説明

誘電率測定装置

【課題】 誘電体試料に対する探針の接触力が常に一定になるようにし、測定後の演算処理を行うことなく誘電率の空間分布の測定や温度依存性の測定を正確に行う。
【解決手段】 試料ステージに載せた誘電体試料の表面に接触させる探針と、探針の周囲に設けられた固定電位の電極と、探針が誘電体試料の表面に接触して生じるキャパシタンスが並列になるように探針および電極に接続されるLC発振回路と、LC発振回路の発振周波数を測定する周波数弁別器とを備え、LC発振回路の発振周波数から誘電体試料の探針直下の微小領域の誘電率を測定する誘電率測定装置において、探針と電極とLC発振回路を取り付ける基板と、レールと、レールに沿って鉛直方向に可動するブロックとを備え、基板とブロックを結合し、探針と電極とLC発振回路が一体で鉛直方向に可動する構成である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、誘電体試料の誘電率または非線形誘電率を測定する誘電率測定装置に関する。
【背景技術】
【0002】
誘電体試料の誘電率を測定する誘電率測定装置として、走査型非線形誘電率顕微鏡(Scanning Nonlinear Dielectric Microscopy: SNDM)が開発されている(非特許文献1)。本顕微鏡の動作原理は、誘電体試料に探針を接触させたときに、探針直下の誘電体試料の誘電率に応じてキャパシタンスが変化することから、探針に接続されたLC発振回路の発振周波数を計測して誘電率を測定する仕組みである。
【0003】
ただし、誘電体試料に探針を接触させたときに誘電体試料の誘電率に応じて生じるキャパシタンスは、探針を誘電体試料に押し付ける力(接触力)にも依存する。したがって、誘電率を定量的に測定するためには、探針の接触力を一定に保つことが要求される。しかし、例えば誘電率の場所依存性を測定する場合に、誘電体試料の厚さのムラや、試料ステージが完全に水平でないなどの理由により、一般に測定場所を変えたときに接触力が変化する。同様に、誘電率の温度依存性を測定する場合に、誘電体試料および試料ステージの温度も変化するため、誘電体試料や試料ステージの熱膨張・熱収縮により、一般に接触力が変化する。
【0004】
このように微妙に変化する接触力を一定に保つ手段として、カンチレバーと呼ばれる探針が走査型顕微鏡に広く使われている。カンチレバーは、梁状誘電体の先端に探針がついた形状をしている。梁状部は撓る構造であり、撓り具合と接触力が対応しているため、撓り具合をモニタして一定にすることにより、接触力を一定に保つことが可能である。撓り具合をモニタする方法は、梁状部の背面に光をあて、その反射光をモニタすることにより可能である。
【0005】
また、非特許文献2には、誘電体試料に交流電界を印加してLC発振回路の時間変化する発振周波数を計測し、ロックインアンプで交流電界の周波数の整数倍の周波数で同期検波することにより、探針直下の誘電体試料の非線形誘電率を測定する方法が紹介されている。
【非特許文献1】Yasuo Cho et al.,"Quantitative Measurement of Linear and Nonlinear Dielectric Characteristics Using Scanning Nonlinear Dielectric Microscopy", Jpn.J.Appl.Phys. Vol.39 (2000) pp.3086-3089
【非特許文献2】長康雄 他、”非線形誘電率分布測定用顕微鏡”、電子情報通信学会論文誌C-I Vol.J78-C-I, No.11, pp.593-598 (1995)
【発明の開示】
【発明が解決しようとする課題】
【0006】
従来のカンチレバーを用いた場合、梁状部と誘電体試料が極めて近接するとともに、梁状部の面積が探針の誘電体試料への接触面積に比べて圧倒的に大きくなるため、梁状部と誘電体試料との間のキャパシタンスが大きくなり、探針直下のキャパシタンスの情報が隠れてしまう問題があった。よって、誘電率が空間的に変化している誘電体試料の誘電率を精密に測定するには、測定後の演算処理が不可欠であった。
【0007】
本発明は、誘電体試料に対する探針の接触力が常に一定になるようにし、測定後の演算処理を行うことなく誘電率の空間分布の測定や温度依存性の測定を正確に行うことができる誘電率測定装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
第1の発明は、誘電体試料を載せる試料ステージと、試料ステージに載せた誘電体試料の表面に接触させる探針と、探針の周囲に設けられた固定電位を有する電極と、発振器に接続されるキャパシタおよびインダクタを有し、探針が誘電体試料の表面に接触したときに生じる誘電体試料の探針直下の微小領域のキャパシタンスが該キャパシタと並列になるように、探針および電極に接続されるLC発振回路と、LC発振回路に接続され、LC発振回路が出力する信号の周波数(発振周波数)を測定する周波数弁別器とを備え、誘電体試料の表面に探針を接触させ、周波数弁別器で測定されたLC発振回路の発振周波数から誘電体試料の探針直下の微小領域の誘電率を測定する誘電率測定装置において、探針と電極とLC発振回路を取り付ける基板と、レールと、レールに沿って鉛直方向に可動するブロックとを備え、基板とブロックを結合し、探針と電極とLC発振回路が一体で鉛直方向に可動する構成である。
【0009】
第2の発明は、誘電体試料を載せる試料ステージと、試料ステージに載せた誘電体試料の表面に接触させる探針と、探針の周囲に設けられた固定電位を有する電極と、発振器に接続されるキャパシタおよびインダクタを有し、探針が誘電体試料の表面に接触したときに生じる誘電体試料の探針直下の微小領域のキャパシタンスが該キャパシタと並列になるように、探針および電極に接続されるLC発振回路と、LC発振回路に接続され、LC発振回路が出力する信号の周波数(発振周波数)を測定する周波数弁別器と、試料ステージと電極に接続され、試料ステージに所定の周波数の交流電界を印加する交流信号発生器と、周波数弁別器と交流信号発生器に接続されたロックインアンプとを備え、誘電体試料の表面に探針を接触させ、周波数弁別器で測定されたLC発振回路の発振周波数の信号をロックインアンプに入力し、交流信号発生器が印加する交流電界の周波数の整数倍の周波数で同期検波して誘電体試料の探針直下の微小領域の非線形誘電率を測定する誘電率測定装置において、探針と電極とLC発振回路を取り付ける基板と、レールと、レールに沿って鉛直方向に可動するブロックとを備え、基板とブロックを結合し、探針と電極とLC発振回路が一体で鉛直方向に可動する構成である。
【0010】
ここで、試料ステージは、誘電体試料の温度を制御する温度制御機構を含む構成としてもよい。また、レールおよび試料ステージの少なくとも一方に取り付け、試料ステージと探針との間の高さを調整する高さ調整機構を備えてもよい。また、レールおよび試料ステージの少なくとも一方に取り付け、探針と誘電体試料の水平方向の相対位置を制御する位置調整機構を備えてもよい。さらに、基板とブロックが同一部材で構成されてもよい。
【発明の効果】
【0011】
本発明の誘電率測定装置は、探針、電極、LC発振回路が取り付けられた基板がブロックに取り付けられ、そのブロックがレールに沿って鉛直方向に可動する構成であり、ブロック、基板、探針、電極、LC発振回路の自重によって誘電体試料への接触力を一定に保つことができるので、誘電体試料の誘電率または非線形誘電率の定量測定を容易に行うことができる。さらに、従来のカンチレバーのように探針の接触力を一定に保つためのモニタ機構が不要となるので、簡便かつ安価な誘電率測定装置を実現することができる。
【発明を実施するための最良の形態】
【0012】
(第1の実施形態)
図1は、本発明の誘電率測定装置の第1の実施形態を示す。図1(a) において、探針101は、試料ステージ108に載せた誘電体試料109の表面に接触する構成であり、探針101の周囲には固定電位(ここでは接地電位)を有する電極102が設けられる。探針101が誘電体試料109の表面に接触したときに、探針101の直下の誘電体試料109の微小領域にキャパシタンスCs が生じる。LC発振回路106は、発振器105に接続されるキャパシタ(キャパシタンスC0 )103およびインダクタ(インダクタンスL)104を備え、探針101が誘電体試料109に接触したときに生じるキャパシタンスCs がキャパシタ103と並列になるように、LC発振回路106と探針101および電極102が接続される。LC発振回路106には周波数弁別器107が接続され、LC発振回路106が出力する信号の周波数(発振周波数)が測定される。
【0013】
図1(b) は、探針101が誘電体試料109に接触したときのLC発振回路106の周辺の等価回路を示す。探針101が誘電体試料109に接触したときのLC発振回路106の発振周波数fs は、次式のようになる(非特許文献1)。
fs =1/[2π(L(C0+Cs))1/2] (1)
【0014】
このような関係により、探針101の直下の誘電体試料109の微小領域のキャパシタンスCs が変化すると発振周波数fs が変化するので、周波数弁別器107でこの発振周波数fs を計測することにより、キャパシタンスCs に対応する誘電率を測定することができる。以上は従来技術の範疇の基本的な構成であるが、本発明の特徴は、誘電体試料109に対する探針101の接触力が常に一定になるようにした探針101周辺の構造にあり、以下にその構成例を示す。
【0015】
図2は、探針101周辺の構成例を示す。図2(a) において、探針101と電極102とLC発振回路106が基板201に取り付けられ、探針101および電極102とLC発振回路106が図1に示す接続関係に基づいて電気的に接続される。一方、レール203と、レール203に沿って鉛直方向に可動するブロック202があり、基板201とブロック202を結合することにより、レール203に沿ってブロック202および基板201とともに探針101および電極102が一体で鉛直方向に可動する構成である。また、ブロック202が抜け落ちないように、レール203にはストッパー204が取り付けられる。なお、基板201とブロック202は同一部材で構成されてもよい。
【0016】
探針101の先端が何物にも触れていないときの探針101の様子を図2(b) に示す。ブロック202は、ストッパー204により引っかかっており、抜け落ちることはない。ここで、探針101と誘電体試料109を近づけ、探針101と誘電体試料109が接触した状態からさらに両者を近づけた様子を図2(c) に示す。なお、探針101と誘電体試料109の関係は、レール203を下方へ降ろしてもよいし、誘電体試料109を載せた試料ステージ(図1:108)を上方に持ち上げるようにしてもよい。このとき、探針101(基板201)は下方から誘電体試料109によって押されて持ち上がる。
【0017】
探針101、電極102、LC発振回路106、基板201およびブロック202の合計の質量をmとすると、それらに働く重力はmg(gは重力加速度)となる。ブロック202とレール203との間に働く摩擦力がmgに比べて十分に小さければ、探針101が誘電体試料109を押す力(探針101と誘電体試料109との接触力)に対して摩擦力は無視できる。すなわち、探針101と誘電体試料109の接触力は常にmgとなり、一定になる。
【0018】
よって、上記の構成をとることにより、探針101と誘電体試料109は常に一定の接触力を実現することが可能となる。また、ブロック202とレール203との相対位置が多少上下に移動したとしても、誘電体試料109におけるキャパシタンスCs を含む全体のキャパシタンス(C0+Cs)はほとんど変化しない。
【0019】
よって、探針101の直下の誘電体試料109の誘電率がある値をもつときのキャパシタンスCs は一意に決定されるので、(1) 式により発振周波数fs と誘電率が1対1に対応することになり、再現性のある誘電率の定量測定が可能となる。
【0020】
すなわち、予め誘電率の値が既知であるリファレンス試料を用いて、発振周波数と誘電率の関係を求めておくことにより、周波数弁別器(図1:107)で計測される発振周波数fs から誘電体試料109の誘電率を求めることができる。さらに、従来のカンチレバーのように探針101の接触力を一定に保つためのモニタ機構が不要となるので、簡便かつ安価な誘電率測定装置を実現することができる。
【0021】
なお、図2では、探針101の先端は平坦な形状としているが、先端が球面などの形状を有していてもよい。
【0022】
(第2の実施形態)
図3は、本発明の誘電率測定装置の第2の実施形態を示す。図3において、本実施形態の誘電率測定装置は、図1に示す第1の実施形態の構成における試料ステージ108と電極102との間に交流信号発生器301を接続して誘電体試料109に交流電界を印加し、さらに周波数弁別器107と交流信号発生器301にロックインアンプ302を接続する構成である。周波数弁別器107はLC発振回路106の時間変化する発振周波数を計測し、ロックインアンプ302は交流信号発生器301が印加する交流電界の周波数の整数倍の周波数で同期検波することにより、探針101の直下の誘電体試料109の微小領域の非線形誘電率を測定する。
【0023】
交流信号発生器301が誘電体試料109に印加する交流電界Ep は、定数E0 、周波数ωp 、時間tとすると次式のように表される。
p =E0 cos(ωpt) (2)
【0024】
このとき、誘電体試料109の誘電率が時間とともに変化する微小量Δεは、次式の関係が成り立つ(非特許文献2)。
Δε=(1/4)ε(4)E02+ε(3)E0cos(ωpt)+(1/4)ε(4)E02cos(2ωpt)+… (3)
ここで、ε(3),ε(4),…は、電束密度Dを次式のように電界Eで展開したときの展開係数である。
D=P+ε(2)E+(1/2)ε(3)E2+(1/6)ε(4)E3+(1/24)ε(5)E4+… (4)
【0025】
誘電率が時間変化するのに伴ってキャパシタンスも時間変化するが、第1の実施形態と同様に接触力が一定に保たれるので、誘電率の時間変化とキャパシタンスの時間変化が1対1に対応する。よって、 (3)式に示した誘電率の時間変化と発振周波数の時間変化が1対1に対応する。すなわち、周波数弁別器107で計測される発振周波数の時間変化は、直流成分,ωp 成分,2ωp 成分,…の重なり合ったものとなる。
【0026】
ここで、ロックインアンプ302を用いて同期検波することにより、 (3)式の各項の係数を抽出することができる。たとえば、cos(ωpt) の係数を抽出することによりε(3)E0が求まり、cos(2ωpt)の係数を抽出することによりε(4)E02/4が求まる。よって、E0 が既知であれば、ε(3) ,ε(4) , …の定量測定が可能になる。
【0027】
すなわち、予め非線形誘電率の値が既知であるリファレンス試料を用いて、発振周波数と非線形誘電率の関係を求めておくことにより、周波数弁別器107で計測される発振周波数fs から誘電体試料109の非線形誘電率を求めることができる。さらに、従来のカンチレバーのように探針101の接触力を一定に保つためのモニタ機構が不要となるので、簡便かつ安価な非線形誘電率測定装置を実現することができる。
【0028】
(第3の実施形態)
図4は、本発明の誘電率測定装置の第3の実施形態を示す。本実施形態は、試料ステージ108に載せた誘電体試料109の温度制御に用いる温度制御機構の一例を示す。
【0029】
図4において、試料ステージ本体401の下にペルチェ素子402および熱浴403を配置して試料ステージ108を形成する。試料ステージ108の温度を変化させたとき、一般に熱膨張・熱収縮により、探針101と試料ステージ108上に配置された誘電体試料109の表面との相対的な高さが変化する。しかし、第1の実施形態で説明したように、探針101(基板201)が誘電体試料109の表面の高さの変化に合わせて位置が変化して接触力を一定にできる。
【0030】
よって、本実施形態の試料ステージ108を用いることにより、誘電体試料109の誘電率および非線形誘電率の温度依存性の定量測定が可能となる。特に、誘電体試料109として強誘電体を用いた場合に、常誘電−強誘電相転移が起きる相転移温度で誘電率が最大になるので、誘電率の温度依存性を測定することにより、相転移温度を求めることが可能となる。
【0031】
(第4の実施形態)
図5は、本発明の誘電率測定装置の第4の実施形態を示す。本実施形態は、誘電体試料109と探針101との間の高さ調整に用いる高さ調整機構、および誘電体試料109と探針101との間の相対的な位置制御に用いる位置制御機構の一例を示す。
【0032】
図5(a) に示す構成では、レール203は高さ調整機構501に取り付けられ、誘電体試料109との間の高さ調整が行われる。一方、誘電体試料109を載せる試料ステージ108は位置制御機構502に取り付けられ、試料ステージ108の位置を二次元平面内で移動させる。
【0033】
図5(b) に示す構成では、レール203は、位置制御機構502を介して高さ調整機構501に取り付けられ、誘電体試料109に対する探針101の二次元平面内の位置および高さ調整が行われる。
【0034】
図5(c) に示す構成では、レール203は所定の位置および高さに固定される。一方、誘電体試料109を載せる試料ステージ108は高さ調整機構501および位置制御機構502に取り付けられ、探針101に対する誘電体試料109の二次元平面内の位置および高さ調整が行われる。
【0035】
なお、高さ調整機構501は市販のXステージを縦にして用い、位置制御機構502は市販のX・Yステージを用いることができる。また、それぞれ粗動用に手動のものと、微動用に電動のものを組み合わせて構成してもよい。
【0036】
このように、探針101と誘電体試料109を載せた試料ステージ108は、それぞれ高さ方向および水平方向に対してどちらが動いてもよい。探針101が接触する誘電体試料109の位置を変えると、一般に誘電体試料109の高さムラ、試料ステージ108の傾きなどにより、探針101と誘電体試料109の表面との相対的な高さが変化する。しかし、第1の実施形態で説明したように、探針101(基板201)が誘電体試料109の表面の高さの変化に合わせて位置が変化して接触力を一定にできる。
【0037】
よって、本実施形態の位置制御機構502を用いることにより、誘電体試料109の誘電率および非線形誘電率の位置依存性の定量測定が可能となる。特に、誘電体試料109として強誘電体を用いた場合に、第3の実施形態の温度制御機構と組み合わせることにより、常誘電−強誘電相転移が起きる相転移温度の場所依存性を求めることが可能となる。
【図面の簡単な説明】
【0038】
【図1】本発明の誘電率測定装置の第1の実施形態を示す図。
【図2】探針101周辺の構成例を示す図。
【図3】本発明の誘電率測定装置の第2の実施形態を示す図。
【図4】本発明の誘電率測定装置の第3の実施形態を示す図。
【図5】本発明の誘電率測定装置の第4の実施形態を示す図。
【符号の説明】
【0039】
101 探針
102 電極
103 キャパシタ
104 インダクタ
105 発振器
106 LC発振回路
107 周波数弁別器
108 試料ステージ
109 誘電体試料
201 基板
202 ブロック
203 レール
204 ストッパー
301 交流信号発生器
302 ロックインアンプ
401 試料ステージ本体
402 ペルチェ素子
403 熱浴
501 高さ調整機構
502 位置制御機構

【特許請求の範囲】
【請求項1】
誘電体試料を載せる試料ステージと、
前記試料ステージに載せた誘電体試料の表面に接触させる探針と、
前記探針の周囲に設けられた固定電位を有する電極と、
発振器に接続されるキャパシタおよびインダクタを有し、前記探針が前記誘電体試料の表面に接触したときに生じる前記誘電体試料の前記探針直下の微小領域のキャパシタンスが該キャパシタと並列になるように、前記探針および前記電極に接続されるLC発振回路と、
前記LC発振回路に接続され、前記LC発振回路が出力する信号の周波数(発振周波数)を測定する周波数弁別器と
を備え、前記誘電体試料の表面に前記探針を接触させ、前記周波数弁別器で測定された前記LC発振回路の発振周波数から前記誘電体試料の前記探針直下の微小領域の誘電率を測定する誘電率測定装置において、
前記探針と前記電極と前記LC発振回路を取り付ける基板と、
レールと、レールに沿って鉛直方向に可動するブロックとを備え、
前記基板と前記ブロックを結合し、前記探針と前記電極と前記LC発振回路が一体で鉛直方向に可動する構成である
ことを特徴とする誘電率測定装置。
【請求項2】
誘電体試料を載せる試料ステージと、
前記試料ステージに載せた誘電体試料の表面に接触させる探針と、
前記探針の周囲に設けられた固定電位を有する電極と、
発振器に接続されるキャパシタおよびインダクタを有し、前記探針が前記誘電体試料の表面に接触したときに生じる前記誘電体試料の前記探針直下の微小領域のキャパシタンスが該キャパシタと並列になるように、前記探針および前記電極に接続されるLC発振回路と、
前記LC発振回路に接続され、前記LC発振回路が出力する信号の周波数(発振周波数)を測定する周波数弁別器と、
前記試料ステージと前記電極に接続され、前記試料ステージに所定の周波数の交流電界を印加する交流信号発生器と、
前記周波数弁別器と前記交流信号発生器に接続されたロックインアンプと
を備え、前記誘電体試料の表面に前記探針を接触させ、前記周波数弁別器で測定された前記LC発振回路の発振周波数の信号を前記ロックインアンプに入力し、前記交流信号発生器が印加する交流電界の周波数の整数倍の周波数で同期検波して前記誘電体試料の前記探針直下の微小領域の非線形誘電率を測定する誘電率測定装置において、
前記探針と前記電極と前記LC発振回路を取り付ける基板と、
レールと、レールに沿って鉛直方向に可動するブロックとを備え、
前記基板と前記ブロックを結合し、前記探針と前記電極と前記LC発振回路が一体で鉛直方向に可動する構成である
ことを特徴とする誘電率測定装置。
【請求項3】
請求項1または請求項2に記載の誘電率測定装置において、
前記試料ステージは、前記誘電体試料の温度を制御する温度制御機構を含む構成であることを特徴とする誘電率測定装置。
【請求項4】
請求項1または請求項2に記載の誘電率測定装置において、
前記レールおよび前記試料ステージの少なくとも一方に取り付け、前記試料ステージと前記探針との間の高さを調整する高さ調整機構を備えたことを特徴とする誘電率測定装置。
【請求項5】
請求項1または請求項2に記載の誘電率測定装置において、
前記レールおよび前記試料ステージの少なくとも一方に取り付け、前記探針と前記誘電体試料の水平方向の相対位置を制御する位置調整機構を備えたことを特徴とする誘電率測定装置。
【請求項6】
請求項1または請求項2に記載の誘電率測定装置において、
前記基板と前記ブロックが同一部材で構成されたことを特徴とする誘電率測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−31044(P2009−31044A)
【公開日】平成21年2月12日(2009.2.12)
【国際特許分類】
【出願番号】特願2007−193400(P2007−193400)
【出願日】平成19年7月25日(2007.7.25)
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】