説明

車両衝突判定装置

【課題】センサ故障時、非故障時を問わず従来と同等の乗員保護性能を確保しつつ、コストの削減を実現可能な車両衝突判定装置を提供する。
【解決手段】車両衝突判定装置は、車両の長さ方向及び幅方向に作用する加速度を検出する第1加速度センサと、前記車両の長さ方向に作用する加速度を検出する第2加速度センサと、前記第2加速度センサが故障したか否かを判定する故障検知手段と、前記第2加速度センサの非故障時には、前記第1及び第2加速度センサから得られる前記車両の長さ方向に作用する加速度に基づいて衝突判定を行う一方、前記第2加速度センサの故障時には、前記第1加速度センサから得られる前記車両の長さ方向及び幅方向に作用する加速度に基づいて衝突判定を行う衝突判定手段とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両衝突判定装置に関する。
【背景技術】
【0002】
一般的に、車両衝突時に乗員を保護するためのシステムとして、SRS(Supplemental Restraint System)エアバッグシステムが知られている。このSRSエアバッグシステムとは、車両の各部に設置されたサテライトセンサから取得した加速度データを基に、車両衝突の発生を検知してエアバッグ等の乗員保護装置を起動するものである。
【0003】
従来では、車両前部に設置された複数のフロントクラッシュセンサ(FCS)と、車両中央部に設置されたSRSユニット(SRSエアバッグシステムを統括制御するECU)内のユニットセンサとから得られる加速度データに基づいて、乗員保護装置の起動を必要とする衝突が発生したか否かを判定し、その衝突判定結果に応じて乗員保護装置の起動制御を行う技術が知られている(下記特許文献1参照)。
【0004】
下記特許文献1に記載の技術では、ユニットセンサから得られる加速度データを基に算出した衝突判定用演算値(例えば乗員移動量及び乗員速度変化量)と衝突判定閾値との比較によって衝突判定を行うが、この時、FCSから得られる加速度データを基に一定以上の衝撃が車両に発生していないと判断される場合には、衝突判定閾値を比較的高い値に設定する一方、一定以上の衝撃が車両に発生したと判断される場合には、衝突判定閾値を比較的低い値に切替える。
【0005】
これにより、一定以上の衝撃が車両に発生していないと判断される場合(衝突発生の可能性が低い場合)は、衝突判定用演算値が衝突判定閾値を越えにくくなり、乗員保護装置の起動が不要な振動や衝撃等によって誤って乗員保護装置が起動されることを防ぐことができる。一方、一定以上の衝撃が車両に発生したと判断される場合(衝突発生の可能性が高い場合)は、衝突判定用演算値が衝突判定閾値を越えやすくなり、迅速に乗員保護装置を起動させることができる。
つまり、従来では、FCSから得られる加速度データに応じて衝突判定閾値の高低を切替えることにより、迅速且つ正確な乗員保護装置の起動制御を実現していた。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−88913号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、近年では、市場から部品コスト削減の要求が強まっており、SRSエアバッグシステムについても現状での衝突判定性能(乗員保護性能)を維持しつつ、いかに部品コストを削減するのかが大きなテーマとなっている。そこで考えられるのが、FCSの削除である。FCSを削除すると、FCSとSRSユニット(ECU)を接続するためのハーネスが不要となり、また、SRSユニットの構造も簡略化される(コネクタや通信インターフェースICが不要となる)ため、システム全体で大きなコスト削減効果が得られる。
【0008】
ここで問題となるのが、FCSから得られる加速度データを用いて予備的に行っていた衝突判定(衝突判定閾値の切替要否の判断)をどのような手段で代替させるかである。元々、FCSが車両前部に設けられていた理由は、正面衝突時における車体変形が小さい車両中央部に設置されているSRSユニット内のユニットセンサだけでは、車体変形を伴う激しい衝突(乗員保護装置の起動が必要な衝突)が発生したことを迅速且つ正確に検知することが困難であったからである。従って、コスト削減のためにFCSを削除するに当っては、FCSを用いる場合と同等の乗員保護性能を確保することが必須要件となる。
【0009】
このような課題に対して、本出願人は、SRSユニット内に2つの加速度センサを設け、両加速度センサから得られる加速度データに基づいて衝突判定を行う案を検討しているが、片方の加速度センサが故障した場合に、従来と同等の乗員保護性能を確保することが困難となることから、センサ故障時の冗長性をどのように確保するのかが問題となっていた。
【0010】
本発明は上述した事情に鑑みてなされたものであり、センサ故障時、非故障時を問わず従来と同等の乗員保護性能を確保しつつ、コストの削減を実現可能な車両衝突判定装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明では、車両衝突判定装置に係る第1の解決手段として、車両の長さ方向及び幅方向に作用する加速度を検出する第1加速度センサと、前記車両の長さ方向に作用する加速度を検出する第2加速度センサと、前記第2加速度センサが故障したか否かを判定する故障検知手段と、前記第2加速度センサの非故障時には、前記第1及び第2加速度センサから得られる前記車両の長さ方向に作用する加速度に基づいて衝突判定を行う一方、前記第2加速度センサの故障時には、前記第1加速度センサから得られる前記車両の長さ方向及び幅方向に作用する加速度に基づいて衝突判定を行う衝突判定手段と、を備えることを特徴とする。
【0012】
また、本発明では、車両衝突判定装置に係る第2の解決手段として、上記第1の解決手段において、前記衝突判定手段は、前記第1加速度センサから得られる前記車両の長さ方向に作用する加速度データを基に衝突判定用演算値を算出する第1演算手段と、前記衝突判定用演算値と衝突判定閾値との比較により衝突判定を行う主衝突判定手段と、前記第2加速度センサから得られる前記車両の長さ方向に作用する加速度データを基に第1セーフィング判定を行う第1セーフィング判定手段と、前記第1加速度センサから得られる前記車両の幅方向に作用する加速度データを基に第2セーフィング判定を行う第2セーフィング判定手段と、前記第2加速度センサの非故障時には前記第1セーフィング判定結果を、前記第2加速度センサの故障時には前記第2セーフィング判定結果を最終的なセーフィング判定結果として選択するセーフィング判定結果選択手段と、前記セーフィング判定結果選択手段によって選択された最終的なセーフィング判定結果及び前記主衝突判定手段の衝突判定結果に基づいて最終的に乗員保護装置を起動するか否かを決定する最終起動決定手段と、を備えることを特徴とする。
【0013】
また、本発明では、車両衝突判定装置に係る第3の解決手段として、上記第2の解決手段において、前記第2加速度センサは、車体変形を伴う衝突によって生じる高周波振動成分を検出可能な測定レンジ及び応答周波数レンジを有し、前記衝突判定手段は、前記第2加速度センサから得られる加速度データに含まれる前記高周波振動成分に基づいて衝突によって生じる変形エネルギを算出する第2演算手段と、前記変形エネルギに基づいて車体変形を伴う衝突が発生したか否かを判定し、その判定結果に応じて前記衝突判定閾値の切替を前記主衝突判定手段に指示する閾値切替判断手段とをさらに備えることを特徴とする。
【0014】
また、本発明では、車両衝突判定装置に係る第4の解決手段として、上記第3の解決手段において、前記第1演算手段は、前記衝突判定用演算値として少なくとも乗員移動量を算出し、前記閾値切替判断手段は、前記乗員移動量に応じて変形エネルギ閾値を設定する閾値設定手段と、前記変形エネルギと前記変形エネルギ閾値とを比較することで前記車体変形を伴う衝突が発生したか否かを判定する第1比較判定手段と、を備えることを特徴とする。
【0015】
また、本発明では、車両衝突判定装置に係る第5の解決手段として、上記第4の解決手段において、前記第1演算手段は、前記衝突判定用演算値として前記乗員移動量に加えて乗員速度変化量を算出し、前記閾値切替判断手段は、前記乗員速度変化量と乗員速度変化量閾値とを比較することで速度変化が大きな衝突が発生したか否かを判定する第2比較判定手段と、前記第1比較判定手段及び前記第2比較判定手段の判定結果に基づいて最終的に前記衝突判定閾値の切替を指示するか否かを決定する最終切替決定手段と、を備えることを特徴とする。
【0016】
また、本発明では、車両衝突判定装置に係る第6の解決手段として、上記第3〜第5のいずれか1つの解決手段において、前記閾値切替判断手段は、前記故障検知手段によって前記第2加速度センサが故障したと判定された場合に、前記主衝突判定手段に対する前記衝突判定閾値の切替指示を強制的に停止することを特徴とする。
【0017】
また、本発明では、車両衝突判定装置に係る第7の解決手段として、上記第1〜第6のいずれか1つの解決手段において、前記第1加速度センサは、前記車両の長さ方向に作用する加速度を検出する1軸加速度センサと、前記車両の幅方向に作用する加速度を検出する1軸加速度センサとの2つの1軸加速度センサによって構成されることを特徴とする。
【発明の効果】
【0018】
第1加速度センサ及び第2加速度センサの2つの加速度センサを車両衝突判定装置内に設けた場合に、第2加速度センサの非故障時には、第1及び第2加速度センサから得られる車両の長さ方向に作用する加速度に基づいて衝突判定を行う一方、第2加速度センサの故障時には、第1加速度センサから得られる車両の長さ方向及び幅方向に作用する加速度に基づいて衝突判定を行うことで、センサ故障時の冗長性を確保でき、センサ故障時、非故障時を問わず従来と同等の乗員保護性能を確保できることを見出し、本発明を出願するに至った。
つまり、本発明に係る車両衝突判定装置によれば、センサ故障時、非故障時を問わず従来と同等の乗員保護性能を確保しつつ、コストの削減を実現することが可能となる。
【図面の簡単な説明】
【0019】
【図1】本実施形態におけるSRSエアバッグシステムの構成概略図である。
【図2】SRSユニット1(車両衝突判定装置)の要部ブロック構成図である。
【図3】ある車種について車体変形を伴う激しい衝突と、車体変形が軽微な穏やかな衝突との2つの衝突試験を実施した際にSGS12から得られたセーフィング加速度データGs(t)及び変形エネルギEの時間変化を示す図である。
【図4】走行による振動発生時にSGS12から得られたセーフィング加速度データGs(t)及び変形エネルギEの時間変化と、エアバッグ2の展開が必要な衝突試験を実施した際にMGS11から得られたY軸メイン加速度データGmy(t)の時間変化を示す図である。
【発明を実施するための形態】
【0020】
以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態におけるSRSエアバッグシステムの構成概略図である。この図に示すように、本実施形態におけるSRSエアバッグシステムは、車両100の中央部に設置されたSRSユニット1(車両衝突判定装置)と、車両100の運転席及び助手席に設置されたエアバッグ2(乗員保護装置)とから構成されている。
【0021】
SRSユニット1は、内部に設けられたメイン加速度センサ11(第1加速度センサ:以下、MGSと称す)及びセーフィング加速度センサ12(第2加速度センサ:以下、SGSと称す)から得られる加速度データに基づいて、車両100にエアバッグ2の展開を必要とする衝突が発生したか否かの衝突判定を行い、その衝突判定結果に応じてエアバッグ2の起動制御を行うECU(Electronic Control Unit)である。
【0022】
エアバッグ2は、SRSユニット1から入力される点火信号に応じて展開し、車両100の正面衝突により乗員が前方に2次衝突することで負う傷害を軽減する乗員保護装置である。なお、一般的に車両100には、エアバッグ2の他、シートベルトプリテンショナ等の他の乗員保護装置も設けられているが、図1では図示を省略している。また、図1に示すように、SRSユニット1において、MGS11及びSGS12をそれぞれ別個に設けても良いし、或いは1つのセンサセル内にMGS11とSGS12を内蔵するようにしても良い。
【0023】
図2は、SRSユニット1の要部ブロック構成図である。この図に示すように、SRSユニット1は、上述したMGS11及びSGS12に加えて、第1ローパスフィルタ13(以下、第1LPFと称す)、移動量算出部14(第1演算手段)、速度変化量算出部15(第1演算手段)、メイン衝突判定部16(主衝突判定手段)、第2LPF17、変形エネルギ算出部18(第2演算手段)、閾値切替判断部19(閾値切替判断手段)、第3LPF20、第1セーフィング判定部21(第1セーフィング判定手段)、第4LPF22、第2セーフィング判定部23(第2セーフィング判定手段)、センサ故障検知部(故障検知手段)24、セーフィング判定結果切替部25(セーフィング判定結果切替手段)、及び最終起動決定部26(最終起動決定手段)を備えている。
【0024】
MGS11は、SRSユニット1が車両100に固定された時に、2つの感度軸(X、Y軸)の内、一方の感度軸(X軸)が車両100の長さ方向(図1中のX軸方向)と平行になるように、且つ他方の感度軸(Y軸)が車両100の幅方向(図1中のY軸方向)と平行になるようにSRSユニット1内に配置された2軸加速度センサである。
【0025】
つまり、このMGS11は、車両100の長さ方向及び幅方向に作用する加速度を検出し、長さ方向の加速度検出結果を示すX軸メイン加速度データGmx(t)を第1LPF13へ出力すると共に、幅方向の加速度検出結果を示すY軸メイン加速度データGmy(t)を第4LPF22へ出力する。なお、このMGS11は、例えば少なくとも周波数が400Hz以下且つ振幅が100G以下の加速度成分(振動成分)を検出可能な測定レンジ及び応答周波数レンジを有している。
【0026】
SGS12は、MGS11と同様に、SRSユニット1が車両100に固定された時に、感度軸が車両100の長さ方向と平行になるようSRSユニット1内に配置された1軸加速度センサである。つまり、このSGS11は、車両100の長さ方向に作用する加速度を検出し、その検出結果を示すセーフィング加速度データGs(t)を第2LPF17、第3LPF20及びセンサ故障検知部24へ出力する。
【0027】
なお、このSGS11は、車体変形を伴う衝突によって生じる高周波振動成分及び後述のセーフィング判定に必要な低周波振動成分を検出可能な測定レンジ及び応答周波数レンジを有している。具体的には、このSGS11は、例えば少なくとも周波数が1kHz以上且つ振幅が500G以下の加速度成分(振動成分)を検出可能な測定レンジ及び応答周波数レンジを有している。
【0028】
第1LPF13は、カットオフ周波数が例えば400Hzに設定されたローパスフィルタであり、MGS11から入力されるX軸メイン加速度データGmx(t)に含まれる周波数400Hz以下のX軸加速度成分G1(t)を移動量算出部14及び速度変化量算出部15へ通過させる。この周波数400Hz以下のX軸加速度成分G1(t)は、後述のメイン衝突判定部16にて実施される衝突判定に用いられる加速度データとして有意なデータ(判定精度の高いデータ)である。以下では、周波数400Hz以下のX軸加速度成分G1(t)を衝突判定用加速度データと称す。
【0029】
移動量算出部14は、第1LPF13から入力される衝突判定用加速度データG1(t)の二次区間積分を行うことで乗員移動量ΔS(衝突判定用演算値)を算出し、その算出結果をメイン衝突判定部16及び閾値切替判断部19へ出力する。なお、乗員移動量ΔSの算出手法は、特許文献1(特開2006−88913号公報)等に記載されているように公知であるので、詳細な説明については省略する。
【0030】
速度変化量算出部15は、第1LPF13から入力される衝突判定用加速度データG1(t)の一次区間積分を行うことで乗員速度変化量ΔV(衝突判定用演算値)を算出し、その算出結果をメイン衝突判定部16及び閾値切替判断部19へ出力する。なお、乗員速度変化量ΔVの算出手法は、特許文献1等に記載されているように公知であるので、詳細な説明については省略する。
【0031】
メイン衝突判定部16は、乗員移動量ΔSを横軸、乗員速度変化量ΔVを縦軸とする2次元マップ(ΔS−ΔVマップ)上に2次元的に設定された衝突判定閾値(TH_Hi或いはTH_Lo)と、移動量算出部14及び速度変化量算出部15にて算出された乗員移動量ΔS及び乗員速度変化量ΔVとを比較することでエアバッグ2の展開を必要とする衝突が発生したか否かの衝突判定を行い、その衝突判定結果R1を最終起動決定部26へ出力する。
【0032】
具体的には、このメイン衝突判定部16は、移動量算出部14及び速度変化量算出部15にて算出された乗員移動量ΔS及び乗員速度変化量ΔVが、衝突判定閾値(TH_Hi或いはTH_Lo)を越えた場合に、エアバッグ2の展開を必要とする衝突が発生したと判定して衝突判定結果R1を「1」にセットする一方、乗員移動量ΔS及び乗員速度変化量ΔVが衝突判定閾値を越えなかった場合には、エアバッグ2の展開は不要と判定して衝突判定結果R1を「0」にセットする。
【0033】
ここで、メイン衝突判定部16は、閾値切替判断部19からの閾値切替指示R4に応じて閾値TH_Hi或いはTH_Loのいずれか一方を衝突判定閾値として選択する。図2中に示すように、閾値TH_Hiは、乗員移動量ΔS及び乗員速度変化量ΔVが衝突判定閾値を越えにくくなるように比較的高い値に設定されている。一方、閾値TH_Loは、乗員移動量ΔS及び乗員速度変化量ΔVが衝突判定閾値を越えやすくなるように比較的低い値に設定されている。なお、これら2次元的な閾値TH_Hi及びTH_LoをΔS−ΔVマップ上にどのような形で設定するかは、特許文献1に記載されているように公知であるので、詳細な説明については省略する。
【0034】
第2LPF17は、カットオフ周波数が例えば5kHzに設定されたローパスフィルタであり、SGS11から入力されるセーフィング加速度データGs(t)に含まれる周波数5kHz以下のX軸加速度成分G2(t)を変形エネルギ算出部18へ通過させる。この周波数5kHz以下の比較的高周波のX軸加速度成分G2(t)は、衝突によって車体変形が進行する様子を精度良く捉えることができるという特徴があり、後述の閾値切替判断部19によって予備的に行われる衝突判定(衝突判定閾値の切替要否の判断)に用いられる加速度データとして有意なデータである。以下では、周波数5kHz以下のX軸加速度成分G2(t)を閾値切替判断用加速度データと称す。
【0035】
変形エネルギ算出部18は、第2LPF17から入力される閾値切替判断用加速度データG2(t)を基に衝突によって生じる変形エネルギEを算出し、その算出結果を閾値切替判断部19へ出力する。具体的には、変形エネルギ算出部18は、下記(1)式に基づいて変形エネルギEを算出する。なお、下記(1)式において、a=G2(t)である。
【0036】
【数1】

【0037】
上記のように、変形エネルギEは、閾値切替判断用加速度データG2(t)の二乗を一次積分することで求めることができるが、CPUの処理負荷を考慮して、下記(2)式に基づいて変形エネルギEを近似的に算出することが望ましい。なお、下記(2)式において、|a|はG2(t)の絶対値である。つまり、G2(t)の絶対値の一次区間積分を行うことで、近似的に変形エネルギEを求めることができる。
【0038】
【数2】

【0039】
閾値切替判断部19は、変形エネルギ算出部18から入力される変形エネルギEと、移動量算出部14及び速度変化量算出部15から入力される乗員移動量ΔS及び乗員速度変化量ΔVとに基づいて、車体変形を伴う衝突が発生したか否かを判定し、その判定結果に応じて衝突判定閾値の切替をメイン衝突判定部16に指示するものである。具体的には、この閾値切替判断部19は、閾値設定部19a(閾値設定手段)と、第1比較判定部19b(第1比較判定手段)と、第2比較判定部19c(第2比較判定手段)と、最終切替決定部19d(最終切替決定手段)とを備えている。
【0040】
閾値設定部19aは、移動量算出部14から入力される乗員移動量ΔSに応じて変形エネルギ閾値Ethを設定し、その設定結果を第1比較判定部19bへ出力する。具体的には、この閾値設定部19aは、予め設定されている乗員移動量ΔSと変形エネルギ閾値Ethとの対応関係を示すΔS−Ethテーブル(図2参照)を参照し、移動量算出部14にて算出された乗員移動量ΔSに対応する変形エネルギ閾値Ethを上記のΔS−Ethテーブルから取得する。
【0041】
図2中のΔS−Ethテーブルに示すように、乗員移動量ΔSが小さい程、変形エネルギ閾値Ethは高い値に設定される。これは、乗員移動量ΔSが小さい程、車体変形を伴う衝突(エアバッグ2の展開が必要な衝突)が発生した可能性は低いことから、変形エネルギ閾値Ethを高く設定して、変形エネルギEが変形エネルギ閾値Ethを越えにくくすることにより、後述の第1比較判定部19bにおいてエアバッグ2の展開が不要な振動や衝撃等が原因で車体変形を伴う衝突が発生したと判定されてしまうことを防止する(換言すれば、誤って衝突判定閾値の切替指示が出ることを防止する)ためである。
【0042】
一方、図2中のΔS−Ethテーブルに示すように、乗員移動量ΔSが大きい程、変形エネルギ閾値Ethは低い値に設定される。これは、乗員移動量ΔSが大きい程、車体変形を伴う衝突が発生した可能性は高いことから、変形エネルギ閾値Ethを低く設定して、変形エネルギEが変形エネルギ閾値Ethを越えやすくすることにより、後述の第1比較判定部19bにおいて車体変形を伴う衝突が発生したと迅速に判定する(換言すれば、迅速に衝突判定閾値の切替指示を出す)ためである。
【0043】
第1比較判定部19bは、変形エネルギ算出部18から入力される変形エネルギEと、閾値設定部19aによって設定された変形エネルギ閾値Ethとを比較することで車体変形を伴う衝突が発生したか否かを判定し、その衝突判定結果R2を最終切替決定部19dへ出力する。具体的には、この第1比較判定部19bは、変形エネルギ算出部18にて算出された変形エネルギEが変形エネルギ閾値Ethを越えた場合に、車体変形を伴う衝突が発生したと判定して衝突判定結果R2を「1」にセットする一方、変形エネルギEが変形エネルギ閾値Ethを越えなかった場合には、車体変形を伴う衝突は発生していないと判定して衝突判定結果R2を「0」にセットする。
【0044】
実際には、車種によって車体構造が変わると、変形エネルギEの時間的な変化傾向が変わるため、車種毎に衝突試験を実施してその車種に最適な変形エネルギ閾値Ethを求めておく必要がある。図3は、本出願人が、ある車種について車体変形を伴う激しい衝突(エアバッグ展開要の衝突モード:ODB64kph)と、車体変形が軽微な穏やかな衝突(エアバッグ展開不要の衝突モード:FR8mph)との2つの衝突試験を実施した際にSGS12から得られたセーフィング加速度データGs(t)及び変形エネルギEの時間変化を示している。
【0045】
なお、図3(a)及び(b)は、車体変形を伴う激しい衝突の衝突試験を実施した際にSGS12から得られたセーフィング加速度データGs(t)及び変形エネルギEの時間変化を示しており、また、図3(c)及び(d)は、車体変形が軽微な穏やかな衝突の衝突試験を実施した際にSGS12から得られたセーフィング加速度データGs(t)及び変形エネルギEの時間変化を示している。
【0046】
これらの図に示すように、車体変形を伴う激しい衝突と、車体変形が軽微な穏やかな衝突とでは、変形エネルギEの時間的な変化傾向に明確な差異が衝突発生時点から短時間で発生することがわかる。つまり、原理的には、車種に応じて車体変形を伴う激しい衝突と、車体変形が軽微な穏やかな衝突とを確実に切り分けできる値に変形エネルギ閾値Ethを設定することにより、変形エネルギEが変形エネルギ閾値Ethを越えた時、車体変形を伴う激しい衝突が発生したと正確且つ迅速に判定することができる。本実施形態では、上述したように、乗員移動量ΔSに応じて動的に変形エネルギ閾値Ethを設定することにより、より高精度且つ迅速な衝突判定(衝突判定閾値の切替要否判断)を実現している。
【0047】
また、図4(a)及び(b)は、走行(P/H80kph)による振動発生時にSGS12から得られたセーフィング加速度データGs(t)及び変形エネルギEの時間変化を示している。これらの図に示すように、車体変形を伴う衝突ではなくても、走行による振動発生時に比較的大きく変形エネルギEが変動することがわかる。つまり、第1比較判定部19bだけでは、走行によって大きな振動が発生した場合でも、変形エネルギEが変形エネルギ閾値Ethを越えてしまい、車体変形を伴う衝突が発生したと誤判定する可能性がある。
【0048】
そこで、変形エネルギEが変形エネルギ閾値Ethを越えたのは車体変形を伴う衝突が原因なのか、或いは走行による振動が原因なのかを切り分ける必要がある。本実施形態では、後述の第2比較判定部19cを設けることにより、変形エネルギEが変形エネルギ閾値Ethを越えた原因の切り分けを実現している。
【0049】
第2比較判定部19cは、速度変化量算出部15にて算出された乗員速度変化量ΔVと、予め設定された乗員速度変化量閾値ΔVthとを比較することで速度変化が大きな衝突が発生したか否かを判定し、その衝突判定結果R3を最終切替決定部19dへ出力する。具体的には、この第2比較判定部19cは、速度変化量算出部15にて算出された乗員速度変化量ΔVが乗員速度変化量閾値ΔVthを越えた場合に、速度変化が大きな衝突が発生したと判定して衝突判定結果R3を「1」にセットする一方、乗員速度変化量ΔVが乗員速度変化量閾値ΔVthを越えなかった場合には、速度変化が大きな衝突が発生しなかった(走行による振動が発生)と判定して衝突判定結果R3を「0」にセットする。
【0050】
つまり、第1比較判定部19bにおいて変形エネルギEが変形エネルギ閾値Ethを越えたと判定されても、第2比較判定部19cにおいて速度変化が大きな衝突が発生していないと判定されれば、変形エネルギEが変形エネルギ閾値Ethを越えたのは走行による振動が原因であると推測できる。
【0051】
最終切替決定部19dは、第1比較判定部19bの衝突判定結果R2及び第2比較判定部19cの衝突判定結果R3に基づいて最終的にメイン衝突判定部16に対して衝突判定閾値の切替を指示するか否かを決定する。具体的には、この最終切替決定部19dは、AND演算部であり、衝突判定結果R2及びR3の両方が「1」の場合、つまり、第1比較判定部19bにおいて変形エネルギEが変形エネルギ閾値Ethを越えた(車体変形を伴う衝突が発生した)と判定され、且つ第2比較判定部19cにおいて乗員速度変化量ΔVが乗員速度変化量閾値ΔVthを越えた(速度変化が大きな衝突が発生した)と判定された場合、衝突判定閾値をTH_HiからTH_Loへ切替させるために閾値切替指示R4を「1」にセットしてメイン衝突判定部16へ出力する。
【0052】
また、この最終切替決定部19dは、衝突判定結果R2及びR3の少なくとも一方が「0」の場合、衝突判定閾値をTH_Hiに保持させるために閾値切替指示R4を「0」にセットしてメイン衝突判定部16へ出力する。つまり、メイン衝突判定部16は、閾値切替判断部19の最終切替決定部19dから「1」にセットされた閾値切替指示R4を受けた場合、衝突判定閾値をTH_HiからTH_Loへ切替えて衝突判定を行う一方、最終切替決定部19dから「0」にセットされた閾値切替指示R4を受けた場合には、衝突判定閾値をTH_Hiに保持した状態で衝突判定を行う。
【0053】
第3LPF20は、カットオフ周波数が例えば100Hzに設定されたローパスフィルタであり、SGS11から入力されるセーフィング加速度データGs(t)に含まれる周波数100Hz以下のX軸加速度成分G3(t)を第1セーフィング判定部21へ通過させる。この周波数100Hz以下の比較的低周波のX軸加速度成分G3(t)は、走行によるSRSユニット1の振動を除去したものであり、後述の第1セーフィング判定部21にて実施されるセーフィング判定に用いられる加速度データとして有意なデータである。以下では、周波数100Hz以下のX軸加速度成分G3(t)を第1セーフィング判定用加速度データと称す。
【0054】
第1セーフィング判定部21は、第3LPF20から入力される第1セーフィング判定用加速度データG3(t)を基にセーフィング判定を行い、そのセーフィング判定結果R5をセーフィング判定結果切替部25に出力する。具体的には、この第1セーフィング判定部21は、第1セーフィング判定用加速度データG3(t)を一次区間積分することで、第1セーフィング判定用演算値ΔVs1を算出し、この第1セーフィング判定用演算値ΔVs1と予め設定された第1セーフィング判定閾値ΔVs1_THとを比較する。
【0055】
第1セーフィング判定部21は、第1セーフィング判定用演算値ΔVs1が第1セーフィング判定閾値ΔVs1_THを越えた場合に、エアバッグ2の展開を必要とする衝突が発生したと判定してセーフィング判定結果R5を「1」にセットする一方、第1セーフィング判定用演算値ΔVs1が第1セーフィング判定閾値ΔVs1_THを越えなかった場合には、セーフィング判定結果R5を「0」にセットする。なお、第1セーフィング判定閾値ΔVs1_THは、車体変形が軽微な衝突でもセーフィング判定結果R5が「1」にセットされるよう、安全方向に振った低い値に設定されている。
【0056】
第4LPF22は、カットオフ周波数が例えば400Hzに設定されたローパスフィルタであり、MGS11から入力されるY軸メイン加速度データGmy(t)に含まれる周波数400Hz以下のY軸加速度成分G4(t)を第2セーフィング判定部23へ通過させる。この周波数400Hz以下のY軸加速度成分G4(t)は、走行によるSRSユニット1の振動を除去したものであり、後述の第2セーフィング判定部23にて実施されるセーフィング判定に用いられる加速度データとして有意なデータである。以下では、周波数400Hz以下のY軸加速度成分G4(t)を第2セーフィング判定用加速度データと称す。
【0057】
第2セーフィング判定部23は、第4LPF22から入力される第2セーフィング判定用加速度データG4(t)を基にセーフィング判定を行い、そのセーフィング判定結果R6をセーフィング判定結果切替部25に出力する。具体的には、この第2セーフィング判定部23は、第2セーフィング判定用加速度データG4(t)を一次区間積分することで、第2セーフィング判定用演算値ΔVs2を算出し、この第2セーフィング判定用演算値ΔVs2と予め設定された第2セーフィング判定閾値ΔVs2_THとを比較する。
【0058】
第2セーフィング判定部23は、第2セーフィング判定用演算値ΔVs2が第2セーフィング判定閾値ΔVs2_THを越えた場合に、エアバッグ2の展開を必要とする衝突が発生したと判定してセーフィング判定結果R6を「1」にセットする一方、第2セーフィング判定用演算値ΔVs2が第2セーフィング判定閾値ΔVs2_THを越えなかった場合には、セーフィング判定結果R6を「0」にセットする。
【0059】
詳細は後述するが、第2セーフィング判定部23のセーフィング判定結果R6は、SGS12の故障時に、第1セーフィング判定部21のセーフィング判定結果R5の代替データとして用いられるものである。従って、第2セーフィング判定閾値ΔVs2_THの設定基準は、第1セーフィング判定閾値ΔVs1_THの設定基準よりも厳格な基準とする必要がある。
【0060】
つまり、第1セーフィング判定閾値ΔVs1_THは、上述のように車体変形が軽微な衝突でもセーフィング判定結果R5が「1」にセットされるよう、単純に安全方向に振った低い値(車種に関係なく固定値)に設定すれば良いが、第2セーフィング判定閾値ΔVs2_THは、仮に安全方向に振った低い値に設定すると、車両100の段差乗り上げ等に起因して発生する振動でもセーフィング判定結果R6が「1」にセットされる可能性があるため、このような不用意な誤判定が生じないように、エアバッグ2の展開が必要な衝突を基準に設定すべきである。
【0061】
図4(c)は、ある車種についてエアバッグ2の展開が必要な衝突試験(衝突モード:ODB64kph、FR55kph、FR19kph)を実施した際に、MGS11から得られたY軸メイン加速度データGmy(t)の時間変化を示している。このような衝突試験の結果、本出願人は、第2セーフィング判定閾値ΔVs2_THを、エアバッグ2の展開が必要な最小衝突(FR12mph)のオンマージン10%を確保可能な値に設定することが望ましいとの考えに至った。勿論、第2セーフィング判定閾値ΔVs2_THは車種毎にFR12mphを基準にして設定することが最適である。
【0062】
センサ故障検知部24は、SGS12から入力されるセーフィング加速度データGs(t)に基づいて、SGS12が故障したか否かを判定し、その故障判定結果R7をセーフィング判定結果切替部25へ出力する。具体的には、このセンサ故障検知部24は、セーフィング加速度データGs(t)が異常値を示した場合に、SGS12が故障したと判定して故障判定結果R7を「1」にセットする一方、セーフィング加速度データGs(t)が正常値を示した場合に、SGS12は正常であると判定して故障判定結果R7を「0」にセットする。
【0063】
セーフィング判定結果切替部25は、故障判定結果R7に応じて、セーフィング判定結果R5とR6とのいずれか一方を、最終的なセーフィング判定結果R8として最終起動決定部26へ出力する。具体的には、このセーフィング判定結果切替部25は、故障判定結果R7が「0」の場合に、セーフィング判定結果R5を最終的なセーフィング判定結果R8とする一方、故障判定結果R7が「1」の場合に、セーフィング判定結果R6を最終的なセーフィング判定結果R8に切替える。つまり、第2セーフィング判定部23のセーフィング判定結果R6は、SGS12の故障時に、第1セーフィング判定部21のセーフィング判定結果R5の代替データとして用いられる。
【0064】
最終起動決定部26は、メイン衝突判定部16の衝突判定結果R1及びセーフィング判定結果切替部25にて選択されたセーフィング判定結果R8に基づいて、最終的にエアバッグ2を展開するか否かを決定する。具体的には、この最終起動決定部22は、AND演算部であり、衝突判定結果R1及びセーフィング判定結果R8の両方が「1」の場合に、エアバッグ2を展開させるためにエアバッグ起動指示R9を「1」にセットする一方、衝突判定結果R1及びセーフィング判定結果R8の少なくとも一方が「0」の場合には、エアバッグ起動指示R9を「0」にセットする。
【0065】
以上説明した構成要素の内、符号13〜26で示される構成要素は、SRSユニット1に内蔵されたCPU(Central Processing Unit)等の演算処理装置が衝突判定用プログラムを実行することで実現されるソフトウェア的な機能部である。以下では、CPUが衝突判定用プログラムに従って実行する衝突判定処理について説明する。
【0066】
CPUは、SRSユニット1の電源がオンされている間、つまり車両100の走行中に、以下のステップS1〜S20からなる衝突判定処理を一定周期(例えば数百μs周期)で繰り返し実行する。
<ステップS1>
まず、CPUは、衝突判定処理が開始されると、制御変数nをインクリメントした後、MGS11からアナログデータまたはデジタルデータとして入力されるX軸メイン加速度データGmx(t)及びY軸メイン加速度データGmy(t)と、SGS12からアナログデータとして入力されるセーフィング加速度データGs(t)をサンプリング及びアナログデータの場合はA/D変換することで、X軸メイン加速度データGmx(t)の現在値を示すデジタルデータGmx(n)、Y軸メイン加速度データGmy(t)の現在値を示すデジタルデータGmy(n)及びセーフィング加速度データGs(t)の現在値を示すデジタルデータGs(n)を取得する。以下では、Gmx(n)をX軸メイン加速度データGmx(t)の今回値と呼び、Gmy(n)をY軸メイン加速度データGmy(t)の今回値と呼び、Gs(n)をセーフィング加速度データGs(t)の今回値と呼ぶ。
【0067】
CPUは、上記のように取得したX軸メイン加速度データGmx(t)の今回値Gmx(n)、Y軸メイン加速度データGmy(t)の今回値Gmy(n)、及びセーフィング加速度データGs(t)の今回値Gs(n)をRAM等の揮発性メモリに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に取得されたX軸メイン加速度データGmx(t)={Gmx(1)、…、Gmx(n−2)、Gmx(n−1)、Gmx(n)}と、Y軸メイン加速度データGmy(t)={Gmy(1)、…、Gmy(n−2)、Gmy(n−1)、Gmy(n)}と、セーフィング加速度データGs(t)={Gs(1)、…、Gs(n−2)、Gs(n−1)、Gs(n)}が記憶されることになる。なお、RAMの記憶容量をオーバーする場合には、古いデータから順に削除して、空いた記憶領域に新しいデータを記憶すれば良い。
【0068】
<ステップS2>
続いて、CPUは、RAMからデジタルローパスフィルタ処理に必要なX軸メイン加速度データGmx(t)を読み出し、カットオフ周波数が400Hzに設定されたデジタルローパスフィルタ処理用の演算式に代入することで、周波数400Hz以下のX軸加速度成分G1(t)の現在値、つまり衝突判定用加速度データG1(t)の今回値G1(n)を算出する。ここで、例えば、デジタルローパスフィルタ処理に、X軸メイン加速度データGmx(t)の今回値、前回値、前々回値が必要な場合には、RAMからGmx(n)、Gmx(n−1)、Gmx(n−2)を読み出せば良い。
【0069】
CPUは、上記のように算出した衝突判定用加速度データG1(t)の今回値G1(n)をRAMに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に算出された衝突判定用加速度データG1(t)={G1(1)、…、G1(n−2)、G1(n−1)、G1(n)}が記憶されることになる。このようなステップS2の処理によって、上述した第1LPF13の機能が実現される。
【0070】
<ステップS3>
続いて、CPUは、RAMからデジタルローパスフィルタ処理に必要なセーフィング加速度データGs(t)を読み出し、カットオフ周波数がそれぞれ5kHz、100Hzに設定されたデジタルローパスフィルタ処理用の演算式に代入することで、周波数5kHz以下のX軸加速度成分G2(t)の現在値、つまり閾値切替判断用加速度データG2(t)の今回値G2(n)と、周波数100Hz以下のX軸加速度成分G3(t)の現在値、つまり第1セーフィング判定用加速度データG3(t)の今回値G3(n)とを算出する。ここで、例えば、デジタルローパスフィルタ処理に、セーフィング加速度データGs(t)の今回値、前回値、前々回値が必要な場合には、RAMからGs(n)、Gs(n−1)、Gs(n−2)を読み出せば良い。
【0071】
CPUは、上記のように算出した閾値切替判断用加速度データG2(t)の今回値G2(n)と、第1セーフィング判定用加速度データG3(t)の今回値G3(n)とをRAMに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に算出された閾値切替判断用加速度データG2(t)={G2(1)、…、G2(n−2)、G2(n−1)、G2(n)}と、第1セーフィング判定用加速度データG3(t)={G3(1)、…、G3(n−2)、G3(n−1)、G3(n)}が記憶されることになる。このようなステップS3の処理によって、上述した第2LPF17及び第3LPF20の機能が実現される。
【0072】
<ステップS4>
続いて、CPUは、RAMからデジタルローパスフィルタ処理に必要なY軸メイン加速度データGmy(t)を読み出し、カットオフ周波数が400Hzに設定されたデジタルローパスフィルタ処理用の演算式に代入することで、周波数400Hz以下のY軸加速度成分G4(t)の現在値、つまり第2セーフィング判定用加速度データG4(t)の今回値G4(n)を算出する。ここで、例えば、デジタルローパスフィルタ処理に、Y軸メイン加速度データGmy(t)の今回値、前回値、前々回値が必要な場合には、RAMからGmy(n)、Gmy(n−1)、Gmy(n−2)を読み出せば良い。
【0073】
CPUは、上記のように算出した第2セーフィング判定用加速度データG4(t)の今回値G4(n)をRAMに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に算出された第2セーフィング判定用加速度データG4(t)={G4(1)、…、G4(n−2)、G4(n−1)、G4(n)}が記憶されることになる。このようなステップS4の処理によって、上述した第4LPF22の機能が実現される。
【0074】
<ステップS5>
続いて、CPUは、RAMから乗員速度変化量ΔVの算出に必要な衝突判定用加速度データG1(t)を読み出し、一次区間積分用の下記演算式(3)に代入することで乗員速度変化量ΔVの今回値ΔV(n)を算出する。なお、下記(3)式において、Nは積分区間である。
ΔV(n)=G1(n)+G1(n−1)+…+G1(n−N+1) …(3)
【0075】
CPUは、上記のように算出した乗員速度変化量ΔVの今回値ΔV(n)をRAMに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に算出された乗員速度変化量ΔV={ΔV(1)、…、ΔV(n−2)、ΔV(n−1)、ΔV(n)}が記憶されることになる。このようなステップS5の処理によって、上述した速度変化量算出部15の機能が実現される。
【0076】
<ステップS6>
続いて、CPUは、RAMから乗員移動量ΔSの算出に必要な衝突判定用加速度データG1(t)を読み出して二次区間積分を行うことにより、乗員移動量ΔSの今回値ΔS(n)を算出する。ここで、衝突判定用加速度データG1(t)の二次区間積分は、乗員速度変化量ΔVの一次区間積分と同義であるため、CPUの処理負荷を軽減するために下記演算式(4)を用いて乗員移動量ΔSの今回値ΔS(n)を算出することが望ましい。なお、下記(4)式において、Nは積分区間である。
ΔS(n)=ΔV(n)+ΔV(n−1)+…+ΔV(n−N+1) …(3)
【0077】
CPUは、上記のように算出した乗員移動量ΔSの今回値ΔS(n)をRAMに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に算出された乗員移動量ΔS={ΔS(1)、…、ΔS(n−2)、ΔS(n−1)、ΔS(n)}が記憶されることになる。このようなステップS6の処理によって、上述した移動量算出部14の機能が実現される。
【0078】
<ステップS7>
続いて、CPUは、RAMから変形エネルギEの算出に必要な閾値切替判断用加速度データG2(t)を読み出し、一次区間積分用の下記演算式(5)に代入することで変形エネルギEの今回値E(n)を算出する。なお、下記(5)式において、Nは積分区間である。また、下記(5)式は、上記(2)式と等価である。
E(n)=|G2(n)|+|G2(n−1)|+…+|G2(n−N+1)|
…(5)
【0079】
CPUは、上記のように算出した変形エネルギEの今回値E(n)をRAMに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に算出された変形エネルギE={E(1)、…、E(n−2)、E(n−1)、E(n)}が記憶されることになる。このようなステップS7の処理によって、上述した変形エネルギ算出部18の機能が実現される。
【0080】
<ステップS8>
続いて、CPUは、RAMから第1セーフィング判定用演算値ΔVs1の算出に必要な第1セーフィング判定用加速度データG3(t)を読み出し、一次区間積分用の下記演算式(6)に代入することで第1セーフィング判定用演算値ΔVs1の今回値ΔVs1(n)を算出する。なお、下記(6)式において、Nは積分区間である。
ΔVs1(n)=G3(n)+G3(n−1)+…+G3(n−N+1) …(6)
【0081】
CPUは、上記のように算出した第1セーフィング判定用演算値ΔVs1の今回値ΔVs1(n)をRAMに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に算出された第1セーフィング判定用演算値ΔVs1={ΔVs1(1)、…、ΔVs1(n−2)、ΔVs1(n−1)、ΔVs1(n)}が記憶されることになる。このようなステップS8の処理によって、上述した第1セーフィング判定部21の機能(特に第1セーフィング判定用演算値ΔVs1の算出機能)が実現される。
【0082】
<ステップS9>
続いて、CPUは、RAMから第2セーフィング判定用演算値ΔVs2の算出に必要な第2セーフィング判定用加速度データG4(t)を読み出し、一次区間積分用の下記演算式(7)に代入することで第2セーフィング判定用演算値ΔVs2の今回値ΔVs2(n)を算出する。なお、下記(7)式において、Nは積分区間である。
ΔVs2(n)=G4(n)+G4(n−1)+…+G4(n−N+1) …(7)
【0083】
CPUは、上記のように算出した第2セーフィング判定用演算値ΔVs2の今回値ΔVs2(n)をRAMに時系列的に記憶させる。つまり、RAMには、過去から現在まで衝突判定処理が実行される度に算出された第2セーフィング判定用演算値ΔVs2={ΔVs2(1)、…、ΔVs2(n−2)、ΔVs2(n−1)、ΔVs2(n)}が記憶されることになる。このようなステップS9の処理によって、上述した第2セーフィング判定部23の機能(特に第2セーフィング判定用演算値ΔVs2の算出機能)が実現される。
【0084】
<ステップS10>
続いて、CPUは、RAMから乗員移動量ΔSの今回値ΔS(n)を読み出し、図2中に示したΔS−Ethテーブルを参照して、乗員移動量ΔSの今回値ΔS(n)に対応する変形エネルギ閾値Ethを設定する。このようなステップS10の処理によって、上述した閾値設定部19aの機能が実現される。
【0085】
<ステップS11>
続いて、CPUは、RAMから変形エネルギEの今回値E(n)を読み出し、この変形エネルギEの今回値E(n)がステップS10で設定された変形エネルギ閾値Ethを越えたか否かを判定する。CPUは、E(n)>Ethの場合(車体変形を伴う衝突が発生したと判断される場合)に衝突判定結果R2を「1」にセットする一方、E(n)≦Ethの場合に衝突判定結果R2を「0」にセットする。このようなステップS11の処理によって、上述した第1比較判定部19bの機能が実現される。
【0086】
<ステップS12>
続いて、CPUは、RAMから乗員速度変化量ΔVの今回値ΔV(n)を読み出し、この乗員速度変化量ΔVの今回値ΔV(n)が乗員速度変化量閾値ΔVthを越えたか否かを判定する。CPUは、ΔV(n)>ΔVthの場合(速度変化が大きな衝突が発生したと判断される場合)に衝突判定結果R3を「1」にセットする一方、ΔV(n)≦ΔVthの場合に衝突判定結果R3を「0」にセットする。このようなステップS12の処理によって、上述した第2比較判定部19cの機能が実現される。
【0087】
<ステップS13>
続いて、CPUは、衝突判定結果R2とR3の両方が「1」にセットされているか否かを判定し、「Yes」の場合(走行による振動ではなく車体変形を伴う衝突が発生したと判断される場合)に閾値切替指示R4を「1」にセットする一方、「No」の場合に(走行による振動が発生したと判断される場合)に閾値切替指示R4を「0」にセットする。このようなステップS13の処理によって、上述した最終切替決定部19dの機能が実現される。つまり、上記のステップS10〜S13の処理によって、閾値切替判断部19の機能が実現される。
【0088】
<ステップS14>
続いて、CPUは、閾値切替指示R4が「1」にセットされているか否かを判定し、「Yes」の場合には衝突判定閾値として比較的低い閾値TH_Loを設定する一方、「No」の場合には衝突判定閾値として比較的高い閾値TH_Hiを設定する。
【0089】
<ステップS15>
続いて、CPUは、RAMから読み出した乗員速度変化量ΔVの今回値ΔV(n)及び乗員移動量ΔSの今回値ΔS(n)が、上記ステップS14で設定された衝突判定閾値(TH_Hi或いはTH_Lo)を越えたか否かを判定し、「Yes」の場合(エアバッグ2の展開が必要な衝突が発生したと判断される場合)に衝突判定結果R1を「1」にセットする一方、「No」の場合に衝突判定結果R1を「0」にセットする。これらステップS14、S15の処理によって、上述したメイン衝突判定部16の機能が実現される。
【0090】
なお、衝突の状況によっては、例えば、今回の衝突判定処理中に、閾値切替指示R4が「1」にセットされても衝突判定結果R1が「1」にセットされない場合も想定され得る。この場合、次回の衝突判定処理において、変形エネルギの次回値E(n+1)が変形エネルギ閾値Ethを越えずに閾値切替指示R4が「0」にリセットされてしまうと、本来ならば比較的低い衝突判定閾値TH_Loで衝突判定を行わなければならないところを、比較的高い衝突判定閾値TH_Hiで衝突判定が行われてしまい、迅速なエアバッグ2の展開が困難となる可能性がある。そこで、閾値切替指示R4が一度「1」にセットされた場合、一定期間はその状態をホールドするような機能をCPU(閾値切替判断部19)に持たせることが望ましい。
【0091】
<ステップS16>
続いて、CPUは、RAMから第1セーフィング判定用演算値ΔVs1の今回値ΔVs1(n)を読み出し、この第1セーフィング判定用演算値ΔVs1の今回値ΔVs1(n)が第1セーフィング判定用閾値ΔVs1_THを越えたか否かを判定し、「Yes」の場合にセーフィング判定結果R5を「1」にセットする一方、「No」の場合にセーフィング判定結果R5を「0」にセットする。このようなステップS16の処理によって、上述した第1セーフィング判定部21の機能(特に比較判定機能)が実現される。
【0092】
<ステップS17>
続いて、CPUは、RAMから第2セーフィング判定用演算値ΔVs2の今回値ΔVs2(n)を読み出し、この第2セーフィング判定用演算値ΔVs2の今回値ΔVs2(n)が第2セーフィング判定用閾値ΔVs2_THを越えたか否かを判定し、「Yes」の場合にセーフィング判定結果R6を「1」にセットする一方、「No」の場合にセーフィング判定結果R6を「0」にセットする。このようなステップS17の処理によって、上述した第2セーフィング判定部23の機能(特に比較判定機能)が実現される。
【0093】
<ステップS18>
続いて、CPUは、RAMからセーフィング加速度データGs(t)の今回値Gs(n)を読み出し、このセーフィング加速度データGs(t)の今回値Gs(n)が異常値を示した場合に、SGS12が故障したと判定して故障判定結果R7を「1」にセットする一方、セーフィング加速度データGs(t)の今回値Gs(n)が正常値を示した場合に、SGS12は正常であると判定して故障判定結果R7を「0」にセットする。このようなステップS18の処理によって上述したセンサ故障検知部24の機能が実現される。
【0094】
<ステップS19>
続いて、CPUは、故障判定結果R7が「0」か否かを判定し、「Yes」の場合にセーフィング判定結果R5を最終的なセーフィング判定結果R8とする一方、「No」の場合にセーフィング判定結果R6を最終的なセーフィング判定結果R8に切替える。このようなステップS19の処理によって、上述したセーフィング判定結果切替部25の機能が実現される。
【0095】
<ステップS20>
最後に、CPUは、衝突判定結果R1とセーフィング判定結果R8の両方が「1」にセットされているか否かを判定し、「Yes」の場合(エアバッグ2の展開が必要と判断される場合)にエアバッグ起動指示R9を「1」にセットする一方、「No」の場合にエアバッグ起動指示R9を「0」にセットする。このようなステップS20の処理によって、上述した最終起動決定部26の機能が実現される。
【0096】
以上説明したステップS1〜S20からなる衝突判定処理が一定周期で繰り返されることにより、その一定周期毎に、閾値切替判断部19による衝突判定閾値の切替要否の判断と、メイン衝突判定部16による衝突判定と、第1セーフィング判定部21及び第2セーフィング判定部23によるセーフィング判定と、セーフィング判定結果切替部25によるセーフィング判定結果の切替要否判断と、最終起動決定部26によるエアバッグ2の展開要否の最終判断が実施され、最終的にエアバッグ2の展開が必要と判断された場合(エアバッグ起動指示R9が「1」にセットされた場合)にエアバッグ2が展開される。
【0097】
以上のように、本実施形態によれば、SGS12の非故障時には、MGS11及びSGS12から得られるX軸メイン加速度データGmx(t)及びセーフィング加速度データGs(t)に基づいて衝突判定を行う一方、SGS12の故障時には、MGS11から得られるX軸メイン加速度データGmx(t)及びY軸メイン加速度データGmy(t)に基づいて衝突判定を行うことで、センサ故障時の冗長性を確保できる。
つまり、本実施形態に係るSRSユニット1によれば、センサ故障時、非故障時を問わず従来と同等の乗員保護性能を確保しつつ、コストの削減を実現することが可能となる。
【0098】
なお、本発明は上記実施形態に限定されず、以下のような変形例が挙げられる。
(1)上記実施形態では、第1加速度センサとして、車両100の長さ方向(X軸)及び幅方向(Y軸)の両方に作用する加速度を検出可能な2軸加速度センサ(MGS11)を用いる場合を例示したが、第1加速度センサは、X軸方向に作用する加速度を検出する1軸加速度センサと、Y軸方向に作用する加速度を検出する1軸加速度センサとの2つの1軸加速度センサによって構成しても良い。
【0099】
(2)センサ故障検知部24によってSGS12が故障したと判定された場合に、メイン衝突判定部16に対する衝突判定閾値の切替指示を強制的に停止する機能を閾値切替判断部19に設けても良い。これにより、SGS12の故障時に、本来ならば比較的高い衝突判定閾値TH_Hiで衝突判定を行わなければならないところを、比較的低い衝突判定閾値TH_Loで衝突判定が行われてしまい、エアバッグ2が誤作動してしまうことを防止することができる。
【0100】
(3)上記実施形態では、乗員移動量ΔSに応じて動的に変形エネルギ閾値Ethを設定することにより、より高精度且つ迅速な衝突判定(衝突判定閾値の切替要否判断)を実現しているが、要求される乗員保護性能を満足できさえすれば、閾値設定部19aを削除して変形エネルギ閾値Ethを固定値として設定しても良い。
【0101】
(4)上記実施形態では、第2比較判定部19cを設けることにより、変形エネルギEが変形エネルギ閾値Ethを越えた原因の切り分け(車体変形を伴う衝突が原因なのか、或いは走行による振動が原因なのか)を実現しているが、要求される乗員保護性能を満足できさえすれば、第2比較判定部19cを削除しても良い。この場合、最終切替決定部19dも不要となり、第1比較判定部19bの衝突判定結果R2をそのまま閾値切替指示R4として利用できる。
【0102】
(5)上記実施形態では、少なくとも周波数が400Hz以下且つ振幅が100G以下の加速度成分(振動成分)を検出可能な測定レンジ及び応答周波数レンジを有するMGS11と、少なくとも周波数が1kHz以上且つ振幅が500G以下の加速度成分を検出可能な測定レンジ及び応答周波数レンジを有するSGS12を例示したが、車両100の構造や要求される乗員保護性能に応じて、最適な測定レンジ及び応答周波数レンジを有するMGS11及びSGS12を選定すれば良い。また、第1LPF13、第2LPF17及び第3LPF20のカットオフ周波数も適宜設定すれば良い。
【符号の説明】
【0103】
1…SRSユニット(車両衝突判定装置)、2…エアバッグ、100…車両、11…MGS(第1加速度センサ)、12…SGS(第2加速度センサ)、13…第1LPF、14…移動量算出部(第1演算手段)、15…速度変化量算出部(第1演算手段)、16…メイン衝突判定部(主衝突判定手段)、17…第2LPF、18…変形エネルギ算出部(第2演算手段)、19…閾値切替判断部(閾値切替判断手段)、20…第3LPF、21…セーフィング判定部(セーフィング判定手段)、22…最終起動決定部(最終起動決定手段)、19a…閾値設定部(閾値設定手段)、19b…第1比較判定部(第1比較判定手段)、19c…第2比較判定部(第2比較判定手段)、19d…最終切替決定部(最終切替決定手段)

【特許請求の範囲】
【請求項1】
車両の長さ方向及び幅方向に作用する加速度を検出する第1加速度センサと、
前記車両の長さ方向に作用する加速度を検出する第2加速度センサと、
前記第2加速度センサが故障したか否かを判定する故障検知手段と、
前記第2加速度センサの非故障時には、前記第1及び第2加速度センサから得られる前記車両の長さ方向に作用する加速度に基づいて衝突判定を行う一方、前記第2加速度センサの故障時には、前記第1加速度センサから得られる前記車両の長さ方向及び幅方向に作用する加速度に基づいて衝突判定を行う衝突判定手段と、
を備えることを特徴とする車両衝突判定装置。
【請求項2】
前記衝突判定手段は、
前記第1加速度センサから得られる前記車両の長さ方向に作用する加速度データを基に衝突判定用演算値を算出する第1演算手段と、
前記衝突判定用演算値と衝突判定閾値との比較により衝突判定を行う主衝突判定手段と、
前記第2加速度センサから得られる前記車両の長さ方向に作用する加速度データを基に第1セーフィング判定を行う第1セーフィング判定手段と、
前記第1加速度センサから得られる前記車両の幅方向に作用する加速度データを基に第2セーフィング判定を行う第2セーフィング判定手段と、
前記第2加速度センサの非故障時には前記第1セーフィング判定結果を、前記第2加速度センサの故障時には前記第2セーフィング判定結果を最終的なセーフィング判定結果として選択するセーフィング判定結果選択手段と、
前記セーフィング判定結果選択手段によって選択された最終的なセーフィング判定結果及び前記主衝突判定手段の衝突判定結果に基づいて最終的に乗員保護装置を起動するか否かを決定する最終起動決定手段と、
を備えることを特徴とする請求項1に記載の車両衝突判定装置。
【請求項3】
前記第2加速度センサは、車体変形を伴う衝突によって生じる高周波振動成分を検出可能な測定レンジ及び応答周波数レンジを有し、
前記衝突判定手段は、
前記第2加速度センサから得られる加速度データに含まれる前記高周波振動成分に基づいて衝突によって生じる変形エネルギを算出する第2演算手段と、
前記変形エネルギに基づいて車体変形を伴う衝突が発生したか否かを判定し、その判定結果に応じて前記衝突判定閾値の切替を前記主衝突判定手段に指示する閾値切替判断手段と、をさらに備える、
ことを特徴とする請求項2に記載の車両衝突判定装置。
【請求項4】
前記第1演算手段は、前記衝突判定用演算値として少なくとも乗員移動量を算出し、
前記閾値切替判断手段は、
前記乗員移動量に応じて変形エネルギ閾値を設定する閾値設定手段と、
前記変形エネルギと前記変形エネルギ閾値とを比較することで前記車体変形を伴う衝突が発生したか否かを判定する第1比較判定手段と、
を備えることを特徴とする請求項3に記載の車両衝突判定装置。
【請求項5】
前記第1演算手段は、前記衝突判定用演算値として前記乗員移動量に加えて乗員速度変化量を算出し、
前記閾値切替判断手段は、
前記乗員速度変化量と乗員速度変化量閾値とを比較することで速度変化が大きな衝突が発生したか否かを判定する第2比較判定手段と、
前記第1比較判定手段及び前記第2比較判定手段の判定結果に基づいて最終的に前記衝突判定閾値の切替を指示するか否かを決定する最終切替決定手段と、
を備えることを特徴とする請求項4に記載の車両衝突判定装置。
【請求項6】
前記閾値切替判断手段は、前記故障検知手段によって前記第2加速度センサが故障したと判定された場合に、前記主衝突判定手段に対する前記衝突判定閾値の切替指示を強制的に停止することを特徴とする請求項3〜5のいずれか一項に記載の車両衝突判定装置。
【請求項7】
前記第1加速度センサは、前記車両の長さ方向に作用する加速度を検出する1軸加速度センサと、前記車両の幅方向に作用する加速度を検出する1軸加速度センサとの2つの1軸加速度センサによって構成されることを特徴とする請求項1〜6のいずれか一項に記載の車両衝突判定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−176721(P2012−176721A)
【公開日】平成24年9月13日(2012.9.13)
【国際特許分類】
【出願番号】特願2011−41659(P2011−41659)
【出願日】平成23年2月28日(2011.2.28)
【出願人】(000141901)株式会社ケーヒン (1,140)
【Fターム(参考)】