説明

金型成形用のハロゲン系難燃剤含有樹脂を選択する方法

【課題】 難燃剤などの由来の無機成分に含まれる微量な成分であっても、その組成分析を迅速かつ高精度に定量分析することによって、金型成形用のハロゲン系難燃剤含有樹脂を選択する方法を提供することを目的とする。
【解決手段】 ハロゲン系難燃剤を含有する樹脂を凍結粉砕して微粒化する工程と、前記微粒化された樹脂に対して、加圧成形して無機成分の定性分析、および純水と混合して得られる抽出液のイオン成分の濃度の測定を行う工程とを含んでなり、前記無機成分の定性分析および前記イオン成分の濃度の測定結果に基づき、前記無機成分および/または前記イオン成分の濃度が低い樹脂を選択する、金型成形用のハロゲン系難燃剤含有樹脂を選択する方法を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金型、例えば低圧遮断器用金型で成形するためのハロゲン系難燃剤含有樹脂を選択する方法に関する。
【背景技術】
【0002】
難燃剤に使うことができる物質は多数あるが、多くの場合、臭素が最も効果がある。燃焼過程で臭素はほとんどの代替物質より効果があり、材料に添加する難燃剤の必要量は少なくて難燃効果を与える。これにより材料本来の特色である色、強さ並びに耐久性はそのまま維持できる。
【0003】
これに対して、環境問題になる焼却処理においても、高温(850℃以上)で行えばダイオキシン/フラン類の発生はないということが科学的にも明らかになっているが、この加熱温度以下によっては極めて有害なダイオキシン類を発生する(非特許文献1)。有機臭素系難燃剤には、通常三酸化アンチモンが併用されるが、これが反応して臭化アンチモンを発生し酸素遮断を助けるがこれも有害である。
【0004】
そこで、有機臭素化合物の一部が分解する臭素(Br)とハロゲン系成分や他に添加材成分の種類と量を求める無機成分の量を知ることが重要になっている。
【0005】
特許文献1は、臭素系難燃剤を溶剤で溶かし、定性・定量する方法を示す。非特許文献2は、臭素系難燃剤を有機溶剤に抽出する前処理をして、その後にMS法(ガスクロマトグラフィ質量分析装置)で分析する方法を示す。
【0006】
90年代以降の環境問題で、欧州では臭素系難燃剤を排除する動きが広がった。例として、ドイツや北欧の環境ラベル、2003年1月制定の欧州連合(EU)のRoHS指令(電気・電子機器における特定有害物質の使用制限指令)が挙げられる。同指令では臭素系難燃剤のうちPBB(ポリ臭化ビフェニル)、PBDE(ポリ臭化ジフェニルエーテル)を電機・電子製品に使用しないことが定められた。ここで、臭素系難燃剤の特定有害物質の測定法はGC−MS法によっている。
【0007】
一般に無機成分は、例えば非特許文献3に記載されている蛍光X線によって一斉分析することが可能である。また別の分析法として、非特許文献4には、臭素イオン(Br)などのイオンを抽出した試料溶液の定量分析方法であるイオンクロマトグラフ法についても記載されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2006−322817号公報
【非特許文献】
【0009】
【非特許文献1】日本難燃剤協会 ハロゲン部会関連資料
【非特許文献2】製品含有化学物質重法管理認証制度に関する調査報告書、平成16年3月、株式会社富士総合研究所
【非特許文献3】「分析化学便覧」改訂五版、第18〜20頁、社団法人日本分析化学会編丸善株式会社、平成13年12月15日、
【非特許文献4】JIS K 0101(工業用水試験方法)
【発明の概要】
【発明が解決しようとする課題】
【0010】
ハロゲン系難燃剤含有樹脂の製造、例えば低圧遮断器(配線用遮断器・漏電遮断器)の製造において、例えば、樹脂材料の射出成形工程で発生するアウトガスによる金型の金属腐食の問題がある。これは、ハロゲン系難燃剤由来によると考えられる。一般に、難燃剤の水への溶解性は小さく、射出成形工程で発生するアウトガスになり、溶解するイオン量が金属の腐食への関係につながると考えられる。金型が腐食すると、悪臭を放出して作業環境を悪化させる。
【0011】
腐食の原因となる難燃剤等の種類や配合量は、製造業者の企業秘密である場合もあり、開示されていない場合がある。また、樹脂製品中の難燃剤等の種類や配合量が開示されていたとしても、射出成形工程等で溶出する難燃剤由来の金型腐食成分の量とは必ずしも相関しない場合がある。さらに、射出成形工程等で発生するアウトガスによる金型腐食成分は、樹脂の組成、例えば難燃剤と重合体の組み合わせなどによって異なる。従って、樹脂製品を金型成形に採用する前に、射出成形工程等で溶出する金型腐食成分の量を分析する必要がある。
【0012】
また、同じ樹脂製品でもロットの影響が大きく、射出成形工程等で溶出する金型腐食成分の量はロットによって異なる場合がある。よって、同じ樹脂製品を使用し続ける場合でも、継続的に難燃剤の溶出量を調べ続ける必要がある。
【0013】
このように、金型成形に用いる樹脂の性能調査や材料管理のための無機元素の種類やイオン量の組成分析が重要である。特に、樹脂材料の射出成形工程で発生するアウトガスによる金型腐食成分の分析方法の確立が必要であり、主成分のほか微量の添加物成分まで高精度での無機元素やイオン量になる成分の定量分析する方法が求められる。
【0014】
しかしながら特許文献1は、臭素系難燃剤を有機溶剤で溶かし、定性・定量する方法を示すのみであり、樹脂中の金型への金属腐食に関係する水溶性であるイオン量を分析検査する方法などの文献は見当たらなかった。特に、金型腐食に関するイオン量の分析に注目して、樹脂中の難燃剤由来の分析方法を確立し材料管理する方法が必要である。
【0015】
非特許文献2は、臭素系難燃剤として有機溶媒に抽出の前処理をして、その後にGC−MS法(ガスクロマトグラフィー質量分析装置)による、臭素を含む有機臭素系難燃剤の管理方法を示すが、難燃剤のその性能調査や材料管理のための無機元素の種類やイオン量の組成分析をする先のイオン量分析とは異にしている。
【0016】
非特許文献3に記載の蛍光X線分析方法は、低圧遮断器用の樹脂に使用される試料に、難燃剤や添加材成分由来の無機成分からなる無機成分の各成分を含む固体試料の前処理と分析法の適用まで網羅されたものではない。また非特許文献4に記載されている一般にイオン成分は、イオンクロマトグラフ法についても、溶液試料が対象でその方法が紹介されているだけであって、分析対象の樹脂の難燃剤や添加材成分由来の無機成分に対する前処理とイオン分析法の適用まで言及されたものではない。難燃剤のハロゲン元素の臭素や塩素についての非特許文献4に規定された「Brの分析法」の例も同様である。
【0017】
ところで、樹脂中の難燃剤や添加材成分由来の無機元素分析には、ハロゲンおよび金属元素と充填剤成分が含まれる。したがって、樹脂の分析方法ごとの試料調製法(前処理)が必要である。有機臭素化合物の他に難燃剤などの種類と量を求める無機成分は全体無機成分の含有量を明らかにし、特に金型の金属腐食に関係する水溶性であるイオン量を知ることが重要である。
【0018】
本発明は、上述した課題を解決するためになされたものであり、その目的は、難燃剤などの由来の無機成分に含まれる微量な成分であっても、その組成分析を迅速かつ高精度に定量分析することによって、金型成形用のハロゲン系難燃剤含有樹脂を選択する方法を提供することを課題とする。
【課題を解決するための手段】
【0019】
上述した目的を達成するため発明者は、樹脂試料の成分分析に先立ち、金型の金属腐食に関係する水溶性であるイオン量を知ることが重要であると考え、樹脂中の無機元素分析で全体を把握し、次いで腐食に関係する水溶性イオン量を分析することを見出した。そのため前処理法や装置の条件を明確にすることで、簡便でありながら高精度で、ハロゲン系成分や他に添加材成分の種類と量を求める無機成分とイオン成分の分析方法を確立できると考え上記課題を解決しようとするものである。
【0020】
すなわち本発明は、金型成形用のハロゲン系難燃剤含有樹脂を選択する方法であって、ハロゲン系難燃剤を含有する樹脂を凍結粉砕して微粒化する工程と、前記微粒化された樹脂に対して、加圧成形して無機成分の定性分析、および純水と混合して得られる抽出液のイオン成分の濃度の測定を行う工程とを含んでなり、前記無機成分の定性分析および前記イオン成分の濃度の測定結果に基づき、前記無機成分および/または前記イオン成分の濃度が低い樹脂を選択する。
【発明の効果】
【0021】
本発明で行われる樹脂中の添加材成分の分析方法によれば、無機成分の測定結果を基に、予め樹脂中の難燃剤由来のハロゲン元素などBr、Cl、F、Sbの定性分析と定量分析ができ、存在の確認と材料管理ができる。例えば、後述するハロゲンイオンと得られた検出14イオン種から金型の金属腐食に関係するイオン量の程度を分析検査することができる。
本発明は、樹脂試料の金型の金属腐食に関係する水溶性であるイオン量を知ることが重要であり、樹脂中の無機元素分析で全体を把握し、次いで腐食に関係する水溶性イオン量を分析することにより、金型成形用のハロゲン系難燃剤含有樹脂を選択する方法を提供することができる。
【図面の簡単な説明】
【0022】
【図1】図1は、本発明に係る金型成形用のハロゲン系難燃剤含有樹脂を選択する方法の処理手順の概略を示すフロー図である。
【図2】図2は、樹脂の無機成分を蛍光X線分析法で測定する方法の手順を説明する図である。
【図3】図3は、一般的な蛍光X線分析装置の構成を説明する概略図である。
【図4】図4は、樹脂抽出液のイオン成分濃度を測定する方法の手順を説明する図である。
【図5】図5は、一般的なイオンクロマトグラフの流路を説明する概略図である。
【図6】図6は、超音波を用いて抽出した場合の臭素イオン回収率と抽出時間との関係を示すグラフである。
【図7】図7は、陰イオン標準液のクロマトグラムの一例を示すグラフである。
【図8】図8は、イオンクロマトグラフ法における臭素イオンのピーク面積と濃度との関係を示す検量線のグラフの一例である。
【発明を実施するための形態】
【0023】
以下に、本発明に係る金型成形用のハロゲン系難燃剤含有樹脂を選択する方法について、さらに詳細に説明する。本発明は、以下の実施形態に限定されるものではない。
【0024】
射出成形される材料は、一般に粒状プラスチック(熱可塑性、熱硬化性)(結晶性、非晶性)(生分解性プラスチック)などであるが、樹脂は単体で使われるだけでなく、ガラス繊維、カーボン繊維などを混合して補強されることも多い。この場合の樹脂は、ポリブチルフタレート(PBT:ガラス繊維入り)、ポリエーテルイミド(PEI:ガラス繊維入り)、6Tナイロン(ガラス繊維入り)などであり、試料の状態はペレットや成形品が含まれる。また着色剤を混合して広範囲に着色でき、多材質成形や金属部品などをインサートして複合部品も作られる。射出成形工程では、射出成形機という機械で、材料を(溶かして)、流して(金型内で)、形にして固めて成形品を作る。
【0025】
金型は、樹脂を溶かした湯の流れを促進し、また冷却・固化するように、相対的に低温に保持されている。温度は温度管理されたバンドヒータなどで温度制御する。金型とは、作りたい形状の反転形状の型を作る。成形品を型から押し出す機構や、金型内に製品材料を流し込む際に大きな圧力を必要とするため、その圧力に耐えうる本体を必要とする。また金型の各部品は、高強度を必要とすることから、主に金属材料でできている。金型の種類は製品の素材によって、(1)プレス金型、(2)プラスチック金型、(3)ダイカスト金型、(4)ゴム金型、(5)セラミック金型、(6)ガラス金型、(7)鋳造金型、(8)鍛造金型に分類される。このうち、ハロゲン系難燃剤による腐食が問題となるのは、プレス金型、ダイカスト金型、鋳造・鍛造金型である。金型は、好ましくは、低圧遮断器用金型である。
【0026】
ブレーカの製造および製造後において上記樹脂は一般に、着火すると熱分解して可燃性のガス(炭化水素、COなど)を発生する。この分解生成物が酸素とラジカル反応を起こして燃焼するので、その時の発熱で、さらに熱分解が進むというサイクルが起こる。
RH → R・ + H・
R・ + O → ROO・
ROO・ +RH・ →ROOH + R・
ROOH → RO・ + OH・
そこで、従来からハロゲン系難燃剤用途は、臭素や塩素などで優れた難燃効果と低コストの面から、難燃剤として主に使用されてきた。代表的なものは有機臭素化合物である。
【0027】
本発明は、樹脂中に添加された成分を分析する樹脂の前処理方法を含む。この前処理方法は、はじめに、樹脂の無機成分を分析する前処理方法を加圧成形して固体化した試料を得ることを特徴としている。前記試料は、試料の状態はペレットや成形品でも、凍結粉砕で微粒化し約100μm以下にできる。均一化して粉末を油圧法により調製されることが望ましい。次に、樹脂中の抽出法の前処理方法において、樹脂を凍結粉砕して微粒化後に、超音波を印加して得られた水溶液の抽出効率を上げるために行うようにするものである。
【0028】
図1は、本発明に係る金型成形用のハロゲン系難燃剤含有樹脂を選択する方法の手順の一例を説明する図である。図1は、スタート1の樹脂試料中の添加材成分の分析において、粉砕方法2と前処理方法を適用し、この図において分析対象ごとの試料調製法、すなわち抽出7およびろ過回収8、または混合4および加圧成形5と、蛍光X線分析法6、またはイオンクロマトグラフ法9の分析法、データ解析10を示している。この試料には、樹脂中の添加材成分の無機成分と抽出されるイオン成分が含まれている。このような試料に対し、後述の前処理方法を適用した後、好ましくは、蛍光X線分析法6とイオンクロマトグラフ法9によって樹脂中の添加材成分の成分量を分析する。符号11は、エンドを示す。
【0029】
はじめに図1は、試料調製法のうち凍結粉砕2の後に粉末を天秤で秤量3を行う。その後、分析対象ごとの試料調製法と分析法、データ処理部で行われる。詳細は後述するが、最初に凍結粉砕2について述べる。
凍結粉砕式法は、粉砕容器にインパクター(鉄心)とサンプルを容器に一緒に入れ、液体窒素に浸す。サンプルが凍結後に電磁石を使用することによりインパクターを往復運動させ、エンドプラグ(鉄蓋)に衝突する際にサンプルを粉砕する。このとき粒径は約100μm以下になることが好ましい。粉砕後の粉末の好ましい平均粒径は、ふるいわけ法で測定して、20〜200μmである。ふるい分けには、JISZ8801に準じた試験用ふるいを用いる。このスタート1の試料の状態はペレットや成形品があり、後の加圧成形化やイオン分析抽出の効率化のため行う微細化が必要である。次いで、これを用いて秤量3の工程に入る。秤量3の工程では、凍結粉砕後の粉末を、分析に必要な量、例えば0.1mgまで天秤で秤量する。
【0030】
[樹脂の粉末加圧成形法と無機成分測定法]
図2では、樹脂試料の無機成分を蛍光X線分析法で測定する方法の手順の一例を説明する。樹脂試料の成分分析に先立って行う無機成分の前処理方法は、試料を直接加圧して成形する樹脂試料の粉末直接加圧成形法(以下、単に加圧成形と称する)を適用して、試料の固体化を行う。樹脂試料の粉末加圧成形法と無機成分測定法について以下に説明する。
【0031】
加圧成形の前処理法は、まずスタート時の分析対象の樹脂から(ステップS101)、分析対象の樹脂の粉末試料を用意し(ステップS102)、これを分析に適した量を秤る(ステップS103)。次いで、これを後述するバインダーと混合し(ステップS104)、加圧成形する(ステップS105A、S105B)。そして成形された成形体は、後述する蛍光X線法の分析装置によってその成分が分析される(ステップS106)。その後、データ解析を行う(ステップS110)。
【0032】
詳しくはステップS105における加圧成形には、アルミリング加圧成形法が適用される。このアルミリング加圧成形法は、例えば、外径Φ45、内径43Φ、高さ5mmのドーナツ状にくり抜かれたアルミリングの内径側に粉末状の試料を満たす。その内径側に試料を満たした状態で、その両面から2枚の有機薄膜(マイラ膜、ステップS105)によって挟持される。そしてこれらの有機薄膜を挟みこむようにして油圧器の台座から圧力が加えられる。このため樹脂試料は有機薄膜で狭持されているので、その分析面に不純物が付着することがない。
【0033】
本発明の加圧成形は、このようにして試料を固体化する。そして固体化された樹脂試料は、例えばその略中心からΦ25を分析面として蛍光X線分析装置によって定まる。
【0034】
図3は、蛍光X線分析装置(光学部)の一例を示している。試料位置17に樹脂の粉末加圧成形体試料が配置される。ここで、X線管球12から発生する一次X線13を分析試料に照射する。蛍光X線14は、分析試料より発生する試料の構成元素固有のものであり、その波長の違いから定性分析ができ、その強度の標準試料と比較した相対強度によって定量分析ができる。蛍光X線14は分光結晶15で分光され、各元素の特性X線が検出器16で検出される。その後は制御部18で電気信号に変換されて計測器やデータ処理装置で分析試料の定性分析スペクトルの解析と定量分析値が得られる。無機成分(対象元素9F〜92U)の定性分析および検出元素の定量分析はX線強度と濃度の関係から求める。先に述べたそのデータ処理は、FP法(Fundamental Parameter法)で行うことができる。
【0035】
本発明において行う樹脂中の添加材成分の分析方法は、蛍光X線分析法を用いて、前記固形化試料の無機成分を測定するその一斉分析測定結果をもとに、原子番号9から92までのF〜Uの定性分析と定量分析ができる。定量分析(質量%)は、得られた検出元素のX線強度と無機成分の濃度との関係からデータ処理装置によるFP法で行うことができる。無機成分の分析結果は、定量下限を0.01質量%とし、所定の濃度で有無を管理し、一方、次の抽出イオン分析時に事前の成分の調査資料として効果的である。
【0036】
[樹脂粉末試料のイオン抽出方法とイオン濃度測定方法]
図4は、樹脂抽出液のイオン成分濃度を測定する方法の手順を説明する図である。図4において、樹脂試料のイオン成分分析に先立って行う抽出されるイオン成分が含まれている試料の前処理方法について説明する。
【0037】
イオン分析の前処理法では、まずスタート時の樹脂(ステップS201)から、分析対象の樹脂の粉末試料を用意し(ステップS202)、これを分析に適した量を秤る(ステップS203)。次いでこれを後述する純水抽出し(ステップS207)、ろ過する(ステップS208A)。そして抽出回収されたものは(ステップS208B)、後述するイオンクロマトグラフ分析装置によってそのイオン成分が分析される(ステップS209)。その後、データ解析を行う(ステップS210)。
【0038】
粉末試料を純水抽出する工程(ステップS207)では、超音波を印加して抽出を行うことが好ましい。樹脂中のイオン成分の純水中への抽出効率を上げるためである。
【0039】
詳しくは、イオンクロマトグラフィーを用いて前記純水中に抽出した液でイオン成分濃度を測定する。本測定器は装置条件により、ハロゲンイオンを含む陰イオン、陽イオン、有機酸イオンの14成分(F、Cl、NO、Br、NO、SO2−、PO3−、CHCOO、HCOO、Na、NH、K、Mg2+、Ca2+)の定量分析ができる。定量分析は、特に例として臭素イオン(Br)や塩素イオン(Cl)等の同時分析結果を得られる。また他のイオン種の定量分析は、イオンピークの伝導度と濃度との関係を検量線化し、これを適用して行うようにする。
【0040】
上述した前処理(粉末のイオン分析法)によって得られた樹脂試料について、ハロゲンイオンを含む定量分析を行う。定量分析は、検出イオン種の電導度と濃度との関係を検量線化し、これを適用して行う。この評価試験では、イオンクロマトグラフ分析装置における試料溶液の流量や分離カラム等の条件を適宜設定することができる。
【0041】
図5は、一般的なイオンクロマトグラフの流路図の一例を示している。イオンクロマトグラフは、弱電解質の溶離液21に試料(抽出試料)を試料注入部23から注入し、イオン交換樹脂製の分離カラム24を通して、カラム内で水和半径の大小、Van der Waals力の相互作用によってイオン種の相互分離を行い、サプレッサー25を通すことによりバックグラウンドの電導度を下げ、目的とするイオン種を高感度でクロマトグラムとして得るものである。分離カラム24は、目的のイオン成分によって、交換可能である。なお、イオンクロマトグラフ分析装置で陽イオンを分析するときは、カラム24と溶離液21を陽イオン分析用イオン交換樹脂製に組み替えればよい。符号22はポンプを示す。
【0042】
イオンクロマトグラフ法は、数μlの量の試料を用いて、1回の測定で数種の陰イオン成分を同時に測定することができ、分別定量分析を行うことができる方法である。検出器26にはフローセル型の電導度検出器を用いており、各イオン成分の電導度に基づくイオンクロマトグラムのピーク面積や高さから目的とする分析試料溶液中のイオン成分濃度が求められる。
【0043】
また、得られた検出イオン種からハロゲンイオン種を選定でき、上記14成分の定量分析結果が得られる。定量下限は、例えば0.01μg/gであり、純水中に抽出したイオン成分濃度を測定した結果をもとに、金型の金属腐食程度を分析検査することができる。
例えば、溶出した各イオン成分ごとの濃度は0.1〜100μg/gであり、金型の腐食を管理するのに、樹脂材料の抽出液のイオン分析で求める。これは、樹脂の単位質量の絶対量をハロゲンイオン(F+Cl+Br)を30μg/g以下として分析検査する。これは、これまでのデータに基づいて腐食のないレベルであったことに由来する。
【0044】
ハロゲン系難燃剤含有樹脂の選択は、具体的には以下のように実施する。すなわち、イオン成分濃度を測定した結果、樹脂中のハロゲンイオン(F+Cl+Br)濃度が30μg/gを超える場合は、樹脂材料の変更を行う。一方、樹脂中のハロゲンイオン(F+Cl+Br)濃度が30μg/g以下である場合は、イオン成分を明らかにして引きつづき材料管理を行う。また、ハロゲンイオン(F+Cl+Br)が最も腐食に関係するが、上記の14成分のうちのハロゲンを除く11成分(NO、NO、SO2−、PO3−、CHCOO、HCOO、Na、NH、K、Mg2+、Ca2+)もまた腐食に関係する。この11成分のすべてのうち、いずれか1種でも30μg/gを超える場合は、樹脂材料の変更を行うことが好ましく、各々の成分の濃度がすべて30μg/g以下である場合は引きつづき分析し材料管理を行う。上記14成分は、陰イオンに対する水素イオンの共存する量に関係し、陽イオンは水酸化物イオンとの共存する量に関係して腐食に関係している。このことは、多少の水分やその他の湿気などがあって、イオンと反応し金属が腐食すると考えられる。その他、難燃剤であるアンチモンは、通常は酸化物になるが、臭素と反応して臭化アンチモンになる可能性があり、ひいては金属腐食の要因になると考えられる。従って、アンチモンイオン(III)についても30μg/gを超える場合は、樹脂材料の変更を行い、30μg/g以下である場合は引きつづき分析し材料管理を行うことが好ましい。ここで、樹脂の選択に用いる濃度は、樹脂の単位質量当たりの濃度に換算した値を用いる。
【0045】
かくして本発明の樹脂中の添加材成分の分析方法は、樹脂に添加された難燃剤成分を分析する樹脂中の前処理方法を含み、蛍光X線分析法を用いて、固形化試料の無機成分を測定することと、試料をイオンクロマトグラフィーを用いて、純水中に抽出してイオン成分濃度を測定した溶出結果をもとに、数字化した所定の濃度で腐食程度を管理する。これは試料間で評価することが可能であり、有用である。
【0046】
なお、本発明の樹脂中の添加材成分の分析方法は、上記した実施の形態に限定されるものではなく、本発明の上記を逸脱しない範囲内において種々変更を加えてもよい。
【0047】
ハロゲン系難燃剤含有樹脂は、当業者に公知の方法により、低圧遮断器等の成形品に成形することができる。成形方法は、金型を用いるものであれば特に限定されないが、例えば、射出成形、圧縮成形、押出成形が挙げられる。低圧遮断器に関しては、通常、射出成形が用いられる。
【実施例1】
【0048】
[無機成分の分析]
樹脂試料としては、ポリブチルフタレート(PBT:ガラス繊維入り)のペレット及び成形品を用いた。無機成分は、蛍光X線分析法により測定した。この蛍光X線分析には、3272型[X線管球ターゲット:Rh]の波長分散型蛍光X線分析装置(蛍光X線装置)(理学電機工業株式会社製)を使用した。樹脂試料の性能調査や材料管理のための無機元素の種類やイオン量の組成分析に先立ち、ペレットや成形品の無機元素についてFP法で定量した。
【0049】
以下に、無機成分を分析するために行った処理内容を箇条書きで示す。
・凍結粉砕で得た粉末試料(平均粒径:100μm)
・約0.5gを準備確保する
・粉末試料0.5gを秤量
・バインダー:四ホウ酸リチウムとステアリン酸との混合物(質量比1:1)を約0.1g使用
・上記秤量物を所定のビーカー内で混合
・加圧成形架台の準備(専用備品)
・アルミリング:Φ40/4mmt
・有機薄膜上下離形膜:マイラ膜(Φ45、6μm厚)
・補強用バインダー:四ホウ酸リチウムとステアリン酸との混合物を約2g使用
・手動型の油圧プレス使用(専用装置)
・加圧全圧:15t/対上記試料Φ45アルミリング充填物
・有機薄膜を剥離除去(分析面を確保する)
・分析試料:加圧成形体の完成・測定
・データ解析(表示:質量%)
【0050】
無機成分の測定結果を表1に示す。
【表1】

表1より、射出成形後の成形品でも組成に大きな差はないことが分かった。添加材成分は、無機成分の測定結果から、樹脂中の難燃剤由来のハロゲン元素などBr、Cl、F、Sbや充填剤(Si、Caなど)の定性分析と定量分析ができ存在を確認した。定量下限は0.01質量%であった。
【0051】
[臭素イオン濃度の分析]
(I)超音波抽出
図6は、臭素イオン回収実験「超音波抽出時間と臭素イオン回収率の関係」の結果を示すグラフであり、2ppmの臭素イオンを含む試料(粉砕試料、成形試料)からの回収実験である。抽出法は、粉砕と成形試料で回収時間が異なるが、いずれも超音波抽出時間が25分以上でほぼ回収ができた。
【0052】
この抽出液法(純水超音波抽出法)は、容量(100ml)の共栓付三角フラスコに所定量の試料を入れ、純水(50ml)を加えて超音波洗浄装置(UO300FB:電圧100V、電流6A、定格出力300W)、発振周波数26kHz、神明工業株式会社製)により水溶液を抽出したものである。この純水抽出法の効果を臭素イオン量で分析し、回収率を求めた。
【0053】
(II)イオンクロマトグラフによる分析
図7は、クロマトグラム(陰イオン)の例で、図8は、イオン成分の電導度に基づくイオンクロマトグラムのピーク面積や高さから目的とする抽出試料溶液中のイオン成分濃度を求めた臭素イオンの検量線の例である。次に、陰イオンの分析条件の一例を示し、臭素イオンの分析結果を示す。
【0054】
イオンクロマトグラフ法における陰イオンの分析条件の一例を以下に示す。
(1)方法:陰イオン用イオンクロマトグラフ分析装置(DX−320、DIONEX社製)
(2)分離カラム:Ion Pac AS17/Ion Pac AG17(DIONEX社製)
(3)溶離液:EGC−KOH(DIONEX社製)(水酸化カリウム 10mMスタート・ステップ グラジェント)
(4)除去システム:オートサプレッサ−(ASRS)
(5)試料液量10μLループ法
(6)定量法:イオンクロマトグラムピーク面積とイオン成分濃度の検量線法
【0055】
図8に、臭素イオンのピーク面積強度とイオン濃度(ppm)の検量線を示す。この検量線における実験式は、得られた直線を回帰分析して求めた式であり、臭素イオン濃度(ppm)=2.816x+0.021である。なお、この式におけるxは、面積強度を示し、相関係数はR=0.9996である。
次に14イオン成分の実施例を述べる。次に述べる実試料の分析は検量線でデータ処理を行った。
【0056】
[イオン成分濃度の分析]
樹脂試料としては、ポリブチルフタレート(PBT:ガラス繊維入り)のペレット及び成形品を用いた。その性能調査や材料管理のための抽出イオン量の組成を定量分析したものである。以下に、イオン成分の測定のために行った処理内容を箇条書きで示す。
・凍結粉砕で得た粉末試料(平均粒径:100μm)
・約2.0gを準備確保する。
・粉末試料約2.0gを秤量
・抽出準備:上記秤量物を所定の共栓付フラスコに超純水抽出液1000mlと共に注入
・超音波抽出器(印加15分間、液温約50℃になる)
・ろ過準備と抽出液1000mlの回収
・抽出液回収液中のイオン濃度測定
・標準液も同様にイオン濃度を測定
・液中のイオン濃度測定値から、単位質量当たりのイオン量を算出する。(表示:μg/g)
・データ解析
【0057】
ハロゲンイオンを含む14成分の定量分析結果を表2に示す。
【表2】

【0058】
先の樹脂(PBT)には、試料の状態はペレットや成形品で臭素が10%レベルで含まれていた(表1)。表2によれば、ハロゲンイオン分析でBr量は1μg/g以下であった。このことから、樹脂試料が一般に臭素系難燃剤を多く含み、イオンとして溶出するBrが比較的少ないことがわかった。
【産業上の利用可能性】
【0059】
本発明によれば、難燃剤などの由来の無機成分に含まれる微量な成分であっても、その組成分析を迅速かつ高精度に定量分析することによって、金型成形用のハロゲン系難燃剤含有樹脂を選択する方法を提供することができる。
【符号の説明】
【0060】
1 スタート
2 凍結粉砕
3 秤量
4 混合
5 加圧成形
6 分析試料の固形体の分析(蛍光X線分析法)
7 抽出
8 ろ過回収
9 分析試料のイオン分析(イオンクロマトグラフ法)
10 データ解析
11 エンド
12 X線管
13 一次X線
14 蛍光X線
15 分光結晶
16 検出器
17 試料位置
18 制御部
21 溶離液
22 ポンプ
23 試料注入部(抽出試料)
24 分離カラム(カラム交換可)
25 サプレッサー
26 伝導度検出器
101 スタート
102 凍結粉砕樹脂の粉末試料
103 秤量
104 混合
105A 加圧成形架台設置
105B 加圧成形
106 加圧成形体試料の分析(蛍光X線分析法)
110 データ解析
201 スタート
202 凍結粉砕樹脂の粉末試料
203 秤量
207 抽出
208A ろ過
208B 回収
209 抽出試料のイオン分析(イオンクロマトフラフ法)
210 データ解析


【特許請求の範囲】
【請求項1】
ハロゲン系難燃剤を含有する樹脂を凍結粉砕して微粒化する工程と、
前記微粒化された樹脂に対して、加圧成形して無機成分の定性分析、および純水と混合して得られる抽出液のイオン成分の濃度の測定を行う工程とを含んでなり、
前記無機成分の定性分析および前記イオン成分の濃度の測定結果に基づき、前記無機成分および/または前記イオン成分の濃度が低い樹脂を選択する、金型成形用のハロゲン系難燃剤含有樹脂を選択する方法。
【請求項2】
前記無機成分の定性分析が、フッ素、塩素、及び臭素の定性分析であり、前記イオン成分の濃度の測定が、フッ素イオン、塩素イオン、及び臭素イオンの濃度の測定であり、
前記イオン成分の濃度の低い樹脂が、前記イオン成分の合計濃度が前記樹脂の単位質量当たりに換算して30μg/g以下の樹脂である、請求項1に記載の金型成形用のハロゲン系難燃剤含有樹脂を選択する方法。
【請求項3】
前記無機成分の定性分析が、さらに、硫黄、リン、ナトリウム、カリウム、マグネシウム、カルシウム、及びアンチモンの定性分析を含み、前記イオン成分の濃度の測定が、さらに、亜硝酸イオン、硝酸イオン、硫酸イオン、リン酸イオン、酢酸イオン、ギ酸イオン、ナトリウムイオン、アンモニウムイオン、カリウムイオン、マグネシウムイオン、及びカルシウムイオンの11成分の濃度の測定を含み、
前記イオン成分の濃度の低い樹脂が、前記11成分の各々の濃度が前記樹脂の単位質量当たりに換算して30μg/g以下の樹脂である、請求項2に記載の金型成形用のハロゲン系難燃剤含有樹脂を選択する方法。
【請求項4】
前記無機成分の定性分析が、さらにアンチモンの定性分析を含み、前記イオン成分の濃度の測定が、さらにアンチモンイオンの濃度の測定を含み、
前記イオン成分の濃度の低い樹脂が、アンチモンイオンの濃度が前記樹脂の単位質量当たりに換算して30μg/g以下の樹脂である、請求項2又は3に記載の金型成形用のハロゲン系難燃剤含有樹脂を選択する方法。
【請求項5】
前記イオン成分の濃度の測定が、イオンクロマトグラフィーを用いる、請求項1〜4のいずれかに記載の金型成形用のハロゲン系難燃剤含有樹脂を選択する方法。
【請求項6】
前記無機成分の定性分析が、蛍光X線分析法を用いる、請求項1〜5のいずれかに記載の金型成形用のハロゲン系難燃剤含有樹脂を選択する方法。
【請求項7】
前記凍結粉砕するハロゲン系難燃剤を含有する樹脂が、成形品またはペレットである、請求項1〜6のいずれかに記載の金型成形用のハロゲン系難燃剤含有樹脂を選択する方法。
【請求項8】
請求項1〜7のいずれかに記載の方法により選択したハロゲン系難燃剤含有樹脂を金型で成形する工程を含んでなる、低圧遮断器の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−21928(P2011−21928A)
【公開日】平成23年2月3日(2011.2.3)
【国際特許分類】
【出願番号】特願2009−165500(P2009−165500)
【出願日】平成21年7月14日(2009.7.14)
【出願人】(000005234)富士電機ホールディングス株式会社 (3,146)
【Fターム(参考)】