説明

近接感応センサー

【課題】場合によって近接感応センサーの感度を調整し、精度を向上させ、有効に誤り操作を防ぐことを可能にする。
【解決手段】操作によって発生された第1操作信号を感知する第1感知区域と、前記操作によって発生された第2操作信号を感知する第2感知区域とを備えてなる近接感応センサーを提出する。その近接感応センサーは、閾値と、前記第1操作信号対前記第2操作信号の比率とを比較することにより、前記操作が正確かどうか判断する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は切替装置に関し、特に切替装置の近接感応センサーに関する。
【背景技術】
【0002】
光電技術の発展につれて、近接感応切替装置を使用することが求められてくる。一般的な近接感応切替装置は近接感応切替スイッチやタッチパネルなどを含み、主にシステム(系統)の状態を切り替えるのに使用されている。近接感応センサーの作動方式は、物体が近接感応センサーの感知範囲に近づくと、近接感応センサーが物体と接触する又は接触しない場合に、近接感応センサーは物体のある位置を感知して獲得した信号を電氣信号に変換する。すると、システム(系統)はその電氣信号に応じて適当に反応を起こして状態を切り替えることができる。
【0003】
例えばタッチパネルはセンサー・ユニット(単元)が一つ付いているディスプレイを含む。そのセンサー単元は、制御装置と設備のドライバープログラムと共に、それぞれの操作や作動を感知して、その位置を確認して、そして情報をコンピューターのオペレーティングシステムに発送する。従来、近接感応センサーは電場式、抵抗式、コンデンサー式、超音波式、及び光学式がある。
【0004】
電場式技術は近接場イメージング(NFI, Near Field Imaging)とも呼ばれる。この技術を使用するタッチパネルは透明な金属酸化物導電塗層を挟むガラスを二枚有する。その導電塗層に交流信号を送って、ディスプレイにはつい静電場が生まれる。指(手袋をはめてもはめなくてもいい)又は他の導体でセンサーに接触すると、静電場が干渉され、それに応じて影像処理の制御装置は干渉信号を感知してそして相応の座標パラメーターをオペレーティングシステムに発送する。近接場イメージングが適用されるタッチパネルは耐久力があるだけではなく、感度もいいし、そして厳しい環境の中でも使われることができる。
【0005】
抵抗式タッチパネルは柔らかい上層板と硬い下層板によって構成されているものである。二層の材料の間に多少の絶縁点が広がり、上層板の内側と下層板の内側のそれぞれも一層の透明な金属酸化物塗層を有する。抵抗の分圧作用のために、板には異なる所在の電圧の差異がある。上層板に接触すると、上層板と下層板の間に接触点を形成して、回路の中のスイッチのようになる。制御回路は接触点の形成した異なる電圧を位置座標情報に変換する。抵抗式タッチパネルは電氣供給も簡単でし産業化も容易であるし、そして適用範囲も広い。しかしながら、その表面は一般にプラスチックで構成され柔らかくなるので、耐摩耗性が低下する。
【0006】
コンデンサー式タッチパネルは表面に透明な金属酸化物が敷いてある曲面又は平面ガラスである。使用者がパネルの四角に電圧を加えると、手袋をはめていない指又は導体はパネルと接触する時四角から異なる電流を吸収して、つい平衡の電場をパネルに形成する。電流は接触の位置によって変わる。制御回路は異なる電流に基づいて接触の位置を決定する。コンデンサー式タッチパネルは主にゲーム・娯楽の設備や公共の情報サービス設備に適用されているから、画面に要求が少なく、接触の解像度に要求が多い。欠点は校正されることが必要になり、長時間の磨耗のため悪影響をもたらすことである。
【0007】
超音波式パネルは、パネルの縦・横の両方向のエッジに設置される圧電素子を通じて超音波を発射し、それぞれの対面に設置される超音波センサーと共に、パネルの表面に縦横に引かれる超音波格子を形成するものである。指又はその他の柔らかなタッチペンがパネルの表面に近づくと、縦方向と横方向の音波は障害、吸収される。超音波センサーは音波の変化によって指又はタッチペンがパネルに接触するかどうか確認できる。異なるセンサーは異なる座標位置を持っているので、制御装置は超音波の強度と位置変化の情報に基づいて接触点にたいして定位できる。超音波式パネルは接触の感知解像度に要求が高くて、耐久力もある。その上、パネルの表面の水平に対して要求が高くないので、球面、柱面のディスプレーにもうまく適用される。欠点は、指とタッチペンが音波を吸収してはいけないのでノイズに干渉されることもあり、給電系統の安定やパネルの表面の清潔に対して要求も高くなることである。たとえ水滴かほこりでも影像の効果に悪影響をもたらす。
【0008】
光学式パネル、即ち赤外線式パネルは光束を障害する原理に基づいて作動する。もとのパネル表面に素材を敷くことに代わって、パネルのエッジにフレームを設置して、そのフレームの二つの対辺には一つのエッジに発光ダイオードを設置してもう一つのエッジに赤外線センサーを設置して、ついパネルの表面に赤外線から構成される格子になる。物体がこの格子に入ると、赤外線が障害されることになったので、赤外線センサーは変化の信号を受けて制御装置を通じて接触の位置座標をオペレーティングシステムに発送する。光学式パネルは、光を完全に透過させることもできるし、ディスプレーの寿命に悪影響をもたらさないし、解像度もよい。しかし、欠点は、価格が高いし、発光ダイオードの寿命も短いし、環境の光線に干渉されることになりやすい。
【0009】
近接感応切替スイッチは、構成と作動が上記タッチパネルとほぼ同じで、スイッチ部分にセンサーが設置してあって操作を感知することができる。
【発明の開示】
【発明が解決しようとする課題】
【0010】
従来の近接感応センサーは主に電場式、抵抗式、コンデンサー式、超音波式、及び光学式を含み、一点又は一つの区域に対して感知するものである。しかしながら、実際の使用場合にいずれも次のような問題がある。(1)設計方式は異なる環境によって変わってはいけない、(2)感度は異なる環境によって変わることもある、(3)電性の異なる干渉は避けられない、及び(4)誤り操作は発生しやすい。よって、近接感応センサーは普及が難しい。
【課題を解決するための手段】
【0011】
本発明は、従来の近接感応センサーの誤り操作を防ぎ、直接に従来のプリント配線基板プロセス又は集積回路プロセスで完成される近接感応センサーを提供することで上記課題を解決する。
【0012】
本発明は、操作が正確かどうかを判断する近接感応センサーを提供する。近接感応センサーは、操作によって発生された第1操作信号を感知する第1感知区域と、前記操作によって発生された第2操作信号を感知する第2感知区域とを備えてなり、閾値と、前記第1操作信号対前記第2操作信号の比率とを比較することにより、前記操作が正確かどうか判断することを特徴とする。
【0013】
さらに、本発明は操作が正確かどうかを判断する別の態様の近接感応センサーを提供する。当該近接感応センサーは、操作によって発生された第1操作信号を感知する第1感知区域と、前記操作によって発生された複数の第2操作信号をそれぞれ感知する複数の第2感知区域とを備えてなり、閾値と、前記第1操作信号対前記複数の第2操作信号の何れの比率とを比較することにより、前記操作が正確かどうか判断することを特徴とする。
【0014】
前記閾値は調整可能になることを特徴とする。
【0015】
前記第1感知区域は前記複数の第2感知区域によって取り囲まれることを特徴とする。
【0016】
前記第1感知区域と前記複数の第2感知区域は円形、方形、楕円形、星形、心形、空心形よりなる群から選択される少なくとも一種であることを特徴とする
【0017】
前記第1感知区域と前記複数の第2感知区域は同じ又は異なる感知手段を用い、該感知手段は電場式、抵抗式、コンデンサー式、超音波式、及び光学式手段よりなる群から選択される少なくとも一種であることを特徴とする。
【発明の効果】
【0018】
本発明の近接感応センサーでは、場合によって感度を調整し、精度を向上させ、有効に誤り操作を防ぐことも可能になる。
【発明を実施するための最良の形態】
【0019】
図1は本発明に係る近接感応センサーを示す図である。図1において、近接感応センサー10は、駆動区域11と感知区域12と制限感知区域13を含んでいる。この実施例の近接感応センサーは電場式の近接感応センサーであるが、駆動区域11は電場を発生させるようにする。駆動区域11が電場を発生させると、感知区域12と制限感知区域13とも基礎の電圧を感知する。操作がなければ、感知区域12と制限感知区域13はそれぞれ同じの電圧を感知する。感知区域12は第1感知区域として、操作を感知して第1電圧の変化を発生させるようにする。制限感知区域13は第2感知区域として、該操作を感知して第2電圧の変化を発生させるようにする。
【実施例1】
【0020】
実施例1において、感知区域12は該操作を感知するように設置されるが、該操作は正確な操作である。一方、制限感知区域13も該操作を感知するように設置されるが、該操作は誤り操作である。感知区域12の機能と制限感知区域13は互いに交換されてもよい。例えば、感知区域12は、第2電圧の変化を発生させるようにしてもよい。即ち、感知区域12は該誤り操作を感知する。そして、制限感知区域13は、第1電圧の変化を発生させるようにしてもよい。即ち、制限感知区域13は該正確な操作を感知する。
【0021】
実施例1において、近接感応センサー10は下に示す方式で操作が正確かどうかを判断する。
【0022】
操作が精確に感知区域12に発生すると、感知区域12は該操作を感知して第1電圧の変化を発生させる。しかし、制限感知区域13は該操作も感知しなくて第2電圧の変化も発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えたら、該操作が感知区域12に発生することを意味する。即ち、該操作が誤り操作でないことを意味する。すると、近接感応センサー10は今の状態を切り替える。
【0023】
大面積の誤り操作が感知区域12と制限感知区域13に発生すると、感知区域12と制限感知区域13は同時に該大面積の誤り操作を感知して、第1電圧の変化と第2電圧の変化をそれぞれに発生させる。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー10は今の状態を切り替えない。
【0024】
操作が制限感知区域13に発生すると、制限感知区域13は該操作を感知して第2電圧の変化を発生させる。しかし、感知区域12は該操作も感知しなくて第1電圧の変化も発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー10は今の状態を切り替えない。
【0025】
例えば、ほこり、油滴、水滴などの、面積が感知区域12よりほぼ狭い物体が感知区域12に位置すると、該物体が小さいから感知区域12は該操作を感知しなくて第1電圧の変化を発生させない。制限感知区域13も該操作を感知しなくて第2電圧の変化を発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー10は今の状態を切り替えない。
【0026】
上記の閾値は製造される時の初期値7/3であるが、調整可能になる。場合によって、使用者は異なる閾値を設定することもできる。閾値が大きければ大きいほど近接感応センサーの感度が低くなる。一方、閾値が小さければ小さいほど近接感応センサーの感度が高くなる。
【0027】
上記のように説明された近接感応センサーが作動する時、感知区域12と制限感知区域13の間に、形式的な接続関係もなくて特定の相対位置関係もない。例えば、感知区域12が制限感知区域13の隣にあることもあり、感知区域12が制限感知区域13によって取り囲まれること、又は制限感知区域13が感知区域12によって取り囲まれることもある。つまり、感知区域12と制限感知区域13の間の相対位置関係は本発明に開示した実施例に限らない。
【0028】
その上、感知区域12と制限感知区域13とも特定の形状に限らない。例えば、感知区域12と制限感知区域13は円形、方形、楕円形、星形、心形、空心形又はいずれの従来の形状であってもよい。感知区域12と制限感知区域13の形状は本発明に開示した実施例に限らない。
【0029】
実施例1において、感知区域12と制限感知区域13はそれぞれ異なる感知手段を用いてもよい。例えば、感知区域12が電場式手段を用いて操作を感知して、制限感知区域13が超音波式手段を用いて操作を感知することもできる。即ち、感知区域12又は制限感知区域13の用いる感知手段は本発明に開示した実施例に限らない。
【実施例2】
【0030】
図2(a)は本発明に係る別の態様の近接感応センサーを示す図である。図2(a)において、近接感応センサー20は、複数の駆動区域21と複数の感知区域22と複数の制限感知区域23を含んでいる。この実施例の近接感応センサーは電場式の近接感応センサーであるが、複数の駆動区域21は電場を発生させるようにする。複数の駆動区域21が電場を発生させると、複数の感知区域22と複数の制限感知区域23とも基礎の電圧を感知する。操作がなければ、複数の感知区域22と複数の制限感知区域23はそれぞれ同じの電圧を感知する。複数の感知区域22は複数の第1感知区域として、操作を感知して複数の第1電圧の変化を発生させるようにする。複数の制限感知区域23は複数の第2感知区域として、該操作を感知して複数の第2電圧の変化を発生させるようにする。
【0031】
図2(b)は本発明の実施例2の近接感応センサーの変形例を示す図である。図2(b)において、近接感応センサー20は、複数の駆動区域21と複数の感知区域22と制限感知区域24を含んでいる。その中、制限感知区域24は図2(a)における複数の制限感知区域23からなる。複数の駆動区域21は電場を発生させるようにする。複数の駆動区域21が電場を発生させると、複数の感知区域22と制限感知区域24とも基礎の電圧を感知する。操作がなければ、複数の感知区域22と制限感知区域24はそれぞれ同じの電圧を感知する。複数の感知区域22は複数の第1感知区域として、操作を感知して複数の第1電圧の変化を発生させるようにする。制限感知区域24は第2感知区域として、該操作を感知して第2電圧の変化を発生させるようにする。
【0032】
実施例2において、複数の感知区域22は該操作を感知するように設置されるが、該操作は正確な操作である。一方、複数の制限感知区域23、24も該操作を感知するように設置されるが、該操作は誤り操作である。複数の感知区域22の機能と複数の制限感知区域23、24は互いに交換されてもよい。例えば、複数の感知区域22は、第2電圧の変化を発生させるようにしてもよい。即ち、複数の感知区域22は該誤り操作を感知する。そして、複数の制限感知区域23、24は、第1電圧の変化を発生させるようにしてもよい。即ち、複数の制限感知区域23、24は該正確な操作を感知する。
【0033】
実施例2において、近接感応センサー20は下に示す方式で操作が正確かどうかを判断する。
【0034】
操作が精確に感知区域21に発生すると、感知区域21は該操作を感知して第1電圧の変化を発生させる。しかし、制限感知区域23、24は該操作も感知しなくて第2電圧の変化も発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えたら、該操作が感知区域21に発生することを意味する。即ち、該操作が誤り操作でないことを意味する。すると、近接感応センサー20は今の状態を切り替える。
【0035】
大面積の誤り操作が感知区域21と制限感知区域23、24に発生すると、感知区域21と制限感知区域23、24は同時に該大面積の誤り操作を感知して、第1電圧の変化と第2電圧の変化をそれぞれに発生させる。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー20は今の状態を切り替えない。
【0036】
操作が制限感知区域23、24に発生すると、制限感知区域23、24は該操作を感知して第2電圧の変化を発生させる。しかし、感知区域21は該操作も感知しなくて第1電圧の変化も発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー20は今の状態を切り替えない。
【0037】
例えば、ほこり、油滴、水滴などの、面積が感知区域21よりほぼ狭い物体が感知区域21に位置すると、該物体が小さいから感知区域21は該操作を感知しなくて第1電圧の変化を発生させない。制限感知区域23、24も該操作を感知しなくて第2電圧の変化を発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー20は今の状態を切り替えない。
【0038】
上記の閾値は製造される時の初期値7/3であるが、調整可能でなる。場合によって、使用者は異なる閾値を設定することもできる。閾値が大きければ大きいほど近接感応センサーの感度が低くなる。一方、閾値が小さければ小さいほど近接感応センサーの感度が高くなる。
【0039】
上記のように説明された近接感応センサーが作動する時、複数の感知区域22と制限感知区域23、24の間に、形式的な接続関係もなくて特定の相対位置関係もない。例えば、複数の感知区域22が制限感知区域23、24の隣にあることもあり、複数の感知区域22と制限感知区域23、24は互いに直線又は横線に配列することもある。しかも、複数の感知区域22が制限感知区域23、24によって取り囲まれること、又は制限感知区域23、24が複数の感知区域22によって取り囲まれることもある。つまり、複数の感知区域22と制限感知区域23、24の間の相対位置関係は本発明に開示した実施例に限らない。
【0040】
その上、複数の感知区域22と複数の制限感知区域23、24とも特定の形状に限らない。例えば、複数の感知区域22と複数の制限感知区域23、24は円形、方形、楕円形、星形、心形、空心形又はいずれの従来の形状であってもよい。つまり、複数の感知区域22と複数の制限感知区域23、24の形状は本発明に開示した実施例に限らない。
【0041】
実施例2において、複数の感知区域22と複数の制限感知区域23、24はそれぞれ異なる感知手段を用いてもよい。例えば、複数の感知区域22が電場式手段を用いて操作を感知して、複数の制限感知区域23、24が超音波式手段を用いて操作を感知することもできる。即ち、複数の感知区域22又は複数の制限感知区域23、24の用いる感知手段は本発明に開示した実施例に限らない。
【実施例3】
【0042】
図3は本発明の実施例3の近接感応センサーを示す図である。図3において、近接感応センサー30は、複数の駆動区域31と感知区域32と複数の制限感知区域33を含んでいる。この実施例の近接感応センサーは電場式の近接感応センサーであるが、複数の駆動区域31は電場を発生させるようにする。複数の駆動区域31が電場を発生させると、感知区域32と複数の制限感知区域33とも基礎の電圧を感知する。操作がなければ、感知区域32と複数の制限感知区域33はそれぞれ同じの電圧を感知する。感知区域32は第1感知区域としてもよい。複数の制限感知区域33は複数の第2感知区域として、該操作を感知して複数の第2電圧の変化を発生させるようにする。
【0043】
実施例3において、感知区域32は該操作を感知するように設置されるが、該操作は正確な操作である。一方、複数の制限感知区域33も該操作を感知するように設置されるが、該操作は誤り操作である。感知区域32の機能と複数の制限感知区域33のは互いに交換されてもよい。例えば、感知区域32は、第2電圧の変化を発生させるようにしてもよい。即ち、感知区域32は該誤り操作を感知する。そして、複数の制限感知区域33は、第1電圧の変化を発生させるようにしてもよい。即ち、複数の制限感知区域33は該正確な操作を感知する。
【0044】
実施例3において、近接感応センサー30は下に示す方式で操作が正確かどうかを判断する。
【0045】
操作が精確に感知区域31に発生すると、感知区域31は該操作を感知して第1電圧の変化を発生させる。しかし、制限感知区域34は該操作も感知しなくて第2電圧の変化も発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えたら、該操作が感知区域31に発生することを意味する。即ち、該操作が誤り操作でないことを意味する。すると、近接感応センサー30は今の状態を切り替える。
【0046】
大面積の誤り操作が感知区域31と制限感知区域34に発生すると、感知区域31と制限感知区域34は同時に該大面積の誤り操作を感知して、第1電圧の変化と第2電圧の変化をそれぞれに発生させる。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー30は今の状態を切り替えない。
【0047】
操作が制限感知区域34に発生すると、制限感知区域34は該操作を感知して第2電圧の変化を発生させる。しかし、感知区域31は該操作も感知しなくて第1電圧の変化も発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー30は今の状態を切り替えない。
【0048】
例えば、ほこり、油滴、水滴などの、面積が感知区域31よりほぼ狭い物体が感知区域31に位置すると、該物体が小さいから感知区域31は該操作を感知しなくて第1電圧の変化を発生させない。制限感知区域34も該操作を感知しなくて第2電圧の変化を発生させない。第1電圧の変化対第2電圧の変化の比率が閾値を超えなかったら、該操作が誤り操作であることを意味する。すると、近接感応センサー30は今の状態を切り替えない。
【0049】
上記の閾値は製造される時の初期値7/3であるが、調整可能になる。場合によって、使用者は異なる閾値を設定することもできる。閾値が大きければ大きいほど近接感応センサーの感度が低くなる。一方、閾値が小さければ小さいほど近接感応センサーの感度が高くなる。
【0050】
上記のように説明された近接感応センサーが作動する時、感知区域32と複数の制限感知区域33の間に、形式的な接続関係もなくて特定の相対位置関係もない。例えば、感知区域32が複数の制限感知区域33の隣にあることもある。しかも、感知区域32が複数の制限感知区域33によって取り囲まれること、又は複数の制限感知区域33が感知区域32によって取り囲まれることもある。つまり、感知区域32と複数の制限感知区域33の間の相対位置関係は本発明に開示した実施例に限らない。
【0051】
その上、感知区域32と複数の制限感知区域33とも特定の形状に限らない。例えば、感知区域32と複数の制限感知区域33は円形、方形、楕円形、星形、心形、空心形又はいずれの従来の形状であってもよい。つまり、感知区域32と複数の制限感知区域33の形状は本発明に開示した実施例に限らない。
【0052】
実施例3において、感知区域32と複数の制限感知区域33はそれぞれ異なる感知手段を用いてもよい。例えば、感知区域32が電場式手段を用いて操作を感知して、複数の制限感知区域33が超音波式手段を用いて操作を感知することもできる。即ち、感知区域32又は複数の制限感知区域33の用いる感知手段は本発明に開示した実施例に限らない。
【0053】
上記三つの実施例において、第1電圧の変化対第2電圧の変化の比率が閾値を超えるかどうかによって、該操作が正確かどうかを判断する。したがって、閾値を調整することにより近接感応センサーの感度を調整することができる。一般的に、上記の閾値は製造される時の初期値7/3であるが、調整可能になる。場合によって、使用者は異なる閾値を設定することもできる。閾値が大きければ大きいほど近接感応センサーの感度が低くなる。一方、閾値が小さければ小さいほど近接感応センサーの感度が高くなる。
【0054】
そのほか、第1電圧の変化対第2電圧の変化の比率に代わり、第1電圧の変化と第2電圧の変化の間の差を閾値としてもよい。つまり、閾値についての選択は本発明に開示した実施例に限らない。
【0055】
以上のことから、次の有利な点を提供することが可能となる。
(1)本発明は各種従来の近接感応切替装置に適用することができる。
(2)単一の近接感応センサーは一つ又は複数の感知区域を有する。あるいは、複数の近接感応センサーは単一の感知区域を共用することもできる。
(3)単一の近接感応センサーは一つ又は複数の制限感知区域を有する。あるいは、複数の近接感応センサーは単一の制限感知区域を共用することもできる。
(4)感知区域と制限感知区域は従来の特定の形状に限らない。
(5)感知区域と制限感知区域は同じ感知手段を用い、しかも異なる感知手段を用いてもよい。
(6)複数の近接感応センサーは同時に存在することができる。
(7)制限感知区域が感知区域と異なる感知手段を用いたら、その近接感応センサーは特定の材料を排除する感知場合に適用することができる。
(8)実用性があり、直接に従来のプリント配線基板プロセス又は集積回路プロセスで完成され、コストが低くなる近接感応センサーを提供することができる。
【図面の簡単な説明】
【0056】
【図1】本発明に係る近接感応センサーを示す図である。
【図2(a)】本発明に係る別の近接感応センサーを示す図である。
【図2(b)】本発明の実施例2の近接感応センサーの変形例を示す図である。
【図3】本発明の実施例3の近接感応センサーを示す図である。
【符号の説明】
【0057】
10 近接感応センサー
11 駆動区域
12 感知区域
13 制限感知区域
20 近接感応センサー
21 複数の駆動区域
21a 単一の駆動区域
22 複数の感知区域
22a 単一の感知区域
23 複数の制限感知区域
23a 単一の制限感知区域
24 制限感知区域
30 近接感応センサー
31 複数の駆動区域
32 感知区域
33 複数の制限感知区域

【特許請求の範囲】
【請求項1】
操作が正確かどうかを判断するための近接感応センサーであって、
前記操作によって発生された第1操作信号を感知する第1感知区域と、
前記操作によって発生された第2操作信号を感知する第2感知区域とを備えてなり、
閾値と、前記第1操作信号対前記第2操作信号の比率とを比較することにより、前記操作が正確かどうかを判断することを特徴とする近接感応センサー。
【請求項2】
操作が正確かどうかを判断する近接感応センサーであって、
前記操作によって発生された第1操作信号を感知する第1感知区域と、
前記操作によって発生された複数の第2操作信号をそれぞれ感知する複数の第2感知区域とを備えてなり、
閾値と、前記第1操作信号対前記複数の第2操作信号の何れの比率とを比較することにより、前記操作が正確かどうかを判断することを特徴とする近接感応センサー。
【請求項3】
前記第1感知区域は前記複数の第2感知区域によって取り囲まれることを特徴とする請求項2記載の近接感応センサー。
【請求項4】
前記第1感知区域と前記複数の第2感知区域は同じ又は異なる感知手段を用い、該感知手段は電場式、抵抗式、コンデンサー式、超音波式、及び光学式手段よりなる群から選択される一種であることを特徴とする請求項2記載の近接感応センサー。

【図1】
image rotate

【図2(a)】
image rotate

【図2(b)】
image rotate

【図3】
image rotate


【公開番号】特開2007−116684(P2007−116684A)
【公開日】平成19年5月10日(2007.5.10)
【国際特許分類】
【出願番号】特願2006−272784(P2006−272784)
【出願日】平成18年10月4日(2006.10.4)
【出願人】(504394515)盛群半導體股▲ふん▼有限公司 (1)
【Fターム(参考)】