説明

被検出体の検出装置

【課題】本発明は、被検出体を検出する新規な装置を提供することを目的とし、特に非開削工法において地表面を大きく占有することなく掘削体の位置および姿勢をより精度よく検出可能な検出装置を提供することをその一つの目的としている。
【解決手段】本発明の一態様は、被検出体の位置及び/又は姿勢を検出する装置であって、前記被検出体に内蔵された磁界発生源と、前記磁界発生源が発生する磁界の直交する3方向成分を検出可能な一の検出手段と、前記検出手段で検出したデータに基づいて前記被検出体の位置及び/又は姿勢を演算する演算手段とを有する装置である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検出体の検出装置に関し、特に非開削工法等で用いられる地下掘削体の位置や姿勢を検出するに好適な装置に係る。
【背景技術】
【0002】
新たに民地へガスを供給する場合には、車道や側道など公共道路の地下に埋設されたガス本支管(以下本支管と称する。)にガス供給管(以下供給管と称する。)を接続し、民地側へ供給管を引込むことが必要となる。従来の供給管を敷設する工法は、民地側の供給管引出し予定部から本支管の接続部までの間の公共道路の地盤に地表面に開口した敷設路を開削し、敷設路に供給管を敷設し、供給管を本支管に接続し、開口した敷設路を埋戻す、いわゆる開削工法であった。開削工法によれば、前記敷設路が、例えば公共道路を横断するように設けられた場合、供給管の敷設工事の間は公共道路の交通を阻害するという問題があった。
【0003】
その問題を解決する工法として、近年、非開削工法が注目されている。非開削工法は、供給管を引込む民地側の地盤或いは本支管を接続部の地盤のみを開削し、供給管を敷設する敷設路は地中部にのみ掘削して形成する工法であり、公共道路を大規模に開削する必要がない。もって、公共道路の交通を阻害せず、さらに供給管の敷設工事を短期間で出来る利点があり、特に交通量の多い都市部では多用される傾向にある。
【0004】
非開削工法では、地中で掘削が行われるためそれに用いる地下掘削体(以下掘削体とも称する。)の位置と姿勢を検出する検出技術が必要である。その検出技術としては、取り扱いが容易で構造が簡単な磁気検出装置を掘削体の推進にあわせて掘削体の直上で追従しながら検出を行うものや、複数の検出器を配置して受信強度の相対比較により検知するものが知られており、その一例が下記特許文献1に開示されている。特許文献1の検出方法は、「推進体(掘削体)の所定の到達部で予定到達方向に直交する平面内で、且つ、到達部を挟んで等しい距離の複数位置に、発信コイルからの電磁波を受信する複数の受信コイルを、それぞれ予定到達方向に軸芯を沿わせて設けておき、複数の受信コイルそれぞれの電磁波受信強度が各別に設定された値になるように推進体の推進方向を設定して推進させる。」方法であり、複数の受信コイルで受信した電磁波の受信強度を比較しながら掘削体の位置を特定しつつ推進するものである。
【特許文献1】特開平8−100595号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
かかる特許文献1の検出方法によれば、予定到達方向に対しずれることなく推進できるという利点があるが、推進予定線から掘削体が大きく離れることがないということが前提にされている。したがって、推進予定線から掘削体が離れてしまった場合には掘削体の推進方向の修正が困難となる。
【0006】
また、特許文献1の検出技術によれば、掘削体の予定到達方向に対し複数の受信コイルの軸心を合わせつつ地表面あるいは地中に配置せねばならず、依然として作業中に地表面を占有するという問題がある。
【0007】
本発明は、被検出体を検出する新規な装置を提供することを目的とし、特に非開削工法において地表面を大きく占有することなく掘削体の位置および姿勢をより精度よく検出可能な検出装置を提供することをその一つの目的としている。
【課題を解決するための手段】
【0008】
本発明の一態様は、被検出体の位置及び/又は姿勢を検出する装置であって、前記被検出体に内蔵された磁界発生源と、前記磁界発生源が発生する磁界の直交する3方向成分を検出可能な一の検出手段と、前記検出手段で検出したデータに基づいて前記被検出体の位置及び/又は姿勢を演算する演算手段とを有する装置である。前記被検出体として地中を掘削する地下掘削体を対象とすることができる。さらに、前記検出手段として三のコイルを直交するように組み合わせた三軸コイルを用いれば好ましい。
【0009】
さらに加えて、前記演算手段は、所定の磁気モーメントを有する前記磁界発生源が発生する磁界を前記測定手段で測定した磁束密度の3方向成分である(Bx、By、Bz)と前記磁気モーメントMとを式(1)に算入し前記被検出体の位置(Xs、Ys、Zs)を算出し、及び/又は、式(2)に算入して前記被検出体の姿勢(θ、φ)を算出するものとすれば好ましい。
【0010】
【数1】

【0011】
【数2】

【発明の効果】
【0012】
上記検出装置によれば、被検出体を検出するための検出手段は一つであるので検出手段を配置するにあたり広いスペースを必要としない。さらに、上記式(1)および(2)を使用することにより一つの検出手段でも精度よく被検出体の位置と姿勢を特定することができる。
【発明を実施するための最良の形態】
【0013】
本発明についてその実施態様に基づき説明する。図1は、本発明の一実施態様である掘削体の位置および姿勢の検出装置6を示す概略構成図である。図2〜4は、図1の検出装置により掘削体の位置と姿勢を検出する方法を説明する図である。図5は、本発明の別の実施態様を示す図である。図6は、本発明のさらに別の実施態様を示す図である。図7、8は、図1の検出装置による実施例を説明する図である。
【0014】
図1に示すように、本態様の検出装置6は、地中に埋設された本支管4に向いて推進する掘削体5の位置と姿勢を検出するものである。この掘削体5の先端には回転しながら地中を掘削するとともに推進方向を修正するための斜切ヘッド51が装着されている。斜切ヘッド51の後端には、掘削装置本体(不図示)で生じる推進力や回転力を伝達するガイドロット52が取り付けられている。このガイドロット52は、掘削体5が曲進できるように円弧状に屈曲可能な構造をなしている。
【0015】
検出装置6は、斜切ヘッド51に同軸に内蔵された磁界発生源61と、磁界発生源61が発生する磁界の直交する3方向成分を検出可能な一の3軸コイル62と、3軸コイル62で検出したデータに基づいて斜切ヘッド51の位置および姿勢を演算する演算手段63を備えている。ここで、3軸コイル62は、ほぼ同等の特性を有する3つの磁界検出用のコイルを直交する3方向に組合わせたものであり、磁界発生源61から生じた磁界による磁束密度の直交する3方向(x方向、y方向、z方向)の成分を各コイルで検出する。
【0016】
演算手段63で実施される処理について図1〜4を参照し説明する。ここで、図1の磁界発生源61の中心の点Sを磁界磁界発生点、3軸コイル62の中心の点Pを測定点、掘削の目標地点Qを目標点と称する。
【0017】
図2に示すように斜切りヘッド5の磁界発生源61から生じた所定の磁束分布を有する磁界において磁界発生点Sが座標(xs,ys,zs)に測定点Pが座標(xp,yp,zp)にあるものとする。磁界発生源61が発する磁界により式(3)で表わされる各軸方向の磁束密度Bが測定点Pで測定される。
【0018】
【数3】

【0019】
ここで、式(3)における記号Mx,My,Mzは磁界発生源61の有する磁気モーメントMの各軸方向の成分である。また、記号x,y,zは測定点Pから磁界発生点Sに向かう直線の長さ(点Pから点Sまでの距離)rの式(4)で示される各軸方向の成分である。
【0020】
【数4】

【0021】
ここで、図3に示すように、三次元座標の原点に測定点Pを置き、y軸上に磁界発生源61を任意の姿勢に置いた場合を想定すると、測定点Pの座標は(xp,yp,zp)=(0,0,0)、磁界発生点Sの座標は(xs,ys,zs)=(0,ys,0)となる。また、推進方向に対する磁界発生源61の平面視の角度(ヨー角)を記号θと、立面視の角度(仰角)を記号φとし、磁界発生源61の姿勢をこのθ、φで定義する場合、磁界発生源61の磁気モーメントMは(Mcosφsinθ,Mcosφcosθ,Msinφ)
と表わすことができる。これらを式(3)に代入すると式(5)となる。
【0022】
【数5】

【0023】
測定点Pから磁界発生点Sまでの距離は式(6)である。
【0024】
【数6】

【0025】
式(5)を整理して式(6)を式(5)に代入すると測定点Pの磁束密度Bの各成分についての式(7)を得ることができる。
【0026】
【数7】

【0027】
ここで式(7)をθとφで表わすと、磁界発生源61の姿勢を示す式(8)を得る。
【0028】
【数8】

【0029】
式(7)をysについて解くと、測定点Pから磁界発生点Sまでのy方向の距離である式(9)を得る。
【0030】
【数9】

【0031】
次に、図4に示すように、磁界発生源61が図3の位置からxsの距離だけy軸からずれた場合を想定する。この場合、磁界発生点Sの座標は(xs,ys,0)であり、点Sの磁気モーメントはM=(0,M,0)である。また、測定点Pは原点にあることからその座標は(0,0,0)である。したがって式(4)は(x,y,z)=(xs,ys,0)となり、測定点Pから磁界発生点Sまでの距離rは式(10)で示される。
【0032】
【数10】

【0033】
式(10)を用いれば式(3)は式(11)のように書き換えられる。
【0034】
【数11】

【0035】
式(11)を、測定点Pから磁気発生点Sまでのx方向の距離xsについて解くと式(12)となる。
【0036】
【数12】

【0037】
また、磁界発生源61がz方向にずれた場合の測定点Pから磁気発生点Sまでのz方向の距離zsも式(12)と同様に式(13)で表わされる。
【0038】
【数13】

【0039】
測定点Pにおける各軸方向の磁束密度Bは磁界発生源61から生じた磁界を検出する3軸コイル62で測定することができる。また、磁気発生源61の各軸方向の磁気モーメントMは磁気発生源61の固有のものであり既知である。したがって、演算手段63は、この各軸方向の磁束密度Bと磁気モーメントMを上記した式(8)、(9)、(12)、(13)に入力し、測定点Pから見た磁界発生点S(すなわち斜切ヘッド51)の位置と姿勢を特定するように構成されている。なお、図1において測定点Pは目標地点Qと離れた位置に配置されているが、目標地点Qに対する3軸コイル62の位置関係を予め演算手段63に記憶しておけば斜切ヘッド5の位置と姿勢を特定することができる。
【0040】
3軸コイル62は、例えば図5、6に示すように、本支管4の直上に穿孔された小口径の縦孔を通し本支管4の近傍に配置することもできる。このようにすれば、より精度よく掘削体5を推進可能である。
【0041】
図6で示したように3軸コイル62を配置し上記した検出装置により位置と姿勢を検出しながら上記した掘削体5で地中を掘削した実験例について説明する。掘削条件は、掘削開始点から目標地点までの水平距離が3.73m、本支管4の埋設深さが0.985mである。掘削開始点から目標地点に至る過程における測定点から見た掘削体5の各軸方向の位置を検出した結果を図7に示す。
【図面の簡単な説明】
【0042】
【図1】本発明の一実施態様の検出装置の概略構成図である。
【図2】図1の検出装置の検出方法を説明する図である。
【図3】図1の検出装置の検出方法を説明する別の図である。
【図4】図1の検出装置の検出方法を説明するさらに別の図である。
【図5】本発明の別の実施態様の検出装置の概略構成図である。
【図6】本発明のさらに別の実施態様の検出装置の概略構成図である。
【図7】図1の検出装置の実施例を説明する図である。
【符号の説明】
【0043】
4:本支管
5:掘削体、51:斜切ヘッド、52:ガイドロッド
6:地下掘削体の位置および姿勢検出装置
61:磁界発生源、62:磁界検出コイル(3軸コイル)
63:演算手段、64:掘削目標地点
65:検出コイルと本支管との位置関係

【特許請求の範囲】
【請求項1】
被検出体の位置及び/又は姿勢を検出する装置であって、前記被検出体に内蔵された磁界発生源と、前記磁界発生源が発生する磁界の直交する3方向成分を検出可能な一の検出手段と、前記検出手段で検出したデータに基づいて前記被検出体の位置及び/又は姿勢を演算する演算手段とを有する検出装置。
【請求項2】
請求項1に記載の検出装置において、前記被検出体は地中を掘削する地下掘削体である検出装置。
【請求項3】
請求項1または2のいずれかに記載の検出装置において、前記検出手段は三のコイルを直交するように組合わせた3軸コイルである検出装置。
【請求項4】
請求項1乃至3のいずれかに記載の検出装置において、前記演算手段は、所定の磁気モーメントを有する前記磁界発生源が発生する磁界を前記測定手段で測定した磁束密度の3方向成分である(Bx、By、Bz)と前記磁気モーメントMとを式(1)に算入し前記被検出体の位置(Xs、Ys、Zs)を算出し、及び/又は、式(2)に算入して前記被検出体の姿勢(θ、φ)を算出する検出装置。
【数1】

【数2】


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−10628(P2006−10628A)
【公開日】平成18年1月12日(2006.1.12)
【国際特許分類】
【出願番号】特願2004−191349(P2004−191349)
【出願日】平成16年6月29日(2004.6.29)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成15年度、経済産業省、地方都市ガス事業天然ガス化促進対策調査(ガス導管漏えい対策技術開発)委託研究、産業活力再生特別措置法第30条の適用を受ける特許出願
【出願人】(000005083)日立金属株式会社 (2,051)
【Fターム(参考)】