合の腐食減量が1g/m2以下となり、点錆の発生も少なく、優れた耐食性を示すことが確認された。Cr:17%以上、且つMo:0.8%以上を含有するものは、トータル1000時間の浸漬試験でも腐食減量が1g/m2以下であり、一層耐久性に優れる。
【0037】
〔ステンレス鋼シートの形態〕
本発明の対向電極20を構成するステンレス鋼シート9は、貫通穴50を通じて可視光が十分に透過するものでなければならない。貫通部の面積率が過小であると、色素増感型太陽電池1に良好なシースルー性を付与することが難しくなる。また、対向電極20側からの入射光30’を発電に利用する場合には光電変換効率の低下を招き好ましくない。ここで、貫通部の面積率は、ステンレス鋼シート9を厚さ方向に見た場合の投影像に占める、貫通部の面積率(以下「貫通率」と呼ぶことがある)によって表すことができる。個々の貫通穴50についての貫通部の面積は、当該貫通穴50をステンレス鋼シート9の厚さ方向見た場合に、穴を通して向こう側が貫通して見えている部分の投影面積である。貫通率は、少なくとも30個の貫通穴50における貫通部が完全に含まれる矩形領域について、個々の貫通部の面積(当該矩形領域から一部がはみ出す貫通部は当該矩形領域内の部分の面積とする)を求め、それらのトータル面積を、当該矩形領域の面積(投影面積)で除することにより算出される。
【0038】
貫通穴50は後述のように電解質水溶液中でのエッチングによって形成させることができる。その場合、ステンレス鋼シートの両面からそれぞれ孔食状ピットが成長するので、一方の表面から成長したピットが他方の表面に至って貫通穴が形成されることもあれば、双方から成長したピット同士が厚みの途中でぶつかって貫通穴となることもある。発明者らの検討によれば、これらいずれの貫通穴であっても、貫通率が5%を下回ると、シースルー性の良好な色素増感型太陽電池の構築が難しくなることがわかった。このため、本発明に用いる穴あきステンレス鋼シートは、貫通率が5%以上であることが必要である。10%以上であるものが好ましく、20%以上であるものがより好ましい。貫通穴50に入射光30’の透過を要求する場合には、貫通率は50%以上とすることが好ましく、60%以上が一層好ましい。一方、貫通率が過度に高くなるとステンレス鋼シート9の強度低下に起因して製造過程でシートが破断しやすくなり、製造性に劣る。種々検討の結果、貫通率は80%以下とするのが良いことがわかった。70%以下に管理してもよい。
【0039】
また、個々の貫通穴50のサイズが過大であると、電解液8中のイオンが対向電極20の表面に到達するまでの平均移動距離が大きくなることなどに起因して、光電変換効率の低下が生じやすくなる。種々検討の結果、貫通部の平均径は500μm以下とすることが必要であり、200μm以下、あるいは100μm以下とすることがより好ましい。一方、貫通穴50をあまり細かくしても光電変換効率の向上等、特性改善には繋がらず、また、そのような細かい貫通穴50を多数形成させることは難しいので、通常、貫通部の平均径は5μm以上とすればよい。ここで、貫通部の平均径は、前述の貫通率を求める場合の条件を満たした矩形領域の中に完全に含まれる貫通部(すなわち、貫通部の一部分が当該矩形領域からはみ出しているものを除く)の平均径によって表される。個々の貫通部の径は、円相当径が採用される。円相当径とは、貫通部の面積をS(μm2)、円周率をπとするとき、S=πD2/4によって定まるD(μm)を意味する。
【0040】
ステンレス鋼シート9の厚さは、0.005〜1mm程度の広い範囲で選択可能であるが、このステンレス鋼シート9に色素増感型太陽電池1全体としての強度の大部分を負担させる必要がない限り、一般的には薄い方が好ましい。ただし、薄すぎると強度不足により製造時の取り扱いが難しくなるので、0.005mm以上の厚さを確保することが望ましい。具体的には、例えば、厚さ0.005〜0.2mm程度のステンレス鋼圧延シートを素材として用いて、後述の手法で貫通穴50の形成を行うことが好ましい。厚さ0.005〜0.1mmのステンレス鋼圧延シートを使用することが一層好ましい。
【0041】
〔貫通穴の形成〕
ステンレス鋼シート9に貫通穴50を形成させる手法として、塩化第二鉄水溶液中でのエッチングが極めて効果的である。ステンレス鋼シートの素材を塩化第二鉄水溶液中に単に浸漬する手法や、必要に応じてアノード電解あるいは交番電解を加える手法が利用できる。電解質水溶液に塩化第二鉄水溶液を用いると、ステンレス鋼表面に多数の微細な孔食状ピットを形成させることができる。その孔食状ピットは開口径の割りに深さの深い形態を呈するものとなるので、これを成長させることによりシートの厚さを貫通する穴を開けることが可能となる。具体的には、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液を使用することができる。温度は例えば20〜80℃範囲とすることが好適である。ステンレス鋼種によって耐食性レベルに差があるので、それぞれの鋼種に応じた電解質水溶液濃度、温度を上記の範囲で設定するとともに、処理時間や、電解を行う場合の電解条件などを最適に設定すればよい。貫通率や貫通部の平均径は、板厚に応じて上記各条件を変化させることによりコントロールすることができる。素材の鋼種および板厚、並びに目標とする貫通率および貫通部の平均径に応じて予備実験により最適条件を定めればよい。
【0042】
上記の塩化第二鉄水溶液中でのエッチングによって貫通穴50を形成すると、貫通穴50が生じていない部分の表面にも、孔食状ピットが多数形成される。すなわち、当該エッチングによって貫通穴50を形成したステンレス鋼シート9は、貫通穴50が生じていない部分の表面が孔食状ピットによって粗面化されているものとなる。この粗面化によって表面積が増大するので電池の内部抵抗低減に有効となる。
【0043】
以下に、表1の鋼Hを用いた板厚0.01mmのステンレス鋼圧延シート(焼鈍材)について種々の条件で貫通穴を形成した実験例を開示する。
電解質水溶液として、3価の鉄イオン濃度、および塩酸濃度を種々変えた塩化第二鉄水溶液を用意し、前記ステンレス鋼圧延シートを前記電解質水溶液中に浸漬することにより、貫通穴の形成を試みた。液温、処理時間も種々変化させた。浸漬処理後のステンレス鋼シートを光学顕微鏡(KEYENCE社製;HV−5500)により板厚方向に観察し、前述した貫通部の平均径および貫通部の面積率(貫通率)を求めた。
処理条件および結果を表3に示す。
【0044】
【表3】

【0045】
表3からわかるように、電解質水溶液の濃度、液温、処理時間を変えることによって、貫通部の平均径および貫通部の面積率(貫通率)をコントロールすることができる。No.1、2は3価の鉄イオン濃度が低すぎたのでエッチング力が弱く、貫通穴の生成が不十分であった。No.3は塩酸濃度が高すぎたので全面溶解の傾向が大きくなり、金属の溶出量は多いものの、孔食状の深いピットが成長しにくく、結果的に60secでは十分に貫通穴が得られなかった。なお、本発明対象材はいずれも、貫通穴が生じていない部分の表面が孔食状ピットによって粗面化されていることが確認された。
【0046】
〔触媒層の形成〕
本発明で適用する対向電極20の表面には触媒層7が形成されている。触媒物質としては、白金、ニッケル、ポリアニリン、ポリエチレンジオキシチオフェン、カーボンなどが適用できる。白金、ニッケルなどの金属膜の場合は、例えばスパッタリング法により形成することができる。ポリアニリン、ポリエチレンジオキシチオフェンなどの導電性高分子膜は例えばスピンコート法により形成することができる。カーボンの場合は、例えば活性炭分散溶媒を用いてスピンコート法により形成することができる。発明者らの検討によれば、平均膜厚が約1nmと極めて薄い白金膜を形成させた場合でも電池として機能することが確認された。触媒層7の平均膜厚は例えば1〜300nm程度とすればよい。変換効率の安定性と経済性を両立させる上では、10〜200nm、あるいは20〜100nmの範囲にコントロールすることより効果的である。
【実施例】
【0047】
表3に示したNo.1、2、3、4、6、11、13のステンレス鋼シートを用いて対向電極を作製し、それを用いて図2に示した構成の色素増感型太陽電池を試作した。
【0048】
〔対向電極〕
ステンレス鋼シートの片側表面に、触媒物質として白金、ニッケル、ポリアニリン、カーボンのいずれかを用いた触媒層を形成することによって対向電極を得た。
白金、またはニッケルの場合は、ステンレス鋼シートをスパッタリング装置にセットし、触媒物質である金属をターゲットに用いてスパッタコーティングすることにより触媒層を形成した。この膜厚は約20nmとした。
ポリアニリンの場合は、ポリアニリンが溶解したトルエン溶液をステンレス鋼シートの表面に滴下するスピンコート法にて触媒層を形成した。この膜厚は約30nmである。
カーボンの場合は、活性炭を分散させたtert−ブタノール溶液をステンレス鋼シートの表面に滴下するスピンコート法にて触媒層を形成した。この膜厚は約50nmである。
【0049】
〔光電極〕
光電極用の透光性導電膜として、PEN(ポリエチレンナフタレート)フィルム基板上にITO膜を形成したもの(ペクセルテクノロジーズ社製;PECF−IP)を用意した。多孔質半導体層を得るための材料としてTiO2ペースト(ペクセルテクノロジーズ社製;PECC−01−06)を用意した。増感色素としてルテニウム錯体色素(Solaronix社製)を用意し、これをアセトニトリルとtert−ブタノールの混合溶媒に分散させ、色素溶液とした。
【0050】
PENフィルム基板のITO面上にTiO2ペーストをドクターブレード法にて塗布し、常温で放置し乾燥させ、多孔質半導体層を形成させた。得られた多孔質半導体層の厚さは10μmであった。このようにして得られた板状体を前記色素溶液中に浸漬させることにより、多孔質半導体層に増感色素を担持させ、ITO膜と当該多孔質半導体層で構成される光電極を得た。ここで、PENフィルム基板は図2における透光性板状体2に相当するものである。
【0051】
〔電解液〕
電解液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
【0052】
〔電池の作製〕
光電極のステンレス鋼シート側の面と、対向電極の白金膜とが向き合うように、これら両電極を配置した。その際、対向電極側の厚さ方向端部にはPENフィルム基板を配置した。セルとなる部分の周囲にスペーサーを挿入してITO表面と対向電極の距離が50μmとなるようにセルを構築した。そして、マイクロシリンダを用いてセル内部に電解液を注入し、両電極の間および多孔質半導体層の空隙を電解液で満たしたのち封止した。このようにして図2に示した構成の色素増感型太陽電池を得た。
【0053】
〔電池特性〕
各色素増感型太陽電池に、ソーラーシミュレータ(山下電装社製;YSS−100)を用いてAM1.5、100mW/cm2の擬似太陽光を光電極側から照射しながら、KEITHLEY社製「2400型ソースメータ」によりI−V特性を測定して、短絡電流JSC、開放電圧VOC、形状因子FFの値を得た。これらの値から下記(1)式により光電変換効率ηの値を求めた。
光電変換効率η(%)=短絡電流JSC(mA/cm2)×開放電圧VOC(V)×{形状因子FF/入射光100(mW/cm2)}×100 …(1)
【0054】
〔シースルー性〕
作製した色素増感型太陽電池を新聞紙上に置き、当該電池のセルを通して新聞紙の文字が見えるかどうかで電池のシースルー性を評価した。セルを通して新聞紙の文字が見えるものを○(良好)、それ以外を×(不良)と判定した。
これらの結果を表4に示す。
【0055】
【表4】

【0056】
表4からわかるように、ステンレス鋼シートに形成された貫通穴の面積率(貫通率)が5%以上である本発明例のものでは、シースルーの外観を呈する電池が構築できた。また、電池特性も良好であった。
【符号の説明】
【0057】
1 色素増感型太陽電池
2、2’ 透光性板状体
3 透光性導電膜
4、4’ 多孔質半導体層
5 基板
6 導電材料
7 触媒層
8 電解液
9 ステンレス鋼シート
10 光電極
20 対向電極
30、30’ 入射光
40 負荷
50 貫通穴

【特許請求の範囲】
【請求項1】
貫通穴を有するステンレス鋼シートと、その少なくとも片面に形成された触媒層で構成される色素増感型太陽電池の対向電極であって、
前記ステンレス鋼シートは、Cr:16〜32質量%、Mo:0.3〜3質量%を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当する化学組成を有し、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有するものである色素増感型太陽電池の対向電極。
【請求項2】
ステンレス鋼シートの化学組成が、Cr:16〜32質量%、Mo:0.3〜7質量%を含有し、且つJIS G4305:2005に規定されるオーステナイト鋼種に相当するものである請求項1に記載の色素増感型太陽電池の対向電極。
【請求項3】
ステンレス鋼シートの化学組成が、質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼である請求項1に記載の色素増感型太陽電池の対向電極。
【請求項4】
ステンレス鋼シートの化学組成が、質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼である請求項1に記載の色素増感型太陽電池の対向電極。
【請求項5】
ステンレス鋼シートの貫通穴は、圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものである請求項1〜4のいずれかに記載の色素増感型太陽電池の対向電極。
【請求項6】
触媒層が、白金、ニッケル、ポリアニリン、カーボンのいずれかを使用したものである請求項1〜5のいずれかに記載の色素増感型太陽電池の対向電極。
【請求項7】
板厚0.005〜0.2mmのステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させることにより、当該シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を形成させる工程(貫通穴形成工程)、
前記貫通穴を形成したステンレス鋼シートの少なくとも片面に触媒層を形成する工程(触媒層形成工程)、
を有する請求項1〜4のいずれかに記載の色素増感型太陽電池の対向電極の製造方法。
【請求項8】
請求項1〜6のいずれかに記載の対向電極を備える色素増感型太陽電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−108464(P2011−108464A)
【公開日】平成23年6月2日(2011.6.2)
【国際特許分類】
【出願番号】特願2009−261382(P2009−261382)
【出願日】平成21年11月16日(2009.11.16)
【出願人】(000004581)日新製鋼株式会社 (1,178)
【Fターム(参考)】