説明

陰イオン界面活性剤含有液の消泡方法およびヘキサフルオロプロピレンオキシドの洗浄方法

【課題】陰イオン界面活性剤を含むアルカリ性の水性液体における泡立ちを抑制することができる方法を提供する。
【解決手段】陰イオン界面活性剤を含むアルカリ性の水性液体の消泡方法において、該アルカリ性の水性液体のpHを14以上とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、陰イオン界面活性剤含有液の消泡方法、より詳細には、陰イオン界面活性剤を含む水性液体における泡立ちを抑制する方法に関する。また、本発明は、かかる消泡方法を応用したヘキサフルオロプロピレンオキシドの洗浄方法、より詳細には、ヘキサフルオロプロピレンオキシドおよびフッ化カルボニルオリゴマーを含む組成物を洗浄する方法に関する。更に、本発明は、かかる洗浄方法を用いたヘキサフルオロプロピレンの製造方法にも関する。
【背景技術】
【0002】
陰イオン界面活性剤は、水中で電離して有機陰イオンとなり、水の表面張力を低下させる作用を有するものである。陰イオン界面活性剤として作用する化合物は、種々の反応によって生成し得る。例えば、ヘキサフルオロプロピレンオキシドの製造方法において副生するフッ化カルボニルオリゴマーも、水中で陰イオン界面活性剤として作用する。
【0003】
ヘキサフルオロプロピレンオキシドは、例えばパーフルオロビニルエーテルの原料として用いられるなど、含フッ素化合物の製造において重要な化合物である。また、ヘキサフルオロプロピレンオキシドのオリゴマーは潤滑油や熱媒などとして利用されている。
【0004】
ヘキサフルオロプロピレンオキシド(以下、HFPOとも言う)の製造方法として、ヘキサフルオロプロピレン(以下、HFPとも言う)を酸素により酸化してHFPOを得る方法が知られている(特許文献1および2を参照のこと)。
【0005】
かかるHFPO製造方法では、目的物質であるHFPOに加えて、フッ化カルボニル(COF)が副生する(特許文献1を参照のこと)。更に、かかるHFPO製造方法では、フッ化カルボニル(COF)が重合して、フッ化カルボニルオリゴマーも副生する(特許文献2を参照のこと)。よって、HFPOを含む反応生成物からフッ化カルボニルオリゴマーなどの副生成物を分離して、製品HFPOが得られる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特公昭45−11683号公報
【特許文献2】特開平6−107650号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
従来、陰イオン界面活性剤が存在すると、気/液コロイドで泡立ちが起こり得ることが知られており、泡立ち(起泡性)等の作用を利用して、洗剤や、乳化剤、分散剤などとして用いられている。しかしながら、陰イオン界面活性剤を含むアルカリ性の水性液体において泡立ちが起こることは望ましくない場合もある。陰イオン界面活性剤として作用する化合物を含有する液を処理する際に激しい泡立ちが起こると、処理操作を好適に実施することができなくなるという問題がある。
【0008】
そのような場合として、例えば脱酸処理が挙げられる。一般的に、酸成分を含むガスの脱酸処理は、被処理ガスをアルカリ性の水性液体(通常、アルカリ水溶液)と十分に接触させる洗浄操作により行われる。
【0009】
HFPOの製造方法においては、HFPからの反応によって生成したHFPOおよびフッ化カルボニルオリゴマーなどを含む組成物を脱酸処理に付すこと、より詳細には、この組成物を気相状態(ガス)でアルカリ性の水性液体により洗浄し、フッ化カルボニルオリゴマーなどの酸成分をアルカリ性の水性液体中に分離して(よって、アルカリ性の水性液体は、脱酸処理後、フッ化カルボニルオリゴマーなどに由来する化合物をアルカリ金属塩(より詳細には電離したイオン)の形態で含む水性液体となる)、目的物質であるHFPOを含むガス状物を得ること(以下、単にHFPOの洗浄方法とも言う)が考えられる。
【0010】
かかるHFPOの洗浄方法において、脱酸処理で生じるアルカリ性の水性液体は、フッ化カルボニルオリゴマーに由来する化合物をアルカリ金属塩の形態で含み、かかるアルカリ金属塩は陰イオン界面活性剤として作用するため、ガスとの接触によって激しい泡立ちを起こすことが、本発明者らにより判明した。脱酸塔などの洗浄装置において、泡立ちをそのまま放置して洗浄操作を連続的に実施すると、脱酸処理後のHFPOを含むガス状物の取り出しラインにまで泡があふれ、このガス状物(製品HFPO)中に上記水性液体(ひいてはフッ化カルボニルオリゴマー)が混入するという問題があり、また、洗浄装置の圧力損失が泡立ちのために余計に増大し、洗浄装置に負荷を与えるという問題がある。かかる問題を回避するには、洗浄操作の処理速度を落とす必要があり、この結果、HFPOおよびフッ化カルボニルオリゴマーなどを含む上記組成物を脱酸処理する能力は、泡立ちが起こらない他の一般的なガス組成物を脱酸処理する場合に比べて著しく低くなる。
【0011】
よって、上記のHFPOの洗浄方法では、泡立ちが起こらないように、または泡立ちが起こっても許容可能な程度に抑えるため、洗浄操作の処理速度を遅いレベルで調整する必要があり、安定して連続的に効率よく実施することはできない。
【0012】
本発明の目的は、陰イオン界面活性剤含有液の消泡方法であって、陰イオン界面活性剤を含むアルカリ性の水性液体における泡立ちを抑制することができる方法を提供することにある。また、本発明の目的は、ヘキサフルオロプロピレンオキシドの洗浄方法であって、安定して連続的に効率よく実施可能な洗浄方法を提供することにある。更に、本発明の目的は、かかる洗浄方法を用いたヘキサフルオロプロピレンの製造方法を提供することにある。
【課題を解決するための手段】
【0013】
本発明の1つの要旨によれば、陰イオン界面活性剤を含むアルカリ性の水性液体の消泡方法であって、該アルカリ性の水性液体のpHを14以上とすることを特徴とする方法が提供される。
【0014】
陰イオン界面活性剤に起因する泡立ちは、通常使用されるような消泡剤では抑制することは困難である。これに対して、本発明者らは、鋭意研究の結果、水相のpHを14以上とすることにより、上記化合物に起因する泡立ちを効果的に抑制できることを見出し、本発明を完成するに至った。
【0015】
本発明の上記消泡方法では、アルカリ性の水性液体のpHを14以上とすることにより、陰イオン界面活性剤(より詳細には、陰イオン界面活性剤として作用する化合物)に起因する泡立ちを効果的に抑制できる。なお、本発明において「消泡」とは、一般的な処理条件下(例えば、常套の脱酸処理条件であるpH7〜12)に比べて、泡立ちを抑制(または低減)できることを意味する。
【0016】
本発明の1つの態様において、陰イオン界面活性剤は、以下の一般式(Y):
CFO(CFO)−R’ ・・・(Y)
(式中、−R’は−COOM、−OCOOMまたは−CFCOOMを示し、Mはアルカリ金属を示し、nは0〜50の整数を示す。)
で表わされる化合物を含む。上記一般式(Y)で表わされる化合物は、陰イオン界面活性剤として作用して、ガスとの接触によって非常に激しい泡立ちを起こし、通常使用されるような消泡剤では泡立ちを抑制することはできない。しかしながら、本発明によれば、アルカリ性の水性液体のpHを14以上とすることにより、一般式(Y)で表わされる化合物に起因する泡立ちを効果的に抑制できる。
【0017】
本発明のもう1つの要旨によれば、ヘキサフルオロプロピレンオキシドの洗浄方法であって、
ヘキサフルオロプロピレンオキシドおよび以下の一般式(X):
CFO(CFO)−R ・・・(X)
(式中、−Rは−COF、−OCOFまたは−CFCOFを示し、nは0〜50の整数を示す。)
で表わされる化合物を含む組成物を、pH14以上のアルカリ性の水性液体により洗浄する方法が提供される。
【0018】
上記一般式(X)で表わされる化合物は、上述のフッ化カルボニルオリゴマーに相当する。かかる化合物は、アルカリ性の水性液体中において、上記一般式(Y)で表わされる化合物(より詳細には電離したイオン)の形態で存在し得る。よって、本発明の上記洗浄方法は、本発明の上記消泡方法を応用したものであり、本発明の上記洗浄方法によれば、上記一般式(X)で表わされる化合物に起因する泡立ちを効果的に抑制でき、洗浄操作を安定して連続的に効率よく実施することができる。
【0019】
本発明のもう1つの要旨によれば、ヘキサフルオロプロピレンオキシドの製造方法であって、
a)ヘキサフルオロプロピレンを酸素により酸化して、ヘキサフルオロプロピレンオキシドおよび以下の一般式(X):
CFO(CFO)−R ・・・(X)
(式中、−Rは−COF、−OCOFまたは−CFCOFを示し、nは0〜50の整数を示す。)
で表わされる化合物を含む組成物を得る工程、および
b)該組成物を、pH14以上のアルカリ性の水性液体により洗浄して、前記一般式(X)で表わされる化合物をアルカリ性の水性液体中に分離し、ヘキサフルオロプロピレンオキシドを含むガス状物を得る工程
を含む製造方法が提供される。
【0020】
本発明の上記製造方法は、本発明の上記洗浄方法を用いたものであり、これと同様の効果を奏し得る。
【0021】
本発明の上記洗浄方法および製造方法の好ましい態様において、アルカリ性の水性液体は、水酸化カリウムおよび水酸化ナトリウムの少なくとも1種を含む。水酸化カリウムおよび水酸化ナトリウムは強アルカリであるため、比較的少量で、HFを中和反応によってFとして水性液体中にトラップすることができ、特に、水酸化カリウムを用いたときは、フッ化カリウムの溶解度は92.3(g/100g−水)(18℃)と大きいため、フッ化物として析出することを効果的に回避できる。かかる態様は、アルカリ性の水性液体を循環利用する場合に特に適する。また、水酸化カリウムおよび水酸化ナトリウムは、比較的低価格で入手が容易であるため、工業的に好適に利用され得る。水酸化カリウムおよび水酸化ナトリウムは、アルカリ性の水性液体に、それぞれ単独で、または組み合わせて含まれていてよい。
【発明の効果】
【0022】
本発明によれば、陰イオン界面活性剤を含むアルカリ性の水性液体のpHを14以上とすることにより、陰イオン界面活性剤による泡立ちを効果的に抑制できる。かかる発明を洗浄方法に適用すれば、洗浄操作を安定して連続的に効率よく実施することができる。
【図面の簡単な説明】
【0023】
【図1】本発明の1つの実施形態におけるヘキサフルオロプロピレンオキシドの洗浄方法を説明するための概略図である。
【発明を実施するための形態】
【0024】
(実施形態1)
本実施形態は、本発明の陰イオン界面活性剤含有水の消泡方法に関する。
【0025】
まず、消泡対象である、陰イオン界面活性剤を含むアルカリ性の水性液体について説明する。
【0026】
陰イオン界面活性剤は、例えば、以下の一般式(Y):
CFO(CFO)−R’ ・・・(Y)
(式中、−R’は−COOM、−OCOOMまたは−CFCOOMを示し、Mはアルカリ金属、好ましくはカリウム、ナトリウムを示し、nは0〜50の整数、好ましくは0〜15の整数を示す。)
で表わされる化合物であり得る。
【0027】
上記一般式(Y)で表わされる化合物は、水性液体中で電離したイオンの形態で存在し得、このうち有機陰イオンが界面活性剤として作用し得る。一般式(Y)で表わされる化合物は、アルカリ性の水性液体中で一般式(Y)で表わされる化合物を形成し得る限り、いかなるものであってもよい。例えば、アルカリ性の水性液体中の一般式(Y)で表わされる化合物は、この化合物そのものを水性液体に添加して溶解させたものであってよい。また例えば、アルカリ性の水性液体中の一般式(Y)で表わされる化合物は、実施形態2にて後述する一般式(X)で表わされる化合物を、アルカリ金属イオンを含む水性液体に添加して溶解させることにより生じたものであってもよい。よって、一般式(Y)におけるアルカリ金属(M)は、もともと化合物中に含まれていたアルカリ金属であっても、あるいは、水性液体中に含まれていたアルカリ金属イオンであってもよい。
【0028】
アルカリ性の水性液体は、例えばアルカリ金属水酸化物、アルカリ土類金属水酸化物、アンモニアなどの少なくとも1種のアルカリ性物質を水性媒体中に含むものであり得る。アルカリ金属水酸化物には、例えば水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウムなどを用い得る。アルカリ土類金属水酸化物には、水酸化カルシウム、水酸化バリウムなどを用い得る。これらは少なくとも1種以上で用いられ得、このうち、水酸化カリウムおよび水酸化ナトリウムのいずれかまたは双方を用いることが好ましい。アルカリ金属水酸化物およびアルカリ土類金属水酸化物は、水溶液の形態で用い得る。アンモニアは、アンモニア水の形態で用い得る。
【0029】
次に、アルカリ性の水性液体のpHについて説明する。
【0030】
消泡効果を発揮させるためには、アルカリ性の水性液体のpHを14以上とする必要がある。具体的には、アルカリ性の水性液体中のアルカリ濃度(アルカリ性物質の濃度)によって水相のpHを調整する。
【0031】
水相のpHが14以上であれば、消泡効果を奏し得るが、高くなり過ぎるとアルカリ性物質の消費量が増すので好ましくない。かかる観点からは、例えばpH15以下とし得る。
【0032】
pHの調整は、陰イオン界面活性剤がアルカリ性の水性液体中に存在するようになる前に予め実施すること(換言すれば、予めpH14以上に調整されたアルカリ性の水性液体に陰イオン界面活性剤を存在させること)が、泡立ちを抑制するのに効果的である。しかしながら、本実施形態はこれに限定されず、陰イオン界面活性剤を含むpH14未満の水性液体に、アルカリ性物質またはアルカリ性物質を含むアルカリ水溶液を添加して、水相のpHを14以上に調整してもよい。
【0033】
アルカリ性の水性液体における陰イオン界面活性剤の含量は特に限定されないが、例えば約1重量ppm以上、具体的には約10重量ppm〜10重量%(いずれも全体基準)であってよい。
【0034】
本実施形態によれば、アルカリ性の水性液体のpHを14以上とすることによって、上記化合物に起因する泡立ちを効果的に抑制できる。
【0035】
本実施形態では、陰イオン界面活性剤として、上記一般式(Y)で表わされる化合物を用いる場合について説明した。しかしながら、本発明の消泡方法に利用可能な陰イオン界面活性剤は、上記一般式(Y)で表わされる化合物に限定されず、種々の陰イオン界面活性剤を利用できる。
他の陰イオン界面活性剤として、例えば、炭化水素化合物では、以下のもののアルカリ金属および(アルキル)アンモニウム塩などが挙げられる(特表2007−523777号公報参照):
1)ドデシル硫酸ナトリウムおよびドデカンスルホン酸カリウム等の、硫酸アルキルおよびスルホン酸アルキル;
2)直鎖または分枝鎖脂肪族アルコール類およびカルボン酸のポリエトキシル化誘導体の硫酸塩;
3)ラウリルベンゼンスルホン酸ナトリウム等の、アルキルベンゼンスルホン酸塩および硫酸塩、またはアルキルナフタレンスルホン酸塩および硫酸塩;
4)エトキシル化およびポリエトキシル化アルキルおよびアラルキルアルコールカルボン酸エステル;
5)サルコシン酸アルキルおよびグリシン酸アルキル等の、グリシネート類;
6)ジアルキル・スルホコハク酸を含む、スルホコハク酸塩;
7)イセチオン酸誘導体;
8)N−メチル−N−オレイルタウリンナトリウム等の、N−アシルタウリン誘導体;
9)アルキルおよびアルキルアミドアルキルジアルキルアミンオキシド類を含む、アミンオキシド類;および
10)エトキシル化ドデシルアルコールリン酸エステル、ナトリウム塩等の、リン酸アルキルモノまたはジ−エステル類。
また、別の陰イオン界面活性剤として、例えば、含フッ素系化合物では、以下のものなどが挙げられる(特開2005−290350号公報参照):
・下記一般式(1)
Y−(CFx1−(CHy1−A (1)
(式中、Yは、H又はFを表す。x1は、4〜13の整数を表し、y1は、0〜3の整数を表す。Aは、−SOM又は−COOMを表し、Mは、H、NH、Li、Na又はKを表す。)で表されるエーテル酸素を有しないアニオン性化合物、および
・下記一般式(2)
F(CFx2O(CFXCFO)y2−CFX−A (2)
(式中、x2は、1〜5の整数を表し、y2は、0〜10の整数を表す。Xは、F又はCFを表す。Aは、−SOM又は−COOMを表し、Mは、H、NH、Li、Na又はKを表す。)で表されるエーテル酸素を有するアニオン性化合物。
その他にも、任意の適切な陰イオン界面活性剤を、少なくとも1種以上で、本発明の消泡方法に利用することができる。
【0036】
(実施形態2)
本実施形態においては、本発明のヘキサフルオロプロピレンオキシドの洗浄方法およびこれを用いたヘキサフルオロプロピレンオキシドの製造方法について、図1を参照しながら詳述する。
【0037】
・工程a)
まず、ヘキサフルオロプロピレンオキシド(HFPO)および以下の一般式(X):
CFO(CFO)−R ・・・(X)
(式中、−Rは−COF、−OCOFまたは−CFCOFを示し、nは0〜50の整数を示す。)
で表わされる化合物を含む組成物を準備する。
【0038】
かかる組成物は、本発明の洗浄方法を限定するものではないが、ヘキサフルオロプロピレン(HFP)を酸素により酸化するという反応工程を経て得ることができる。
【0039】
具体的には、予め溶媒を仕込んだ反応器(図示せず)にHFPおよび酸素(O)を供給し、反応器にてHFPを酸素により酸化(液相反応)してHFPOを生成させる。
【化1】

【0040】
溶媒には、この酸化反応に不活性な飽和ハロゲン炭素、例えば1,1,2−トリクロロ−1,2,2−トリフルオロエタン、トリクロロフルオロメタン、パーフルオロ(ジメチルシクロブタン)、四塩化炭素などを用い得る。
【0041】
上記酸化反応では、本発明の製造方法の目的物質であるHFPOに加えて、以下の一般式(X):
CFO(CFO)−R ・・・(X)
(式中、−Rは−COF、−OCOFまたは−CFCOFを示し、nは0〜50の整数、好ましくは0〜15の整数を示す。)
で表わされる化合物(以下、一般式(X)で表わされるオリゴマーとも言う)が副生する。
【0042】
この一般式(X)で表わされるオリゴマーは、1種の化合物であってもよいが、通常は、末端基−Rおよび/またはn数の異なる複数種類の化合物が混在した混合物であり得る。
【0043】
上記一般式(X)において、隣接する2つのCFO繰返し単位の間の結合は、
−CF−O−CF−O−
−CF−O−O−CF
−O−CF−CF−O−
−O−CF−O−CF
のうち、いずれであってもよい。−CF−O−CF−O−および−O−CF−O−CF−の場合にはエーテル結合を形成し、−CF−O−O−CF−の場合には過酸化エーテル結合を形成する。
【0044】
一般式(X)で表されるオリゴマーにおける過酸化エーテル結合の割合は、ヨード滴定法で測定した活性酸素濃度が0.01〜25重量%となるような割合であることが好ましい。一般式(X)で表されるオリゴマーがこの条件を充たす限り、一般式(X)における末端基−Rが−COF、−OCOFまたは−CFCOFである化合物の割合については制限がない。
【0045】
生成したHFPOおよび一般式(X)で表わされるオリゴマーは、例えば気相状態で反応器より抜き出され得る。抜き出された気相は、通常、HFPO、一般式(X)で表わされるオリゴマーに加えて、未反応のHFP、副生したアセチルフルオライド(CFCOF)、ヘキサフルオロアセトン(CFCOCF)およびフッ化カルボニル(COF)なども含み得る。
【0046】
反応条件は、最終的なHFPO回収量が大きくなるように、使用する反応器および溶媒などに応じて適宜設定され得、例えば以下の通りであり得るが、本実施形態はこれに限定されるものではない。
反応器に溶媒を容量の30〜50%仕込み、HFPを溶媒に対して1〜40%、好ましくは5〜35%仕込み、90〜150℃に加熱する。
そこに酸素ガスを分注圧0.02〜0.5MPa(ゲージ圧力)、好ましくは0.05〜0.1MPa(ゲージ圧力)の分圧で分注して反応を行う。酸素のトータル仕込み量は原料のHFPの転化率を分析することによって決定できるが、おおよそ理論量の1.3〜1.7倍量である。
また、このときの全反応圧は溶媒種、HFP仕込み比、温度条件等によって変動するため、特に規定はないが、一般的には1.5〜4MPa(ゲージ圧力)である。
反応時間(平均滞留時間)は、例えば1〜10時間である。
【0047】
かかる反応操作は、回分式でも密閉容器中で連続式でも行うことができる。反応器は液の撹拌および加熱が可能な金属製容器が好適である。
【0048】
反応器より抜き出した気相は、HFPOおよび一般式(X)で表わされるオリゴマーに加えて、未反応のHFP、副生したアセチルフルオライド(CFCOF)、ヘキサフルオロアセトン(CFCOCF)およびフッ化カルボニル(COF)なども含み得、適宜、常法の分離操作(例えば蒸留、蒸発など)に付してよい。これらのうち、少なくともHFPOおよび一般式(X)で表わされるオリゴマーが、工程b)に付される組成物中に含まれていればよく、工程b)の前に、HFPOおよび/または一般式(X)で表わされるオリゴマーは部分的に分離されていてもよい。
【0049】
以上により、HFPOおよび一般式(X)で表わされるオリゴマーを含む組成物が得られる。
【0050】
・工程b)
次に、上記で得られた組成物を脱酸処理するために、本発明の洗浄方法を適用して、洗浄操作を実施する。具体的には、上記で得られた組成物を、pH14以上のアルカリ性の水性液体、通常はアルカリ水溶液(以下、本実施形態においては説明を簡素化するため、単にアルカリ水溶液と言う)により洗浄する。これにより、該組成物から酸成分(一般式(X)で表わされるオリゴマーおよびヘキサフルオロアセトンなど)が除去され、本発明の製造方法の目的物質であるHFPOに着目すれば、HFPOが洗浄される。
【0051】
かかる洗浄操作は、回分式でも連続式でも行うことができるが、例えば図1に示す洗浄装置11を用いて連続的に実施できる。洗浄装置11は、脱酸塔10およびその付属設備より構成される。脱酸塔10は、塔部10aとその下部に連結された缶部10bとを含んで成り、塔部10aには、好ましくは任意の適切な充填物が充填される。付属設備には、図示する組成物供給ライン1、アルカリ水溶液供給ライン3、ガス状物排出ライン5、ポンプ7、アルカリ水溶液排出ライン9a、廃液ライン9b、循環ライン9cなどが含まれる。
【0052】
図1を参照して、上記工程a)で得られた組成物を気相状態(ガス)で組成物供給ライン1より脱酸塔10の塔部10aへ、好ましくはその下方に位置する供給口より供給する。
【0053】
他方、アルカリ水溶液をアルカリ水溶液供給ライン3より脱酸塔10の塔部10aへ、好ましくはその上方に位置する供給口より供給する。
【0054】
アルカリ水溶液は、実施形態1にて上述したようなアルカリ性の水性液体を用い得、例えばアルカリ金属水酸化物、アルカリ土類金属水酸化物、アンモニアなどの少なくとも1種のアルカリ性物質を水性媒体中に含むものであり得る。
【0055】
供給するアルカリ水溶液のpH(またはアルカリ濃度、より詳細にはアルカリ水溶液中のアルカリ性物質の濃度)は、処理するガス量などにより異なり得るが、洗浄中のアルカリ水溶液(より詳細には、上記組成物と接触しているアルカリ水溶液)のpHを14以上に維持するように選択される。
【0056】
図1に示す洗浄装置11を用いる場合、具体的には、缶部10bからアルカリ水溶液排出ライン9aを通じて排出されるアルカリ水溶液(洗浄後のアルカリ水溶液であり、pHが最も低くなると考えられる)のpHが14以上となるように、アルカリ水溶液のpHの維持管理を行い得る。pHは、洗浄装置11への組成物の供給量やアルカリ水溶液の供給量、供給するアルカリ水溶液のpH(またはアルカリ濃度)などを、単独でまたは組み合わせて調節することにより調整可能である。
【0057】
脱酸塔10に供給された組成物およびアルカリ水溶液は、その内部にて互いに十分接触し、図示する態様では塔部10aを流れる間に向流接触する。接触後の組成物は、ガス状物として、好ましくは塔部10aの上方に位置する排出口より、ガス状物排出ライン5を通じて排出される。他方、接触後のアルカリ水溶液は、塔部10aの下部に連結された缶部10bにて受けられた後、ポンプ7によって、缶部1bよりアルカリ水溶液排出ライン9aを通じて排出される。
【0058】
組成物およびアルカリ水溶液が接触している間、組成物中の酸成分はアルカリ水溶液中に移動し、換言すれば、アルカリ水溶液により組成物が(本発明の製造方法の目的物質に着目すればHFPOが)洗浄される。この間、液相であるアルカリ水溶液のpHは14以上に維持される。洗浄後の組成物、すなわち、ガス状物排出ライン5を通じて排出されるガス状物には、HFPOが含まれる。
【0059】
かかる洗浄操作においては、アルカリ水溶液のpH14以上としているので、脱酸塔10の塔部10aおよび缶部10bにおいて、上記一般式(X)で表わされるオリゴマーに起因する泡立ちを効果的に抑制することができる。よって、洗浄後のガス状物中にアルカリ水溶液(ひいては一般式(X)および/または一般式(Y)で表わされるオリゴマー)が混入したり、脱酸塔10の圧力損失が泡立ちのために増大したりすることを防止できる。この結果、洗浄操作の処理速度を上げることができ、安定して連続的に効率よく実施することができる。
【0060】
この洗浄操作において、液相のpH14は以上であればよい。かかるpHの維持管理は、市販のpH測定器を用いて、アルカリ水溶液(水相)のpHを測定することによって簡便に行うことが考えられる。pH測定器で測定されるpHの実測値は、通常、pH14以下であれば、中和滴定により測定されるアルカリ性物質のモル濃度の値から求められるpHの理論値とほぼ等しい。しかしながら、市販のpH測定器には、pH14以上の値を表示し得るものがあるが、pH14以上では誤差が大きくなることが知られている。よって、pH14以上で正確なpHの値を得るには、中和滴定によりpHの理論値を求めることが好ましい。
【0061】
また、アルカリ水溶液のpHが14以上であれば、オリゴマーが加水分解して生成するHFおよびCOを、更に、中和反応によってアルカリ水溶液中にトラップすることができ、それぞれFおよびCO2−としてアルカリ水溶液中に分離することができる(よって、ガス状物排出ライン5を通じて排出されるガス状物のHFPO純度を向上させることができる)。
【0062】
アルカリ水溶液は、水酸化カリウムおよび/または水酸化ナトリウムの水溶液であることが好ましい。上記一般式(X)で表わされる化合物は加水分解によりHFを生じ得、このフッ素イオンは水性液体中のアルカリ金属イオンとフッ化物を形成し得る。フッ化カリウムおよびフッ化ナトリウムは、他のフッ化物に比べて溶解度が高い。よって、アルカリ性の水性液体として、水酸化カリウムおよび/または水酸化ナトリウムの水溶液を用いると、HFを中和反応によってFとして水性液体中に十分にトラップすることができ、フッ化物として析出することを効果的に回避できる。特に、フッ化カリウムはフッ化ナトリムよりも溶解度が高いため、水酸化カリウム水溶液を用いる場合により高い効果を得ることができる。
【0063】
アルカリ水溶液のpHの上限値は、本発明の目的を損なわない範囲で適宜設定してよく、例えばpH15以下としてよい。pH15以下とすることにより、液体状態で扱うことができる。例えば、水酸化カリウムを含むアルカリ水溶液(水酸化カリウム水溶液)を用いる場合、そのアルカリ濃度(水酸化カリウム濃度)が48重量%であるものは市販で容易に入手でき、かかる水酸化カリウム水溶液のpHは15以下となる。
【0064】
アルカリ水溶液中に分離される酸成分には、一般式(X)で表わされるオリゴマーおよび存在する場合にはヘキサフルオロアセトンが含まれる。一般式(X)で表わされるオリゴマーは、実施形態1にて上述した一般式(Y)で表わされる化合物(より詳細には電離したイオン)の形態でアルカリ水溶液に溶解する。ヘキサフルオロアセトンは、三水和物として、アルカリ水溶液に溶解する。
【0065】
よって、アルカリ水溶液排出ライン9aを通じて排出される(洗浄後の)アルカリ水溶液には、一般式(X)で表わされるオリゴマーに由来する一般式(Y)で表わされる化合物および存在する場合にはヘキサフルオロアセトンが含まれる。
【0066】
このようにして脱酸塔10から排出されたアルカリ水溶液は、その全部または一部が廃液ライン9bを通じて、必要に応じて任意の後処理がなされた後に、廃棄される。一般的には中和処理を行った上で廃棄される。なお、ヘキサフルオロアセトン三水和物は中性状態で安定であるため、洗浄後のアルカリ水溶液を中和した後、別途、ヘキサフルオロアセトン三水和物を(例えば抽出、膜分離、吸着などにより)安定的に取り出して、任意の目的に利用してもよい。
【0067】
また、上記のようにして排出されたアルカリ水溶液は、洗浄効果を未だ有し得るため、その一部を循環ライン9bに通じて脱酸塔10の塔部10aに戻し、アルカリ水溶液供給ライン3を通じて新たに供給されるアルカリ水溶液と一緒に用いてよい。これにより、アルカリの消費量を削減できる。
【0068】
特に、アルカリ水溶液として水酸化カリウムおよび/または水酸化ナトリウムの水溶液を用いた場合には、上述のように、HFを中和反応によってFとして水性液体中に十分にトラップすることができ、フッ化物として析出することを効果的に回避できるので、アルカリ水溶液をより高い割合で循環させることができる。かかる観点からは、水酸化カリウム水溶液を用いることがより好ましい。
【0069】
しかしながら、アルカリ水溶液として水酸化ナトリウム水溶液を用いる場合には、別の利点もある。水酸化ナトリウムは、水酸化カリウムに比べて安価であり、海水からの塩電解によって製造されるため、市況の影響を受けにくく、安定して入手および利用できる。
【0070】
洗浄条件は、最終的なHFPO回収量が大きくなるように、使用する洗浄装置ならびにアルカリ水溶液の種類などに応じて適宜設定され得、例えば以下の通りであり得るが、本実施形態はこれに限定されるものではない。
脱酸塔10に上記組成物を、気相状態で、例えば0〜50℃および0〜0.6MPa(ゲージ圧力)で供給する。
脱酸塔10にアルカリ水溶液を、液体状態で、例えば0〜30℃で供給する。
脱酸塔10に循環するアルカリ水溶液の割合は、特に限定されないが、例えば、外部から新たに供給するアルカリ水溶液の供給流量に対して、0〜5000倍とし得る。
アルカリ水溶液の供給流量は、上記組成物の供給流量1m/hrに対して、2〜20L/hrとし得る。
脱酸塔10から排出されるガス状物は、供給される組成物およびアルカリ水溶液の各熱量や、脱酸塔10の圧力損失などにもよるが、例えば0〜50℃および0〜0.6MPa(ゲージ圧力)であり得る。
排出されるアルカリ水溶液は、供給される組成物およびアルカリ水溶液の各熱量や、脱酸塔10の圧力損失などにもよるが、例えば0〜50℃である。
洗浄中のアルカリ水溶液のpH(より詳細には、外部から供給されるアルカリ水溶液と、循環されるアルカリ水溶液とを合わせたアルカリ水溶液であって、気相状態で供給される組成物と接触しているアルカリ水溶液(または液相)のpH、便宜的には、洗浄後のアルカリ水溶液のpHにほぼ等しいと考えて差し支えない)は14以上であり、例えば、pH14以上15以下であり得る。
【0071】
以上により、HFPO、より詳細にはHFPOと一般式(X)で表わされるオリゴマーを含む組成物が洗浄され、洗浄後のガス状物の形態でHFPOが製造される。得られるガス状物中のHFPOの含量は、例えば80mol%以上、代表的には90〜100mol%である。
【実施例】
【0072】
(実施例)
上述の工程a)に従って、HFPを酸素により酸化してHFPOを生成させ、これにより得られた気相から、常法により、COF、CFCOFなどを適宜除去して、組成物Pを得た。
【0073】
この組成物Pの成分をフーリエ変換赤外分光光度計(FT−IR)、核磁気共鳴スペクトル(19F−NMR、13C−NMR)およびガスクロマトグラフィーにより分析した。結果を表1に示す。組成物Pは、HFPOおよび上述の一般式(X)で表わされるオリゴマーを含んでおり、微量のヘキサフルオロアセトン(CFCOCF)も含んでいた。
【0074】
【表1】

【0075】
次に、この組成物Pを、図1に示す洗浄装置11を用いて洗浄して、洗浄後の洗浄液サンプルQを採取した。洗浄操作は、消泡剤を添加せずに実施し、具体的な条件は次の通りとした。
図1に示す洗浄装置11の脱酸塔10に、上記組成物Pを気相状態で、組成物供給ライン1から連続的に供給すると共に、アルカリ水溶液として水酸化カリウム水溶液をアルカリ水溶液供給ライン3から連続的に供給し、洗浄後のガス状物およびアルカリ水溶液をガス状物排出ライン5およびアルカリ水溶液排出ライン9aからそれぞれ連続的に排出させた。アルカリ水溶液供給ライン3から供給したアルカリ水溶液は、約15℃およびアルカリ濃度5.4mol/L(pH=14.7(理論値))とした。脱酸塔10に循環ライン9cより循環するアルカリ水溶液の割合は、アルカリ水溶液供給ライン3から供給するアルカリ流量に対して1000倍とした。廃液ライン9bから得られたアルカリ水溶液は、約20℃およびアルカリ濃度2.9mol/L(pH=14.4(理論値))であった。
かかる条件下で、廃液ライン9bから得られたアルカリ水溶液を洗浄液サンプルQとして採取した。
【0076】
採取した洗浄液サンプルQは、一般式(Y)で表わされるオリゴマーを1重量%で含有していた。
【0077】
洗浄操作を実施している間、脱酸塔10において、十分に消泡(抑泡)されており、問題なく連続運転することができた。よって、アルカリ水溶液のpHを14以上とすることによって、泡立ちを防止できることが確認された。
【0078】
(比較例)
アルカリ水溶液供給ライン3から供給するアルカリ水溶液を、約15℃およびアルカリ濃度2.9mol/L(pH=14.4(理論値))としたこと以外は、上記実施例と同様にして洗浄操作を実施した。この比較例において、廃液ライン9bから得られたアルカリ水溶液は、約20℃およびアルカリ濃度0.6mol/L(pH=約13.8)であった。
【0079】
洗浄操作を実施している間、脱酸塔10において、激しい泡立ちが観測され、洗浄開始後1時間で運転を停止せざるを得なかった。
【産業上の利用可能性】
【0080】
本発明の消泡方法は、陰イオン界面活性剤含有液の泡立ちを抑制するために広範に使用され得る。本発明の洗浄方法および製造方法によって得られるヘキサフルオロプロピレンオキシドは、例えばパーフルオロビニルエーテルの原料として用いられ得る。
【符号の説明】
【0081】
1 組成物供給ライン
3 アルカリ水溶液供給ライン
5 ガス状物排出ライン
7 ポンプ
9a アルカリ水溶液排出ライン
9b 廃液ライン
9c 循環ライン
10 脱酸塔
10a 塔部
10b 缶部
11 洗浄装置

【特許請求の範囲】
【請求項1】
陰イオン界面活性剤を含むアルカリ性の水性液体の消泡方法であって、該アルカリ性の水性液体のpHを14以上とすることを特徴とする方法。
【請求項2】
陰イオン界面活性剤が、以下の一般式(Y):
CFO(CFO)−R’ ・・・(Y)
(式中、−R’は−COOM、−OCOOMまたは−CFCOOMを示し、Mはアルカリ金属を示し、nは0〜50の整数を示す。)
で表わされる化合物を含む、請求項1に記載の方法。
【請求項3】
ヘキサフルオロプロピレンオキシドの洗浄方法であって、
ヘキサフルオロプロピレンオキシドおよび以下の一般式(X):
CFO(CFO)−R ・・・(X)
(式中、−Rは−COF、−OCOFまたは−CFCOFを示し、nは0〜50の整数を示す。)
で表わされる化合物を含む組成物を、pH14以上のアルカリ性の水性液体により洗浄する方法。
【請求項4】
ヘキサフルオロプロピレンオキシドの製造方法であって、
a)ヘキサフルオロプロピレンを酸素により酸化して、ヘキサフルオロプロピレンオキシドおよび以下の一般式(X):
CFO(CFO)−R ・・・(X)
(式中、−Rは−COF、−OCOFまたは−CFCOFを示し、nは0〜50の整数を示す。)
で表わされる化合物を含む組成物を得る工程、および
b)該組成物を、pH14以上のアルカリ性の水性液体により洗浄して、前記一般式(X)で表わされる化合物をアルカリ性の水性液体中に分離し、ヘキサフルオロプロピレンオキシドを含むガス状物を得る工程
を含む製造方法。
【請求項5】
アルカリ性の水性液体が、水酸化カリウムおよび水酸化ナトリウムの少なくとも1種を含む、請求項3または4に記載の方法。

【図1】
image rotate


【公開番号】特開2012−210604(P2012−210604A)
【公開日】平成24年11月1日(2012.11.1)
【国際特許分類】
【出願番号】特願2011−78452(P2011−78452)
【出願日】平成23年3月31日(2011.3.31)
【出願人】(000002853)ダイキン工業株式会社 (7,604)
【Fターム(参考)】