説明

荷電粒子線システム、および測定パラメータ設定方法

【課題】シュリンク量(あるいは測長値の真値からのずれ量)および再現性誤差量の双方を考慮して、荷電粒子線システムの最適なパターン寸法計測条件を決定する。
【解決手段】本発明者等は、シュリンク量と計測再現性誤差量とがトレードオフの関係にあることを見出した。また、同じシュリンク量であっても、一次荷電粒子線11の照射エネルギ等を決定する測定パラメータ(加速電圧、電流量、観察倍率、フレーム数)によって計測再現性誤差量が異なることを見出した。そこで、測定パラメータである加速電圧、電流量、観察倍率、およびフレーム数の少なくとも2つを要因とする直交表を使って実験計画を立て、半導体デバイス13のシュリンク量および計測再現性誤差量を計測する実験を行う。そして、実験結果から多元配置により各要因の水準の組み合わせにおけるシュリンク量および計測再現性誤差量を算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は荷電粒子線を用いて半導体デバイスの回路パターンを計測する技術に関する。
【背景技術】
【0002】
半導体デバイスの回路パターンを計測する技術として、荷電粒子線システムがある。荷電粒子線システムは、半導体デバイスに一次荷電粒子線を照射し、これにより発生する二次荷電粒子を検出する。そして、検出した二次荷電粒子を画像化して表示する。
【0003】
近年、半導体デバイスの微細化が進んでおり、これに伴いリソグラフィ工程で用いる光源として波長のより短いものが望まれている。現在、KrFエキシマレーザ(波長248nm)よりも更に短波長のArFエキシマレーザ(波長193nm)が検討されている。
【0004】
ところで、荷電粒子線システムの一次荷電粒子線をArFエキシマレーザ用フォトレジスト(以下、ArFレジストと呼ぶ)に照射すると、ArFレジストのパターン寸法が変化する。この現象はシュリンクと呼ばれている。ArFレジスト以外でシュリンクする材料としてlow-k材料が知られている。low-k材料もArFレジストと同様に次世代の半導体材料として有望視されている。
【0005】
このシュリンクは、荷電粒子線システムによる半導体デバイスの正確なパターン寸法計測を妨げるものである。シュリンクに関し、特許文献1には、荷電粒子線システムの一次荷電粒子線の照射エネルギを300eV以下にするか、あるいはその照射密度を1.4C/m以下にすることで、荷電粒子線システムでlow-k材料を観察する際に発生するシュリンク量を2.4nm以下に抑える技術が開示されている。また、特許文献2には、荷電粒子線システムのチャンバ内のコンタミネーションおよび半導体デバイスから発生するコンタミネーションによって生じるレジストパターンの線幅太り現象と、パターン寸法計測回数との関係から、外部環境に影響されることのないシュリンク量を算出する技術が開示されている。
【0006】
【特許文献1】特開2004-227879号公報
【特許文献2】特開2005-217161号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
特許文献1に記載の技術によれば、一次荷電粒子線の照射エネルギを300eV以下にするか、あるいはその照射密度を1.4C/m以下にすることで、low-k材料を観察する際に発生するシュリンク量を2.4nm以下に抑えることができる。また、特許文献2に記載の技術によれば、外部環境に影響されることのないシュリンク量を算出することができる。しかしながら、これらの技術は、計測再現性誤差量を考慮していない。特許文献1に記載の技術によりシュリンク量を小さくすることができたとしても、あるいは、特許文献2に記載の技術によりシュリンク量を算出することができたとしても、計測再現性誤差量が大きいと、半導体デバイスの寸法管理を高精度に行うことができない。
【0008】
本発明は上記事情に鑑みてなされたものであり、本発明の目的は、シュリンク量(あるいは測長値の真値からのずれ量)および計測再現性誤差量の双方を考慮して、荷電粒子線システムの最適なパターン寸法計測条件を決定する技術を提供することにある。
【課題を解決するための手段】
【0009】
本発明者等は、シュリンク量(あるいは測長値の真値からのずれ量)と計測再現性誤差量とがトレードオフの関係にあることを見出した。また、同じシュリンク量(あるいは測長値の真値からのずれ量)であっても、一次荷電粒子線の照射エネルギあるいは照射密度を決定する測定パラメータ(加速電圧、電流量、観察倍率、フレーム数)によって計測再現性誤差量が異なることを見出した。そこで、本発明では、測定パラメータである加速電圧、電流量、観察倍率、およびフレーム数の少なくとも2つを要因とする直交表を使って実験計画を立て、半導体デバイスのシュリンク量(あるいは測長値の真値からのずれ量)および計測再現性誤差量を計測する実験を行う。そして、実験結果から多元配置により各要因の水準の組み合わせにおけるシュリンク量(あるいは測長値の真値からのずれ量)および計測再現性誤差量を算出する。
【0010】
例えば、本発明の荷電粒子線システムは、半導体デバイスに対して一次荷電粒子線を照射し、これにより発生する二次荷電粒子を検出することで前記半導体デバイスの回路パターンを測長する荷電粒子線光学系と、設定された測定パラメータに従い前記荷電粒子線光学系を制御する制御系と、測定パラメータを前記制御系に設定する情報処理系と、を有する荷電粒子線システムであって、
前記情報処理系は、
演算装置、記憶装置、およびユーザインターフェースを有し、
前記記憶装置は、
加速電圧、電流量、観察倍率、およびフレーム数のうちの少なくとも2つの測定パラメータがいずれかの要因に割り当てられた直交表でなる実験計画表データを記憶し、
前記演算装置は、
前記実験計画表データに記述されている実験番号毎に、測定パラメータが割り当てられている各要因の水準が示す設定値を前記制御系に設定して、前記荷電粒子線光学系に、前記半導体体デバイスの複数の測定点で回路パターンを測長させ、該測長結果からシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量を算出し、前記記憶装置に記憶する実験データ収集処理と、
前記実験計画表データに記述されている実験番号各々での、測定パラメータが割り当てられている各要因の水準が示す設定値と、シュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量とを用いて、測定パラメータが割り当てられている各要因の水準が示す設定値の全ての組合せ各々におけるシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量の相関図表データを生成し、前記ユーザインターフェースに出力する測定条件支援処理と、を実行する。
【発明の効果】
【0011】
本発明によれば、各要因の水準の組み合わせにおけるシュリンク量(あるいは測長値の
真値からのずれ量)および計測再現性誤差量の算出結果から、許容されるシュリンク量(あるいは測長値の真値からのずれ量)において、計測再現性誤差量が最も小さくなる各要因の水準の組み合わせを検出することができる。したがって、シュリンク量(あるいは測長値の真値からのずれ量)および計測再現性誤差量の双方を考慮して、荷電粒子線システムの最適なパターン寸法計測条件を決定することができる。
【発明を実施するための最良の形態】
【0012】
以下に、本発明の実施の形態を図面を参照して説明する。
【0013】
図1は、本発明の一実施形態が適用された走査電子顕微鏡システムの概略構成図である。
【0014】
図示するように、本実施形態の走査電子顕微鏡システムは、荷電粒子線光学系10と、資料室20と、制御系30と、情報処理系40と、を有する。
【0015】
荷電粒子線光学系10は、一次荷電粒子線11を出射する電子銃101と、電子銃101から出射された一次荷電粒子線11を半導体デバイス13上で集束するためのコンデンサレンズ102および対物レンズ104と、電子銃101から出射された一次荷電粒子線11を半導体デバイス13上で二次元に走査するための偏向コイル103と、半導体デバイス13への一次荷電粒子線11の照射に起因して半導体デバイス13から放出される二次荷電粒子12を検出する二次荷電粒子検出器105と、を有する。
【0016】
試料室20は、一次荷電粒子線11の入射方向に対して垂直方向に半導体デバイス13を移動させる試料ステージ201を有する。
【0017】
制御系30は、情報処理系40によって設定された測定パラメータ(加速電圧、電流量、観察倍率、フレーム数)に従い荷電粒子線光学系10の各部を制御する。また、情報処理系40から出力された命令に従いステージ201を移動して、半導体デバイス13の所望の測定点が一次荷電粒子線11の照射位置にくるように制御する。
【0018】
情報処理系40は、演算装置401、データベース402と、ユーザーインターフェース403と、を有する。
【0019】
演算装置401は、ユーザーインターフェース403を介してオペレータより受付けた指示に従い、測定パラメータ各々の設定値の最適な組み合わせを検出するために必要な、シュリンク量および再現性誤差量の測定を行う測定パラメータ各々の設定値の組み合わせが記述された実験計画表を生成し、データベース402に登録する(実験計画表生成処理)。
【0020】
また、演算装置401は、データベース402に登録されている実験計画表に従い、制御系30を制御して、実験計画表に記述されている測定パラメータ各々の設定値の組み合わせ毎に、半導体デバイス13の回路パターンの測長を行い、そのときのシュリンク量および再現性誤差量を測定して、データベース402に登録する(実験データ収集処理)。
【0021】
また、演算装置401は、データベース402に登録された測定パラメータ各々の設定値の組み合わせ毎のシュリンク量および再現性誤差量に従い、測定パラメータ各々の設定値の全ての組み合わせにおけるシュリンク量および再現性誤差量の相関図を生成し、ユーザインターフェース403に出力する。また、シュリンク量および再現性誤差量のバランスが最適となる測定パラメータ各々の設定値の組み合わせを検出し、ユーザインターフェース403に出力する(測定条件支援処理)。
【0022】
また、演算装置401は、ユーザインターフェース403を介してオペレータより入力された検査レシピ情報(測定パラメータ(加速電圧、電流量、観察倍率、フレーム数)、半導体デバイス13の情報、測定点の位置情報等)に従い、制御系30を介してシステム全体の制御を行い、これにより二次荷電粒子検出器105で検出された二次荷電粒子12を画像化して、ユーザインターフェース403に出力し、半導体デバイス13の回路パターンを測長する(SEM測定処理)。
【0023】
次に、演算装置401が行う実験計画表生成処理、実験データ収集処理、および測定条件支援処理について説明する。なお、SEM測定処理は、既存の走査電子顕微鏡システムのSEM測定処理と同じであるので、その詳細な説明を省略する。
【0024】
先ず、実験計画表生成処理について説明する。
【0025】
図2は実験計画表生成処理を説明するためのフロー図である。
【0026】
このフローは、演算装置401がユーザインターフェース403を介してオペレータより実験計画表の作成指示を受付けることで開始される。
【0027】
まず、演算装置401は、ユーザインターフェース403を介してオペレータに直交表の選択画面を表示し、この選択画面を介して実験計画表データの作成に使用する直交表の指定を受付ける(S101)。本実施形態では、図3(A)に示すL9直交表4011、図3(B)に示すL18直交表4012、および図3(C)に示すL18直交表4013の中からいずれか一つを選択させる。なお、図3において、要因に付された添え字は水準を示している。
【0028】
次に、演算装置401は、S101で指定された直交表で用いる水準表を決定する(S102)。水準表は直交表によって一意に決まる。L9直交表4011が選択された場合、図4(A)に示す水準表4014が用いられる。この水準表4014では、4つの要因A〜Dのそれぞれが3つの値をとる。また、L18直交表4012が選択された場合、図4(B)に示す水準表4015が用いられる。この水準表4015では、8つの要因A〜Hのうち列番上最初の要因Aが2つの値をとり、残りの要因B〜Hが3つの値をとる。そして、L18直交表4013が選択された場合、図4(C)に示す水準表4016が用いられる。この水準表4016では、8つの要因A〜Hのうち列番上最初の要因Aおよび2番目の要因Bの組み合わせが6つの値をとり、残りの要因C〜Hが3つの値をとる。なお、図4において、要因に付された添え字は水準を示している。
【0029】
次に、演算装置401は、S101で指定された直交表のどの要因に測定パラメータを割り当てるかについて、ユーザインターフェース403を介してオペレータより指定を受付ける(S103)。本発明者等は、シュリンク量と計測再現性誤差量とがトレードオフの関係にあることを見出した。また、同じシュリンク量であっても、一次荷電粒子線11の照射エネルギあるいは照射密度を決定する計測パラメータによって計測再現性誤差量が異なることを見出した。そこで、本実施形態では、一次荷電粒子線11の照射エネルギあるいは照射密度を決定する4つの計測パラメータ「加速電圧」、「電流量」、「観察倍率」、「フレーム数」のうちの少なくとも2つを、指定された直交表のいずれかの要因に割り当てるようにしている。
【0030】
次に、演算装置401は、S102で決定された水準表に従い、S103で測定パラメータが割り当てられた要因各々について、各水準の値の指定を受付ける(S104)。例えばS101で指定された直交表が図3(B)に示すL18直交表4012であり、S103で4つの計測パラメータ「加速電圧」、「電流量」、「観察倍率」、「フレーム数」のそれぞれがL18直交表4012の要因C、B、F、Gに割り当てられた場合を考える。L18直交表4012で用いられる水準表は図4(B)に示す水準表4015であり、したがって、要因C、B、F、Gはそれぞれ3つの値(水準)をとる。そこで、演算装置401は、4つの計測パラメータ「加速電圧」、「電流量」、「観察倍率」、「フレーム数」のそれぞれについて、3つの値の指定を受付ける。これらの値は、荷電粒子線システムのスペックおよび測定対象の半導体デバイス13の寸法、材料等を考慮して、オペレータが経験に基づき決定すればよい。
【0031】
次に、演算装置401は、S101で指定された直交表において、S103でオペレータより受付けた指定内容に従い要因に測定パラメータを割り当て、且つ、S104でオペレータより受付けた指定内容に従い各要因の水準に値を設定して、最適な測定パラメータの設定値を見つけ出すための荷電粒子線システムの実験計画表データを作成する。そして、作成した実験計画表データに、ユーザインターフェース403を介してオペレータより受付けた識別情報(半導体デバイス13の種別情報、材料情報等)を付加して、データベース402に登録する(S105)。
【0032】
図5は実験計画表データを模式的に表した図である。図示するように、実験計画表データ4017は、オペレータより指定された直交表において、オペレータより受付けた指定内容に従い要因に測定パラメータが割り当てられたものであり、この実験計画表データ4017を一意に識別するための識別情報40171が付与されている。図5に示す例では、図3(B)に示すL18直交表4012において、4つの計測パラメータ「加速電圧」、「電流量」、「観察倍率」、「フレーム数」のそれぞれが要因C、B、F、Gに割り当てられた場合を示している。また、各要因の水準は、測定パラメータ「加速電圧」の水準1、水準2、水準3がそれぞれ300(V)、600(V)、900(V)であり、測定パラメータ「電流量」の水準1、水準2、水準3がそれぞれ4(pA)、8(pA)、12(pA)であり、測定パラメータ「観測倍率」の水準1、水準2、水準3がそれぞれ100(k)、150(k)、200(k)であり、そして、測定パラメータ「フレーム数」の水準1、水準2、水準3がそれぞれ16、8、4である。測定パラメータが割り当てられていないその他の要因A、D、E、Hは、水準1〜3の全てにおいてヌル値「null」が設定される。また、図5において、符号40172は、シュリンク量(感度)の測定データを登録するためのカラムである。また、符号40173は、再現性誤差量(SN比)の測定データを登録するためのカラムである。初期状態では、ヌル値「null」が登録される。
【0033】
次に、実験データ収集処理について説明する。
【0034】
図6は実験データ収集処理を説明するためのフロー図である。
【0035】
このフローは、演算装置401がユーザインターフェース403を介してオペレータより実験データ収集指示を受付けることで開始される。
【0036】
まず、演算装置401は、ユーザインターフェース403を介してオペレータより、実験計画表データの識別情報の指定を受付ける(S201)。次に、演算装置401は、オペレータより受付けた識別情報を持つ実験計画表データをデータベース402から読み出す(S202)。また、実験計画表データから実験のレコードを抽出するのに用いるカウンタ値nを初期値(=1)に設定する(S202)。
【0037】
次に、演算装置401は、実験計画表データから実験nのレコードを抽出し、このレコードで要因に割り当てられている測定パラメータを読み出す(S204)。例えば図5に示す実験計画表データ(識別情報:0001)の場合、実験No.1のレコードでは、要因C、B、F、Gに割り当てられている加速電圧:300(V)、電流量:4(pA)、倍率:100(k)、フレーム数:16が読み出され、実験No.2のレコードでは、要因C、B、F、Gに割り当てられている加速電圧:600(V)、電流量:4(pA)、倍率:150(k)、フレーム数:8が読み出される。
【0038】
次に、演算装置401は、読み出した測定パラメータを制御系30に設定する(S205)。また、試料である半導体デバイス13の測定点を特定するのに用いるカウンタ値mを初期値(=1)に設定する(S206)。
【0039】
次に、演算装置401は、例えばデータベース402に予め登録しておいた半導体デバイス13の各測定点の位置情報からm番目の測定点の位置情報を読み出す。そして、読み出した位置情報を制御系30に設定する。これを受けて、制御系30は、演算装置401により設定された位置情報により特定される半導体デバイス13の部位(m番目の測定点)が荷電粒子線光学系10の一次荷電粒子線11の照射位置となるように、試料ステージ201を制御する。そして、演算装置401により設定された測定パラメータでm番目の測定点の回路パターンを測長するように、荷電粒子線光学系10を制御する。これにより、m番目の測定点で回路パターンの測長を複数回実施する(S207)。
【0040】
次に、演算装置401は、m番目の測定点で複数回実施した回路パターンの測長結果を用いてm番目の測定点におけるシュリンク量を算出する(S208)。例えば、j回目に測長された回路パターンの測長値Lからj+1回目に測長された回路パターンの測長値Lj+1を差し引くことでシュリンク量(L-Lj+1)を算出する。
【0041】
次に、演算装置401は、例えばデータベース402に予め登録しておいた半導体デバイス13の全ての測定点で回路パターンの測長を実施したか否かを判断する(S209)。未実施の測定点がある場合(S209でNO)、カウンタ値mを一つインクリメントし(S213)、S207に戻る。
【0042】
一方、未実施の測定点がない場合(S209でYES)、演算装置401は、各測定点でのシュリンク量の平均を求め、これを実験nのシュリンク量sに設定する。そして、このシュリンク量sを感度S(=s)として、実験nのレコードのフィールド40172に登録する(S210)。それから、演算装置401は、各測定点でのシュリンク量のばらつき(シュリンク量sの分散の平方根σの3倍)を実験nの計測再現性誤差量3σに設定する。そして、計測再現性誤差量3σを用いてSN比η(=10×log(1/σ))を求め、これを実験nのレコードのフィールド40173に登録する(S211)。それから、S212に進む。
【0043】
S212において、演算装置401は実験計画表データに登録されている全ての実験のレコードについて、半導体デバイス13の回路パターンの測長を実施したか否か調べる。未実施の実験のレコードがあるならば(S212でNO)、カウンタ値nを一つインクリメントし(S243)、S204に戻る。一方、全ての実験のレコードについて実施済みならば(S212でYES)、このフローを終了する。
【0044】
図7は感度S、SN比ηが登録された実験計画表データを模式的に表した図である。ここでは、図5に示す実験計画表データ(識別情報:0001)において、実験No.1〜実験No18の全てのレコードのフィールド40172、40173に、感度S、SN比ηが登録された場合を示している。
【0045】
次に、測定条件支援処理について説明する。
【0046】
図8は測定支援処理を説明するためのフロー図である。
【0047】
このフローは、演算装置401がユーザインターフェース403を介してオペレータより測定条件支援指示を受付けることで開始される。
【0048】
まず、演算装置401は、ユーザインターフェース403を介してオペレータより、実験データ収集済みの実験計画表データの識別情報の指定を受付ける(S301)。次に、演算装置401は、オペレータより受付けた識別情報を持つ実験計画表データをデータベース402から読み出す(S302)。そして、この実験計画表データに格納されている各要因の水準値の組み合わせと当該組み合わせでの実験結果(感度S、SN比η)とを用いて、測定パラメータが割り当てられた各要因の全ての水準値の組み合わせ各々でのシュリンク量s、再現性誤差量3σを示す多元配置データを生成する(S303)。この多元配置データ生成処理は後述する。
【0049】
次に、演算装置401は、図9に示すような、各要因の全ての水準の組み合わせ各々におけるシュリンク量sおよび再現性誤差量3σの相関を示す相関図表データを生成する。ここで、ポイント4031のそれぞれが、実験計画表データに記述されている測定パラメータが割り当てられた各要因の水準値の組み合わせにおけるシュリンク量sおよび再現性誤差量3σの相関を示している(S304)。
【0050】
次に、演算装置401は、相関図表データを用いて、図10に示すような相関解析画面データを生成し、これをユーザインターフェース403に表示する(S305)。
【0051】
図10において、符号4032は、S304で作成した相関図表データの表示欄である。オペレータは、カーソル4039を操作して所望のポイント4031を指定することができる。符号4033は、指定されたポイント4031に対応する、測定パラメータが割り当てられている各要因の水準値を示す表示欄である。ここでは、測定パラメータが割り当てられている各要因の水準値として、加速度、電流量、倍率、およびフレーム数それぞれの設定値が示されている。
【0052】
符号4034は、指定されたポイント4031に対応する、測定パラメータが割り当てられている各要因の水準値の組み合わせ、つまり、表示欄4033に表示されている設定値の組み合わせに対する評価値rを示す表示欄である。本実施形態では、演算装置401が、指定されたポイント4031におけるシュリンク量sおよび再現性誤差量3σを用いて、次式により評価値rを算出している。評価値rは小さいほど評価が高い。
【0053】
r=√(a×s+b×(3σ)
但し、a,b=const
符号4035は、表示欄4032の相関図表データに示されている各ポイント4031のうち、最も評価が高いポイント4031を検索するための検索ボタンである。符号4036は、表示欄4033に表示されている各測定パラメータの設定値を用いて半導体デバイス13の回路パターンを測長するための検査レシピの自動作成を指示するための作成ボタンである。そして、符号4035は、検査レシピ作成のキャンセルを指示するための終了ボタンである。
【0054】
さて、図10に示すような相関解析画面を介してオペレータよりポイント4031が指定されると(S306でYES)、演算装置401は、この指定されたポイント4031に対応する各測定パラメータの設定値を表示欄4033に表示する。また、この指定されたポイント4031の評価値rを算出して表示欄4034に表示する(S307)。
【0055】
また、図10に示すような相関解析画面を介してオペレータより最適条件検索ボタン4035が指定されると(S308でYES)、演算装置401は、表示欄4032の相関図表データに示されている各ポイント4031の評価値rを算出する(S309)。そして、演算装置401は、最も評価が高い評価値rが算出されたポイント4031を特定し、このポイント4031の評価値rを表示欄4034に表示すると共に、このポイント4031に対応する各測定パラメータの設定値を表示欄4033に表示する。また、表示欄4032において、このポイント4031が他のポイント4031から識別できるように表示する(S310)。
【0056】
また、図10に示すような相関解析画面を介してオペレータよりレシピ作成ボタン4036が指定されると(S311でYES)、演算装置401は、既存技術を用いて、表示欄4033に表示中の各測定パラメータの設定値を含む半導体デバイス13の検査レシピデータを自動生成する(S312)。そして、作成した検査レシピデータに識別情報(半導体デバイス13の種別情報、材料情報、実験計画表データの識別情報等)を付与してデータベース402登録し、このフローを終了する。また、終了ボタン4037が指定された場合も(S313でYES)、このフローを終了する。
【0057】
次に、多元配置データ生成処理(図8のS303)について説明する。
【0058】
図11は、多元配置データ生成処理(図8のS303)を説明するためのフロー図である。
【0059】
先ず、演算装置401は、実験計画表データに基づいて、図12(A)に示すような感度Sの補助表データを生成する(S3021)。ここで、図7に示す実験計画表データを例に取り、感度Sの補助表データの生成を具体的に説明する。
【0060】
実験計画表データの列番上1番目の要因Aに着目する。図4(B)に示す水準表によれば、要因Aは2つの水準(水準1、水準2)をとる。実験計画表データから要因Aが水準1のレコードを検索する。図3(B)に示すL18直交表4012から、要因Aが水準1であるレコードは実験No.10〜実験No.18のレコードであることが分かる。そこで、実験計画表データから実験No.10〜実験No.18のレコードを検索する。そして、検索したレコードのフィールド40172に登録されている感度Sの平均を算出し、これを感度Sの補助表データ4018の要因Aの水準1に対応するエントリ40181に登録する。要因Aの水準2についても同様に処理して感度Sの平均を算出し、これを感度Sの補助表データ4018の要因Aの水準2に対応するエントリ40181に登録する。
【0061】
次に、実験計画表データの列番上2番目の要因B(電流量)に着目する。図4(B)に示す水準表によれば、要因B(電流量)は3つの水準(水準1、水準2、水準3)をとる。先ず、実験計画表データから要因Bが水準1のレコードを検索する。図3(B)に示すL18直交表4012から、要因Bが水準1であるレコードは実験No.1〜実験No.3、実験No.10〜実験No.13のレコードであることが分かる。そこで、実験計画表データから実験No.1〜実験No.3、実験No.10〜実験No.13のレコードを検索する。そして、検索したレコードのフィールド40172に登録されている感度Sの平均を算出し、これを感度Sの補助表データ4018の要因B(電流量)の水準1に対応するエントリ40181に登録する。要因Bの水準2、水準3についても同様に処理して感度Sの平均を算出し、これを感度Sの補助表データ4018の要因Bの水準2、水準3に対応するエントリ40181に登録する。
【0062】
上記の処理を実験計画表データの列番上最後の要因Hまで繰り返す。これにより、図12(A)に示すような、実験計画表データに記述されている各要因A〜Hについて、水準毎に感度Sが登録された補助表データ4018が作成される。
【0063】
次に、演算装置401は、実験計画表データに基づいて、図12(B)に示すようなSN比ηの補助表データを生成する(S3022)。ここで、図7に示す実験計画表データを例に取り、SN比ηの補助表データの生成を具体的に説明する。
【0064】
実験計画表データの列番上1番目の要因Aに着目する。図4(B)に示す水準表によれば、要因Aは2つの水準(水準1、水準2)をとる。実験計画表データから要因Aが水準1のレコードを検索する。図3(B)に示すL18直交表4012から、要因Aが水準1であるレコードは実験No.10〜実験No.18のレコードであることが分かる。そこで、実験計画表データから実験No.10〜実験No.18のレコードを検索する。そして、検索したレコードのフィールド40172に登録されているSN比ηの平均を算出し、これをSN比ηの補助表データ4019の要因Aの水準1に対応するエントリ40191に登録する。要因Aの水準2についても同様に処理してSN比ηの平均を算出し、これをSN比ηの補助表データ4019の要因Aの水準2に対応するエントリ40191に登録する。
【0065】
次に、実験計画表データの列番上2番目の要因B(電流量)に着目する。図4(B)に示す水準表によれば、要因B(電流量)は3つの水準(水準1、水準2、水準3)をとる。先ず、実験計画表データから要因Bが水準1のレコードを検索する。図3(B)に示すL18直交表4012から、要因Bが水準1であるレコードは実験No.1〜実験No.3、実験No.10〜実験No.13のレコードであることが分かる。そこで、実験計画表データから実験No.1〜実験No.3、実験No.10〜実験No.13のレコードを検索する。そして、検索したレコードのフィールド40172に登録されているSN比ηの平均を算出し、これをSN比ηの補助表データ4019の要因B(電流量)の水準1に対応するエントリ40191に登録する。要因Bの水準2、水準3についても同様に処理してSN比ηの平均を算出し、これをSN比ηの補助表データ4019の要因Bの水準2、水準3に対応するエントリ40191に登録する。
【0066】
上記の処理を実験計画表データの列番上最後の要因Hまで繰り返す。これにより、図12(B)に示すような、実験計画表データに記述されている各要因A〜Hについて、水準毎にSN比ηが登録された補助表データ4019が作成される。
【0067】
次に、演算装置401は、感度Sの補助表データ4018およびSN比ηの補助表データ4019を用いて、実験計画表データに記述されている各要因A〜Hの要因効果図データを生成する(S3023〜S3025)。ここで、図12(A)、(B)に示す補助表データ4018、4019を例に取り、各要因A〜Hの要因効果図データの生成を具体的に説明する。
【0068】
まず、実験計画表データの列番上1番目の要因Aに着目する(S3023)。要因Aの水準1、水準2に対応する各エントリ40181に登録されている感度S各々を補助表データ4018から取り出して要因Aの要因効果図にプロットする。同様に、要因Aの水準1、水準2に対応する各エントリ40191に登録されているSN比η各々を補助表データ4019から取り出して要因Aの要因効果図にプロットする。これにより、図13(A)に示す要因Aの要因効果図データ4041を生成し、これをデータベース402に登録する(S3024)。
【0069】
次に、要因Aが実験計画表データの列番上最後の要因か否かを判断する(S3025)。要因Aは実験計画表データの列番上最後の要因ではないので、S3023に戻り、実験計画表データの列番上2番目の要因B(電流量)に着目する。要因Bの水準1、水準2、水準3に対応する各エントリ40181に登録されている感度S各々を補助表データ4018から取り出して要因Bの要因効果図にプロットする。同様に、要因Bの水準1、水準2、水準3に対応する各エントリ40191に登録されているSN比η各々を補助表データ4019から取り出して要因Bの要因効果図にプロットする。これにより、図13(B)に示す要因Bの要因効果図データ4042を生成し、これをデータベース402に登録する(S3024)。
【0070】
以上の処理を実験計画表データの列番上最後の要因Hまで繰り返す。これにより、図13(A)〜(H)に示す各要因A〜Hの要因効果図データ4041〜4048を生成し、データベース402に登録する(S3023〜S3025)。これらの要因効果図データ4041〜4048は、オペレータの指示に従いユーザインターフェース403に表示するようにしてもよい。
【0071】
次に、演算装置401は、測定パラメータが割り当てられた各要因が採り得る全ての水準の組合せ(多元配置された組合せ)の中から未選択の組合せを選択する(S3026)。なお、多元配置する組合せは、実験計画表データが採用する直交表に用いる水準表から作成することができる。例えば図7に示す実験計画表データの場合、図3(B)に示すL18直交表4012に対応する水準表(図4(B)に示す水準表)のうち、測定パラメータが割当てられた要因B、C、F、Gの全ての水準の組合せを生成することで、多元配置する組合せを生成する。
【0072】
次に、演算装置401は、S3026で選択した組合せに対応する感度SおよびSN比ηを算出する(S3027)。
【0073】
具体的には、次の要領で感度Sを算出する。先ず、選択した組合せに含まれている要因の水準に対応する感度Sを、データベース402に登録されている当該要因の要因効果図データから検索し、これを感度Sの累積値ΣS(初期値0)に加算する。この処理を選択した組合せに含まれている全ての要因のそれぞれに対して行う。次に、データベース402に登録されている各要因の要因効果図データにプロットされている感度Sの平均値Saveを算出する。以上のようにして算出した累積値ΣSおよび平均値Saveを用いて、次式により選択した組合せに対応する感度Sを算出する。
【0074】
S=Save+(ΣS-4Save
また、次の要領でSN比ηを算出する。先ず、選択した組合せに含まれている要因の水準に対応するSN比ηを、データベース402に登録されている当該要因の要因効果図データから検索し、これをSN比ηの累積値Ση(初期値0)に加算する。この処理を選択した組合せに含まれている全ての要因のそれぞれに対して行う。次に、データベース402に登録されている各要因の要因効果図データにプロットされているSN比ηの平均値ηaveを算出する。以上のようにして算出した累積値Σηおよび平均値ηaveを用いて、次式により選択した組合せに対応するSN比ηを算出する。
【0075】
η=ηave+(Ση-4ηave
次に、演算装置401は、S3027で算出した感度S、SN比ηを、それぞれシュリンク量s、再現性誤差量3σに変換し、これらをS3026で選択した組合せに対応付けてデータベース402に登録する(S3028)。なお、上述したように感度Sとシュリンク量sとの間にはS=sなる関係がある。したがって、感度Sがそのままシュリンク量sに設定される。また、SN比ηと再現性誤差量3σとの間には、η=10×log(1/σ)の関係がある。しがたって、この式にSN比ηを代入してσを求め、これを3倍することで再現性誤差量3σを算出する。
【0076】
次に、演算装置401は、多元配置された組合せの全てを選択したか否かを判断する(S3029)。未選択の組合せがある場合は(S3029でNO)、S3026に戻る。一方、未選択の組合せがない場合は(S3029でYES)、多元配置データが完成したことになるので、このフローを終了する。
【0077】
以上、本発明の実施の形態について説明した。
【0078】
本実施形態によれば、オペレータは、ユーザインターフェース403に表示された、各測定パラメータの設定値の組み合わせにおけるシュリンク量および計測再現性誤差量の算出結果から、許容されるシュリンク量において、計測再現性誤差量が最も小さくなる各測定パラメータの設定値の組み合わせを知ることができる。したがって、シュリンク量および再現性誤差量の双方を考慮して、走査電子顕微鏡システムの最適なパターン測長条件を決定することができる。
【0079】
また、本実施形態では、演算装置401が、最も小さい評価値rとなる測定パラメータの設定値の組み合わせを検出してユーザインターフェース403に表示する。この組み合わせを用いて走査電子顕微鏡システムのパターン測長条件を決定することにより、オペレータの経験に依存しないで走査電子顕微鏡システムの最適なパターン測長条件を決定することが可能となり、これにより、パターン測長条件のオペレータ間のばらつきを少なくすることができる。
【0080】
図14は、相関図表データにプロットされた幾つかのポイント(推定値)4031について、そのポイントに対応する測定パラメータの設定値の組合せで実際に測長した結果(実験値)4032を重ねてプロットした図である。実験値より推定値の精度を見積もると、シュリンク量、計測再現性誤差量共に、0.3nm以内の精度で推定を行えていることがわかる。したがって、相関図表データを用いることで、走査電子顕微鏡システムの最適なパターン測長条件を決定できることがわかる。
【0081】
なお、本発明は上記の実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
【0082】
例えば、演算装置401がユーザインターフェース403を介してオペレータより、許容されるシュリンク量の指定を受付けることで、図10に示す相関解析画面の表示欄4032に、例えば図15に示すような、許容されたシュリンク量のポイント4031のみがプロットされた相関図表データを表示するようにしてもよい。
【0083】
また、演算装置401が、測定パラメータが割り当てられた要因各々について、当該要因の要因効果図データにプロットされている水準毎に、該水準と該水準でのシュリンク量および計測再現性誤差量とを、所定の関数(例えば多項式)に代入することで、回帰分析により、水準値間の値(内挿値)における計測再現性とシュリンク量とを示す相関関数を求め、この相関関数が表す内挿曲線4033〜4033を、図16に示すように、図10に示す相関解析画面の表示欄4032に表示する相関図表データに重ねて表示してもよい。オペレータは、内挿曲線4033〜4033が重畳された相関図表データを見ることにより、多元配置された組合せよりもシュリンク量が少なく、かつ計測再現性誤差量の少ない測定パラメータの設定値を容易に見つけ出すことが可能となる。
【0084】
図16に示す例では、領域Aがシュリンク量と計測再現性誤差量とのバランスが最適であることがわかる。そこで、演算装置401は、ユーザインターフェース403を介してオペレータより指定された当該曲線上の領域A内の点におけるシュリンク量および計測再現性誤差量を特定し、領域Aを通過する観測倍率の内挿曲線4033を表す相関関数に、この特定したシュリンク量および計測再現性誤差量を代入することで、観測倍率の設定値(水準値)を算出しユーザインターフェース403に出力する。
【0085】
本実施形態において、最適な測定パラメータの設定値を検出するためには、実験計画表データにおいて測定パラメータが割り当てられた各要因の水準値を大きく振って測定パラメータの依存性を明確にすることが好ましい。また、直交表は水準数を多くすると飛躍的に実験数が多くなるので、せいぜい3水準までとすることが現実的である。このため、実験に用いた水準値(測定パラメータの設定値)が最適な測定パラメータの設定値であるとはかぎらない。そこで、図16に示すように、内挿による推定と組み合わせることで、最適な測定パラメータの検出が容易となる。
【0086】
また、上記の実施形態において、半導体デバイス13の回路パターン測長値の真値からのずれ量s’をシュリンク量sに代わりに用いることもできる。ただし、半導体デバイス13の各測定点の回路パターン長の真値を予めデータベース402に登録しておく必要がある。そして、演算装置401が、図6のS207において、m番目の測定点での回路パターン測長値と、m番目の測定点での回路パターン長の真値との差分を求め、この差分をm番目の測定点における回路パターン測長値の真値からのずれ量s’とする。
【0087】
このようにすることで、上記の実施形態と同様に、回路パターン測長値の真値からのずれ量が少なく、かつ計測再現性誤差量の少ない測定パラメータ各々の設定値の組合せを容易に見つけ出すことが可能となる。なお、相関図表データに表示する値として、半導体デバイス13の回路パターン測長値の真値からのずれ量s’の代わりに、半導体デバイス13の回路パターン測長値そのものを用いてもかまわない。
【0088】
また、上記の実施形態の走査電子顕微鏡システムにおいて、制御系30は、ASIC(Application Specific Integrated Circuits)、FPGA(Field Programmable Gate Array)などの集積ロジックICによりハード的に実現されるものでもよいし、あるいは、DSP(Digital Signal Processor)などの計算機によりソフトウエア的に実現されるものでもよい。
【0089】
また、情報処理系40(演算装置401、データベース402、およびユーザインターフェース403)は、CPU、メモリ、HDD等の外部記憶装置、CD-ROMやDVD-ROM等の可搬性を有する記憶媒体から情報を読み出す読取装置、キーボードやマウスなどの入力装置、ディスプレイなどの出力装置、通信回線を介して相手装置と通信を行なうための通信装置、およびこれらの各装置を接続するバスを備えた一般的なコンピュータにおいて、CPUがメモリ上にロードされた所定のプログラムを実行することにより実現できる。
【0090】
また、図17に示すように、データベース402をネットワーク共有にすることで、複数の上記実施形態の走査電子顕微鏡システムで、実験計画表データおよび検査レシピを共用できるようにしてもよい。あるいは、図18に示すように、情報処理系40をネットワーク共有にすることで、オペレータが、複数の上記実施形態の走査電子顕微鏡システムの制御系30に対する各種設定を同じユーザインターフェース403から行えるようにしてかまわない。
【0091】
また、上記の実施形態では、本発明を走査電子顕微鏡システムに適用した場合を例にとり説明した。しかし、本発明は、これに限定されるものではなく、電子線描画装置およびイオンビーム照射装置等の他の荷電粒子線応用装置にも適用可能である。また、測定対象の試料も半導体デバイスに限定されない。
【図面の簡単な説明】
【0092】
【図1】図1は本発明の一実施形態が適用された走査電子顕微鏡システムの概略構成図である。
【図2】図2は実験計画表生成処理を説明するためのフロー図である。
【図3】図3(A)はL9直交表を示す図であり、図3(B)はL18直交表を示す図であり、そして、図3(C)はL18直交表を示す図である。
【図4】図4(A)は図3(A)に示すL9直交表に用いる水準表を示す図であり、図4(B)は図3(B)に示すL18直交表に用いる水準表を示す図であり、そして、図4(C)は図3(C)に示すL18直交表に用いる水準表を示す図である。
【図5】図5は実験計画表データを模式的に表した図である。
【図6】図6は実験データ収集処理を説明するためのフロー図である。
【図7】図7は感度S、SN比ηが登録された実験計画表データを模式的に表した図である。
【図8】図8は測定支援処理を説明するためのフロー図である。
【図9】図9は相関図表データを模式的に表した図である。
【図10】図10は相関解析画面データを模式的に表した図である。
【図11】図11は多元配置データ生成処理(図8のS303)を説明するためのフロー図である。
【図12】図12(A)は感度Sの補助表データを生成する模式的に表した図であり、図12(B)はSN比ηの補助表データを模式的に表した図である。
【図13】図13(A)〜(H)は要因A〜Hの要因効果図データを模式的に表した図である。
【図14】図14は相関図表データにプロットされた幾つかの推定値について、その推定値に対応する測定パラメータの設定値の組合せで実際に測長した実験値を重ねてプロットした図である。
【図15】図15は相関図表データを模式的に表した図である。
【図16】図16は相関図表データを模式的に表した図である。
【図17】図17は本発明の一実施形態が適用された走査電子顕微鏡システムの変形例を示す図である。
【図18】図18は本発明の一実施形態が適用された走査電子顕微鏡システムの変形例を示す図である。
【符号の説明】
【0093】
10:荷電粒子線光学系、11:一次荷電粒子線、12:二次荷電粒子、13:半導体デバイス、20:資料室、30:制御系、40:情報処理系、101:電子銃、102:コンデンサレンズ、103:偏向コイル、104:対物レンズ、105:二次荷電粒子検出器、201:試料ステージ、401:演算装置、402:データベース、403:ユーザインターフェース


【特許請求の範囲】
【請求項1】
半導体デバイスに対して一次荷電粒子線を照射し、これにより発生する二次荷電粒子を検出することで前記半導体デバイスの回路パターンを測長する荷電粒子線光学系と、設定された測定パラメータに従い前記荷電粒子線光学系を制御する制御系と、測定パラメータを前記制御系に設定する情報処理系と、を有する荷電粒子線システムであって、
前記情報処理系は、
演算装置、記憶装置、およびユーザインターフェースを有し、
前記記憶装置は、
加速電圧、電流量、観察倍率、およびフレーム数のうちの少なくとも2つの測定パラメータがいずれかの要因に割り当てられた直交表でなる実験計画表データを記憶し、
前記演算装置は、
前記実験計画表データに記述されている実験番号毎に、測定パラメータが割り当てられている各要因の水準が示す設定値を前記制御系に設定して、前記荷電粒子線光学系に、前記半導体体デバイスの複数の測定点で回路パターンを測長させ、該測長結果からシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量を算出し、前記記憶装置に記憶する実験データ収集処理と、
前記実験計画表データに記述されている実験番号各々での、測定パラメータが割り当てられている各要因の水準が示す設定値と、シュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量とを用いて、測定パラメータが割り当てられている各要因の水準が示す設定値の全ての組合せ各々におけるシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量の相関図表データを生成し、前記ユーザインターフェースに出力する測定条件支援処理と、を実行すること
を特徴とする荷電粒子線システム。
【請求項2】
請求項1に記載の荷電粒子線システムであって、
前記演算装置は、前記実験データ収集処理において、
前記実験計画表データに記述されている実験番号毎に、測定パラメータが割り当てられている各要因の水準が示す設定値を前記制御系に設定して、前記荷電粒子線光学系に、前記半導体体デバイスの複数の測定点で回路パターンを複数回測長させ、各測定点での複数回の測長結果の差分の平均をシュリンク量として算出すると共に、各測定点での複数回の測長結果の差分のばらつきを計測再現性誤差量として算出すること
を特徴とする荷電粒子線システム。
【請求項3】
請求項1に記載の荷電粒子線システムであって、
前記記憶装置は、
前記半導体体デバイスの複数の測定点各々での回路パターン長の真値を記憶し、
前記演算装置は、前記実験データ収集処理において、
前記実験計画表データに記述されている実験番号毎に、測定パラメータが割り当てられている各要因の水準が示す設定値を前記制御系に設定して、前記荷電粒子線光学系に、前記半導体体デバイスの複数の測定点で回路パターンを測長させ、各測定点での測長結果と真値との差分の平均を測長値の真値からのずれ量として算出すると共に、各測定点での複数回の測長結果の差分のばらつきを計測再現性誤差量として算出すること
を特徴とする荷電粒子線システム。
【請求項4】
請求項1乃至3のいずれか一項に記載の荷電粒子線システムであって、
前記演算装置は、前記測定条件支援処理において、
測定パラメータが割り当てられている各要因の水準が示す設定値の全ての組合せ各々について、
当該組合せに含まれている要因毎に、当該要因の水準を含む実験番号に対するシュリンク量あるいは測長値の真値からのずれ量より定まる感度の平均を求め、当該組合せに含まれている要因毎に求めた感度の平均の総和ΣSと、全ての実験番号に対するシュリンク量あるいは測長値の真値からのずれ量より定まる感度の平均Saveと、測定パラメータが割り当てられている要因の数Aとを用いて、式S=Save+(ΣS-A×Save)により、当該組合せにおける感度Sを算出し、算出した感度Sから当該組合せにおけるシュリンク量sあるいは測長値の真値からのずれ量sを算出すると共に、
当該組合せに含まれている要因毎に、当該要因の水準を含む実験番号に対する計測再現性誤差量より定まるSN比の平均を求め、当該組合せに含まれている要因毎に求めたSN比の平均の総和Σηと、全ての実験番号に対する計測再現性誤差量より定まるSN比の平均ηaveと、測定パラメータが割り当てられている要因の数Aとを用いて、式η=ηave+(Ση-A×ηave)により、当該組合せにおけるSN比ηを算出し、算出したSN比ηから当該組合せにおける計測再現性誤差量3σを算出すること
を特徴とする荷電粒子線システム。
【請求項5】
請求項1乃至4のいずれか一項に記載の荷電粒子線システムであって、
前記演算装置は、前記測定条件支援処理において、
測定パラメータが割り当てられている各要因の水準が示す設定値の全ての組合せのうち、前記ユーザインターフェースを介してオペレータより受付けた許容範囲にあるシュリンク量あるいは測長値の真値からのずれ量を持つ組合せにおけるシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量の相関図表データを生成し、前記ユーザインターフェースに出力すること
を特徴とする荷電粒子線システム。
【請求項6】
請求項1乃至4のいずれか一項に記載の荷電粒子線システムであって、
前記演算装置は、前記測定条件支援処理において、
測定パラメータが割り当てられている要因各々について、
当該要因の水準毎に、当該要因の水準と、当該要因の水準を含む実験番号に対するシュリンク量あるいは測長値の真値からのずれ量の平均および計測再現性誤差量の平均とを、当該要因の水準、シュリンク量あるいは測長値の真値からのずれ量、および計測再現性誤差量を変数とする所定の関数に代入することで、回帰分析により、当該要因の水準間の値(内挿値)におけるシュリンク量あるいは測長値の真値からのずれ量と計測再現性誤差量との相関を示す相関関数を算出し、算出した相関関数が表す内挿曲線を前記相関図表データが示す相関図表に重ねて前記ユーザインターフェースに出力すること
を特徴とする荷電粒子線システム。
【請求項7】
請求項1乃至6のいずれか一項に記載の荷電粒子線システムであって、
前記演算装置は、前記測定条件支援処理において、
前記ユーザインターフェースを介してオペレータより受付けた検索指示に従い、測定パラメータが割り当てられている各要因の水準が示す設定値の組合せ毎に、シュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量に対する評価値を算出し、最も評価の高い評価値を持つ組合せを前記ユーザインターフェースに出力すること
を特徴とする荷電粒子線システム。
【請求項8】
請求項7に記載の荷電粒子線システムであって、
前記演算装置は、前記測定条件支援処理において、
シュリンク量sあるいは測長値の真値からのずれ量sと、計測再現性誤差量3σとを用いて、式r=√(a×s+b×(3σ))、a,b=constにより、評価値rを算出すること
を特徴とする荷電粒子線システム。
【請求項9】
請求項1乃至9のいずれか一項に記載の荷電粒子線システムであって、
前記演算装置は、
実験計画表データに採用する直交表と、加速電圧、電流量、観察倍率、およびフレーム数のうちの少なくとも2つの測定パラメータと、前記少なくとも2つの測定パラメータの前記直交表の要因への割当てと、前記少なくとも2つの測定パラメータが割当てられた各要因がとる各水準の値とを、前記ユーザーインターフェースを介してオペレータより受付けて、前記実験計画表データを生成し、前記記憶装置に記憶する実験計画表生成処理を、さらに実行すること
を特徴とする荷電粒子線システム。
【請求項10】
半導体デバイスに対して一次荷電粒子線を照射し、これにより発生する二次荷電粒子を検出することで前記半導体デバイスの回路パターンを測長する荷電粒子線光学系と、設定された測定パラメータに従い前記荷電粒子線光学系を制御する制御系と、を有する荷電粒子線システムにおいて、前記荷電粒子線光学系の測定パラメータを前記制御系に設定するためのコンピュータで読取可能なプログラムであって、
前記コンピュータに、
記憶装置から、加速電圧、電流量、観察倍率、およびフレーム数のうちの少なくとも2つの測定パラメータがいずれかの要因に割り当てられた直交表でなる実験計画表データを読み出し、該読み出した実験計画表データに記述されている実験番号毎に、測定パラメータが割り当てられている各要因の水準が示す設定値を前記制御系に設定して、前記荷電粒子線光学系に、前記半導体体デバイスの複数の測定点で回路パターンを測長させ、該測長結果からシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量を算出し、前記記憶装置に記憶する実験データ収集処理と、
前記実験計画表データに記述されている実験番号各々での、測定パラメータが割り当てられている各要因の水準が示す設定値と、シュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量とを用いて、測定パラメータが割り当てられている各要因の水準が示す設定値の全ての組合せ各々におけるシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量の相関図表データを生成し、前記ユーザインターフェースに出力する測定条件支援処理と、を実行させること
を特徴とするコンピュータで読取可能なプログラム。
【請求項11】
半導体デバイスに対して一次荷電粒子線を照射し、これにより発生する二次荷電粒子を検出することで前記半導体デバイスの回路パターンを測長する荷電粒子線光学系と、設定された測定パラメータに従い前記荷電粒子線光学系を制御する制御系と、を有する荷電粒子線システムにおいて、前記荷電粒子線光学系の測定パラメータを前記制御系に設定するための測定パラメータ設定方法であって、
加速電圧、電流量、観察倍率、およびフレーム数のうちの少なくとも2つの測定パラメータがいずれかの要因に割り当てられた直交表でなる実験計画表データに記述されている実験番号毎に、測定パラメータが割り当てられている各要因の水準が示す設定値を前記制御系に設定して、前記荷電粒子線光学系に、前記半導体体デバイスの複数の測定点で回路パターンを測長させ、該測長結果からシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量を算出し、
前記実験計画表データに記述されている実験番号各々での、測定パラメータが割り当てられている各要因の水準が示す設定値と、シュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量とを用いて、測定パラメータが割り当てられている各要因の水準が示す設定値の全ての組合せ各々におけるシュリンク量あるいは測長値の真値からのずれ量および計測再現性誤差量の相関図表データを生成し出力すること
を特徴とする測定パラメータ設定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2007−285906(P2007−285906A)
【公開日】平成19年11月1日(2007.11.1)
【国際特許分類】
【出願番号】特願2006−114135(P2006−114135)
【出願日】平成18年4月18日(2006.4.18)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】