説明

難燃性ポリプロピレン系樹脂組成物及びその組成物を使用する成形体

【課題】燃焼時の有毒ガスの発生の惧れがなく難燃剤のブリードアウトもない無機系難燃剤を多量に配合して、熱可塑性樹脂の難燃性を充分に高めても優れた機械的樹脂性能を保有し、耐白化性や耐磨耗性も向上され、良好な成形性を備える、難燃性の高い成形体用熱可塑性樹脂材料及び難燃性成形体を実現する。
【解決手段】条件(i)〜(ii)を満たすプロピレン−エチレン系共重合体成分(A)100重量部と金属水和物成分(B)50〜300重量部、及び熱可塑性エラストマー成分(C)5〜100重量部とを含有する、難燃性ポリプロピレン系樹脂組成物。
(i)固体粘弾性測定により得られる温度−損失正接曲線において、−60〜20℃の温度範囲で観察されるガラス転移によるピークが、単一であり、そのピーク温度が0℃以下である
(ii)TREF溶出曲線において、条件(ii−A)〜(ii−C)を満たす
(ii−A)溶出曲線において2つのピークが観察され、高温側に観測されるピークT(A1)が65〜95℃の範囲にあり、低温側に観測されるピークT(A2)が45℃以下にある
(ii−B)T(A1)とT(A2)両ピークの中間点の温度T(A3)までに溶出する成分(A2)の量W(A2)が5〜70wt%であり、該成分がエチレンを6〜15wt%含むプロピレン・エチレンランダム共重合体である
(ii−C)T(A3)までに溶出する成分の溶出後に溶出する成分(A1)の量W(A1)が95〜30wt%であり、該成分がエチレンを0〜6wt%含むプロピレン・エチレンランダム共重合体である

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、難燃性ポリプロピレン系樹脂組成物及びその組成物を使用する成形体に関し、詳しくは、特定のプロピレン−エチレン系共重合体と無機系難燃剤及び熱可塑性エラストマーを成分とする、機械的物性や耐白化性及び耐磨耗性などに優れた難燃性(自消性)樹脂組成物及びそれを被覆した押出成形体のような成形製品に係わるものである。
【背景技術】
【0002】
産業用の主要資材として重用されているプラスチック材料は概して可燃性なので、プラスチック材料を原料とする成形製品の使用における安全性などのために、難燃化の要請が以前から強くなされている。
プラスチック材料のなかでも汎用性の高い熱可塑性樹脂(及びそのエラストマー)の難燃化には、大別して樹脂自体の難燃化或いは樹脂への難燃剤の配合による手法が主に採用されており、その内でも、比較的簡易で難燃化が充分になされる、難燃剤の配合による方法が広く使用されている。
【0003】
その難燃剤の配合による難燃化方法としては、従来から基本的な方法として、熱可塑性樹脂への酸化アンチモンとハロゲン化物との配合が行われているが、このような難燃性組成物は、火災時にハロゲン系の有害ガスが発生して危険性が生じる問題を呈している。
リン系や臭素系などの有機系難燃剤の配合も知られているが、かかる有機系難燃剤では熱可塑性樹脂成形製品の表面に難燃剤がブリードアウト(滲出)し長期的には難燃性を維持できない問題を内包している。
このような問題を避けるために、燃焼時に有害ガスの発生が全くなく、かつ添加剤としての毒性も全く問題がなくて、難燃剤のブリードアウトもない、無機系難燃剤、特に、水酸化アルミニウムや水酸化マグネシウム又はこれらと炭酸マグネシウムとの配合物などの水和金属化合物を使用する難燃化材料が重要視されている。
【0004】
しかし、このような難燃化材料においては、充分な難燃性を付与するためには多量の水和金属化合物の配合が必要となり、その結果、柔軟性、耐磨耗性、耐白化性、機械的強度(特に、引張破壊伸度)などの諸性能が著しく低下するといった欠点を生じている。
かかる問題を改良する手法として、熱可塑性樹脂に水酸化アルミニウム及び/又はマグネシウムとエチレン−不飽和カルボン酸系共重合体及びエポキシ基含有化合物を配合することにより、難燃化をなして、外力による白化の耐性と耐外傷性及び耐寒性の向上がなされる難燃性組成物が開示されたが(特許文献1)、諸特性を向上させるとしても難燃性は未だ満足するものに至らなかった。
そして、ポリプロピレン樹脂に不飽和カルボン酸又はその誘導体変性ポリエチレンと金属水和物及びエチレン系共重合体を配合し、成形加工性にも優れた難燃性樹脂組成物が提案されたが(特許文献2)、耐磨耗性と耐白化性が不足する問題が内在されていた。
また、プロピレン−エチレンブロックコポリマーとポリオレフィン系エラストマーと金属水酸化物とを配合し、難燃剤の分散性をも良好にした難燃性で耐磨耗性の樹脂組成物も提示されているが(特許文献3)、耐白化性は未だ不足しているし、耐磨耗性は改善されているとしても充分満足できるまでに至っていない。
【0005】
更に、耐熱性や柔軟性に優れた特定の樹脂を使用する手法として、昇温溶離分別法による、溶出温度と溶出成分の積算重量割合との関係を表した溶出曲線における溶出成分が特定され、示差走査熱量測定で示す最大ピーク温度も規定されたプロピレン−エチレンブロック共重合体100重量部と金属水酸化物80〜400重量部とからなる難燃性軟質樹脂組成物が開示されているが(特許文献4)、この樹脂組成物は、外力が加わった場合に白化が生じて、成形製品の実用化の際に外観が満足するものではない欠点が顕現している。
最近では、メタロセン触媒により製造し、MFRや昇温溶離分別法の溶出曲線における温度などを特定したポリプロピレン系樹脂が提示され、充分な難燃性を付与するために多量の無機系難燃剤を配合し、難燃性と機械的特性(特に引張伸度)とを共に満足させているが(特許文献5)、やはり成形製品において外力による白化の発生が生じてしまう問題を内在し、耐磨耗性なども満足するには至っていない。
【0006】
【特許文献1】特開昭63−189462号公報(特許請求の範囲の1)
【特許文献2】特開平7−252388号公報(要約)
【特許文献3】特開2000−26696号公報(要約)
【特許文献4】特開平11−60888号公報(要約)
【特許文献5】特開2004−26968号公報(要約)
【発明の開示】
【発明が解決しようとする課題】
【0007】
熱可塑性樹脂の難燃化における前記の背景技術の推移と現状からして、燃焼時の有毒ガスの発生の惧れがなく難燃剤のブリードアウトもない無機系難燃剤を多量に配合して、熱可塑性樹脂の難燃性を充分に高めても優れた機械的樹脂性能(特に、引張強度)を保有し、外力に対する耐白化性(外部力による製品の折り曲げ部分の白化現象などへの耐性)や耐磨耗性も向上され、良好な柔軟性や成形性などを併せ備える、難燃性(自消性)の高い熱可塑性樹脂材料は未だ実現されず、その開発が希求されているので、本発明は、かかる諸性能などに優れ、難燃性(自消性)が高い熱可塑性樹脂材料及びそれを利用する難燃性成形体を開発することを、発明が解決すべき課題とするものである。
【課題を解決するための手段】
【0008】
本発明者らは、燃焼時の有毒ガスの発生の惧れがなく難燃剤のブリードアウトもない無機系難燃剤を多量に配合して、熱可塑性樹脂の難燃性を充分に高めても優れた機械的樹脂性能(特に、引張強度)を保有し、外力に対する耐白化性や耐磨耗性も向上された、難燃性(自消性)の高い熱可塑性樹脂材料を求め、各種の樹脂材料及びその組成物における無機系難燃剤との相互作用などを考察したところ、ポリプロピレン系樹脂などの熱可塑性樹脂に、無機系難燃剤、特に、水酸化アルミニウムや水酸化マグネシウムなどの水和金属化合物、を多量に配合した樹脂組成物の機械的強度(特に、引張伸度)が著しく低下する原因は、多量の無機系難燃剤の分散が均一にはなり難く、ポリプロピレン系樹脂と難燃剤の界面に応力がかかると剥離が生じ易い、といった原因によることを知見し得た。
【0009】
ところで、本発明者らは、良好な柔軟性と透明性を保有し耐熱性と剛性なども併せ向上され、成形性にも優れた、エチレン成分量や結晶化度などが規定されたポリプロピレン系樹脂材料の開発を行い、そのような諸性能に卓越した特定のプロピレン−エチレンランダムブロック共重合体を基本的な発明として実現し(特願2003−371458;特開2005−132979)、各種の特性を発揮する組成物などの一連の利用展開を行っているが、かかるブロック共重合体は各樹脂成分の相溶性が非常に優れており上記の難燃性樹脂材料に利用すれば、多量の無機系難燃剤の分散性が大幅に改善されると共に、歪が加わった際の応力が低下することで、ポリプロピレン系樹脂と難燃剤の界面に応力がかかることが抑制されて機械的強度(特に、引張伸度)の低下を阻止でき、耐白化性も向上されることを見い出すことができ、上記のプロピレン−エチレンランダムブロック共重合体は、多量の無機系難燃剤を配合しても高い機械的な性能や他の特性を保有する、非常に有用な熱可塑性樹脂組成物主剤として、活用し得るものである。
【0010】
そして、かかる組成物において、更に各種の組成配合材の検討を進めたところ、かかる多量の無機系難燃剤を配合したプロピレン−エチレンランダムブロック共重合体において、添加剤成分として熱可塑性エラストマーを選択し配合すれば一層に耐白化性及び耐摩耗性が向上されることをも認知することができて、上記した発明の課題を解決し得る、本発明を実現するに至った。
【0011】
具体的には、本発明の基本的な発明においては、無機難燃剤として燃焼時(火災時)の有害ガス発生と毒性の問題が無く、充分な難燃性即ち自消性(自己消化性)を発揮せしめるために、水酸化アルミニウムや水酸化マグネシウムなどの金属水和物成分(以下、成分(B)という。)を50〜300重量部(樹脂材料100重量部に対して)用い、従来の難燃性組成物の物性低下の要因である、ポリプロピレン系樹脂組成物中における無機難燃剤の分散性を改善し、かつ、無機難燃剤との界面での剥離を抑制するためには、上記した特定のプロピレン−エチレンランダムブロック共重合体を利用する。
当共重合体は、固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線におけるピーク特性及び昇温溶離分別法(TREF)による溶出曲線における溶出特性により規定され、良好な柔軟性と透明性及び耐熱性と剛性などを併せ備え成形性にも優れた特定のプロピレン−エチレン系共重合体成分であり、本発明の難燃性組成物においてはかかる樹脂成分(以下、成分(A)という。)を主剤として用いることが必要であり、更により耐磨耗性を向上させるために添加剤として熱可塑性エラストマー(以下、成分(C)という。)も5〜100重量部(樹脂材料100重量部に対して)を併せて配合添加される。
【0012】
より具体的には、本発明に用いられるプロピレン−エチレン系共重合体成分(A)は、ランダムブロック共重合体であって、樹脂成分の相溶性が高められつつ柔軟性や耐熱性などの各種物性のバランスを向上するためにエチレン含有量と結晶性の異なる大分して2つの成分(A1)及び(A2)からなる、プロピレン−エチレンランダムブロック共重合体である。
樹脂成分相互の相溶性は、固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線におけるピーク特性により特定され、エチレン含有量と結晶性の異なる成分は、o−ジクロロベンゼン溶媒を用いた−15℃〜140℃の温度範囲での昇温溶離分別法(TREF)による温度に対する溶出量(dwt%/dT)のプロットとして得られるTREF溶出曲線において2つのピークが観察されることにより特定され、更に各々の結晶性とエチレン含有量は、溶出特性により特定される。
【0013】
即ち、樹脂成分の相溶性は、固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、−60〜20℃の温度範囲で観察されるガラス転移によるピークが単一であり、かつ、そのピーク温度が0℃以下であることにより特定化される。
TREF溶出曲線における溶出特性は、65〜95℃の高温側にピークT(A1)が、45℃以下の低温側にピークT(A2)が観察され、これらの中間の温度T(A3)で2成分を分離した際に、T(A3)までに溶出する低結晶性成分(A2)はエチレンを6〜15wt%含むプロピレン・エチレンランダム共重合体で、その量W(A2)の比率は5〜70wt%であり、T(A3)までに溶出する成分を取り除いた後(溶出後)の比較的結晶性が高い成分(A1)はエチレンを0〜6wt%含むプロピレン・エチレンランダム共重合体(エチレンが0wt%の場合はプロピレン単独重合体である)で、その量W(A1)の比率は95〜30wt%であることで特定される。
【0014】
これらの樹脂成分は、エチレン含有量や結晶性が異なるにもかかわらず、相分離構造を取ることが無いため、界面での剥離や無機充填剤の偏在が生じ難いことで難燃化における諸問題の解決を可能にし、これらの成分において低結晶性成分(A2)は外力が加わった際の無機充填剤界面への応力を低下せしめることで引張破断伸びの低下や曲げ白化の抑制に効果を発揮するものである。
更に、比較的結晶性が高い成分(A1)は、高結晶側への結晶性分布が少ないことを特徴とし、結晶性分布が狭いことからより均一で微細な結晶構造を取ることで引張破断伸びの改良に寄与する。これはTREF溶出曲線において、99wt%が溶出する温度T(A4)が98℃以下であることが望ましく、90℃以下がより好ましく、ピークT(A1)からT(A4)までの温度差ΔT(T(A4)−T(A1))が5℃以下であることにより特定される。
【0015】
このプロピレン−エチレン系共重合体成分(A)は、各成分の組成や結晶性分布が狭いことが必要であるため、その製造にはメタロセン系触媒を用いることが好ましく、更に結晶性及びエチレン含有量が大きく異なる2成分からなり、これらの成分を別々に製造すると、無機充填剤を加えた組成物とする際に分散不良などの問題を生じる可能性があるため、逐次重合されることが好ましい。
【0016】
添加剤として配合する熱可塑性エラストマーは、従来からエラストマーとして一般に使用されているものであり、種類は規定されないが、最も好ましくはスチレン・ビニルイソプレンブロック共重合体又はその水素添加物であり、本発明のポリプロピレン系樹脂組成物の耐白化性と耐磨耗性を一層高めるために利用され配合添加されて、柔軟性も向上させる役割を担うものである。
以上における、本発明の難燃性ポリプロピレン系樹脂組成物における基本的構成の要件の有意性と合理性及び作用効果は、後述する各実施例のデータ及び実施例と比較例の対照により実証されている。
【0017】
なお、本発明の難燃性ポリプロピレン系樹脂組成物の主要成分である、プロピレン−エチレン系共重合体成分(A)は、好ましい態様として、メタロセン系触媒を用いて、第1工程でエチレン含量0〜6wt%の結晶性プロピレン単独重合体又は結晶性プロピレン−エチレンランダム共重合体成分(A1)を95〜30wt%、第2工程でエチレン含有量が6〜15wt%の低結晶性プロピレン−エチレンランダム共重合体成分(A2)を5〜70wt%、逐次重合することで得られたものである。
また、成分(A)は、好ましい態様として、TREF溶出曲線において、2つのピークが観察され、高温側に観測されるピークT(A1)が65〜88℃の範囲にあり、低温側に観測されるピークT(A2)が45℃以下にあり、99wt%が溶出する温度T(A4)が90℃以下で、ピークT(A1)からT(A4)までの温度差ΔT(T(A4)−T(A1))が5℃以下であり、T(A1)とT(A2)両ピークの中間点の温度T(A3)までに溶出する成分(A2)の量W(A2)が30〜70wt%であり、該成分がエチレンを8〜14wt%含むプロピレン・エチレンランダム共重合体であり、T(A3)までに溶出する成分の溶出後に溶出する成分(A1)の量W(A1)が70〜30wt%であり、該成分がエチレンを1〜5wt%含むプロピレン・エチレンランダム共重合体である。
【0018】
以上において、本発明の創作の経緯と、発明の構成の特徴及び作用効果などについて概括的に記述したので、ここで本発明全体を俯瞰するために、本発明全体の構成を明確に記載すると、本発明は次の発明単位群から形成されるものであって、[1]に記載のものが基本発明であり、[2]以下の発明は基本発明に付随的な要件を加え、或いは実施態様化するものである。(なお、発明群全体をまとめて「本発明」と称している。)
【0019】
[1]下記の条件(i)〜(ii)を満たすプロピレン−エチレン系共重合体成分(A)100重量部と、金属水和物成分(B)50〜300重量部、及び熱可塑性エラストマー成分(C)5〜100重量部とを含有することを特徴とする、難燃性ポリプロピレン系樹脂組成物。
(i)固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、−60〜20℃の温度範囲で観察されるガラス転移によるピークが、単一であり、かつ、そのピーク温度が0℃以下である
(ii)o−ジクロロベンゼン溶媒を用いた−15℃〜140℃の温度範囲での昇温溶離分別法(TREF)による温度に対する溶出量(dwt%/dT)のプロットとして得られるTREF溶出曲線において、以下の条件(ii−A)〜(ii−C)を満たす
(ii−A) 溶出曲線において2つのピークが観察され、高温側に観測されるピークT(A1)が65〜95℃の範囲にあり、低温側に観測されるピークT(A2)が45℃以下にある
(ii−B) T(A1)とT(A2)両ピークの中間点の温度T(A3)までに溶出する成分(A2)の量W(A2)が5〜70wt%であり、該成分がエチレンを6〜15wt%含むプロピレン・エチレンランダム共重合体である
(ii−C) T(A3)までに溶出する成分の溶出後に溶出する成分(A1)の量W(A1)が95〜30wt%であり、該成分がエチレンを0〜6wt%含むプロピレン単独重合体又はプロピレン・エチレンランダム共重合体である
【0020】
[2]プロピレン−エチレン系共重合体成分(A)が以下の条件(iii)を満たすことを特徴とする、[1]における難燃性ポリプロピレン系樹脂組成物。
(iii)メタロセン系触媒を用いて、第1工程でエチレン含量0〜6wt%の結晶性プロピレン単独重合体成分又は結晶性プロピレン−エチレンランダム共重合体成分(A1)を95〜30wt%、第2工程でエチレン含有量が6〜15wt%の低結晶性プロピレン−エチレンランダム共重合体成分(A2)を5〜70wt%、逐次重合することで得られたものである
[3]プロピレン−エチレン系共重合体成分(A)が以下の条件(iv)を満たすことを特徴とする、[1]又は[2]における難燃性ポリプロピレン系樹脂組成物。
(iv)o−ジクロロベンゼン溶媒を用いた−15℃〜140℃の温度範囲での昇温溶離分別法(TREF)による温度に対する溶出量(dwt%/dT)のプロットとして得られるTREF溶出曲線において、以下の条件(iv−A)〜(iv−D)を満たす
(iv−A) 溶出曲線において2つのピークが観察され、高温側に観測されるピークT(A1)が65〜88℃の範囲にあり、低温側に観測されるピークT(A2)が45℃以下にある
(iv−B) T(A1)とT(A2)両ピークの中間点の温度T(A3)までに溶出する成分(A2)の量W(A2)が30〜70wt%であり、該成分がエチレンを8〜14wt%含むプロピレン・エチレンランダム共重合体である
(iv−C) T(A3)までに溶出する成分の溶出後に溶出する成分(A1)の量W(A1)が70〜30wt%であり、該成分がエチレンを1〜5wt%含むプロピレン・エチレンランダム共重合体である
(iv−D) 99wt%が溶出する温度T(A4)が90℃以下であり、ピークT(A1)からT(A4)までの温度差ΔT(T(A4)−T(A1))が5℃以下である
[4]成分(B)の金属水和物が水酸化アルミニウム及び/又は水酸化マグネシウムであることを特徴とする、[1]〜[3]のいずれかにおける難燃性ポリプロピレン系樹脂組成物。
[5]成分(C)の熱可塑性エラストマーがスチレン・ビニルイソプレンブロック共重合体又はその水素添加物であることを特徴とする、[1]〜[4]のいずれかにおける難燃性ポリプロピレン系樹脂組成物。
[6]自消性成形体用であることを特徴とする、[1]〜[5]のいずれかにおける難燃性ポリプロピレン系樹脂組成物。
[7][1]〜[6]のいずれかにおける難燃性ポリプロピレン系樹脂組成物を成形してなる成形体。
[8][7]の成形体が押出成形により製造されたことを特徴とする押出成形体。
【発明の効果】
【0021】
本発明は、難燃性熱可塑性樹脂組成物において、燃焼時(火災時)の有毒ガスの発生の惧れがなく難燃剤のブリードアウトもない無機系難燃剤を多量に配合して、熱可塑性樹脂の難燃性を充分に高めても優れた機械的樹脂性能(特に、引張強度)を保有し、外力に対する耐白化性(外部力による製品の折り曲げ部分の白化現象などへの耐性)や耐磨耗性も向上され、良好な柔軟性や成形性などを併せ備える、難燃性(自消性)の高い成形体用熱可塑性樹脂材料及びそれによる難燃性成形体を実現する。
【発明を実施するための最良の形態】
【0022】
以下においては、本発明における発明群を詳細に説明するために、発明の実施の形態を具体的に詳しく述べる。
1.難燃性について
一般にプラスチック材料、特に熱可塑性樹脂成形製品は、概して易燃性なので、成形製品の使用における安全性などのために難燃化の要請が以前から強くなされている。
従来、ポリプロピレン系樹脂においては、充分な難燃性を付与するために多量の無機系難燃剤を配合しなければならず、機械的特性、特に引張伸度の特性と難燃性特性とを満足させること、即ち、JIS K7201における酸素指数を21以上にすることは困難であった。
【0023】
なお、本発明において、酸素指数が21付近未満の場合を可燃性といい、21付近以上の場合を難燃性といい、難燃性が高い場合には、より好ましい態様として自己消火性(自消性)という。酸素指数(OI)は以下のものである。
180℃の温度で、3mmのシートを圧縮(プレス)成形にて作成し、幅6.5mm×長さ150mmの試験片を切削して得た。得られた試験片をJIS K−7201の手法に則り、酸素指数を測定した。
酸素測定装置を用い、試験片の燃焼時間が3分以上継続して燃焼するか、着炎後の燃焼長さが50mm以上に燃え続けるのに必要な最低酸素流量の測定によって酸素指数を求めた。
OI(%)={[O]/([O]+[N])}×100
[O]:酸素の流量L/分
[N]:窒素の流量L/分
【0024】
2.本発明の樹脂組成物の構成について
(1)基本構成
本発明において採用される、良好な柔軟性と透明性及び耐熱性と剛性などを併せ備え、成形性にも優れたポリプロピレン系樹脂材料である、特定のプロピレン−エチレンランダムブロック共重合体は、各樹脂成分の相溶性が非常に優れており難燃性樹脂材料に利用すれば、多量の無機系難燃剤の分散性が大幅に改善されると共に、歪が加わった際の応力が低下することで、ポリプロピレン系樹脂と難燃剤の界面に応力がかかることが抑制されて機械的強度(特に、引張伸度)の低下を阻止でき、更に耐白化性も向上される。
本発明の難燃性ポリプロピレン系樹脂組成物は、特定のプロピレン−エチレン系共重合体成分(A)と、難燃性を付与する無機充填剤である金属水和物成分(B)、及び耐摩耗性を向上させる添加配合剤の熱可塑性エラストマー成分(C)とからなり、必要に応じて本発明の効能(作用効果)を阻害しない範囲内で付加的成分を加えることができる。各々の成分は諸問題の解決のために各種の要件を満たす必要がある。以下に各成分の詳細な説明を加える。
【0025】
(2)プロピレン−エチレン系共重合成分(A)
(i)基本的特徴
従来のポリプロピレン系樹脂においては、プロピレンを主体とする比較的結晶性の高い成分の引張破断伸びを改良するために、低結晶性成分としてエチレン系エラストマーをブレンドしたり、多くのエチレンを含有する低結晶性成分を逐次重合により製造する、通称されるブロックコポリマーを用いるといった手法は広く当該業者に知られるところであるが、これらの低結晶性成分は、プロピレンを主体とする成分と相溶性が低いため相分離し、各々別々の相となる相分離構造を取る。
このような構造の樹脂中に、難燃性を付与するための無機充填剤(無機系難燃剤)を大量に加えた場合、各相で軟化温度や充填剤との相性が異なることにより、無機充填剤の偏在が発生し、無機充填剤濃度が高い部分で破壊が生じ易くなるため引張破断伸びの改良効果を充分に発揮することができない。また、外力が加わった際に、無機充填剤と樹脂間だけでなく、樹脂成分の各相の界面でも剥離が生じるために、曲げ白化は極めて悪化するという問題が生じてしまう。
本発明における、プロピレン−エチレン系共重合成分(A)は、上記の従来のプロピレン系樹脂材料とは異なり、基本的な特徴として、物性のバランスを改良するためにエチレン含有量と結晶性の異なる、以下の特性により規定されるところの、大分して2つの成分(A1)及び(A2)からなる。
【0026】
(ii)固体粘弾性測定による特定
本発明に用いられるプロピレン−エチレン系共重合成分(A)は、引張伸度(引張破断伸び)を改良するための低結晶性の成分(A2)を含みながらも、プロピレンを主体とする比較的結晶性の高い成分(A1)と相分離構造を取らないことが必要である。
【0027】
相分離構造を取っていないことは固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、−60〜20℃の間にtanδ曲線が単一のピークを有し、そのピーク温度が0℃以下であることで特定化される。
これは、固体粘弾性測定において、通常プロピレン−エチレン系共重合体樹脂のガラス転移温度はtanδ曲線のピークとして−60〜20℃の間に観測されるが、単一相においてはその相のガラス転移温度だけが観測されるのに対し、相分離構造を取る場合には、各相各々のガラス転移温度が別々に観測されるために複数のピークを示すことに基づく。
【0028】
ここで、固体粘弾性測定とは、具体的には、短冊状の試料片に特定周波数の正弦歪みを与え、発生する応力を検知することで行う。ここでは周波数は1Hzを用い測定温度は−60℃から段階状に昇温し、サンプルが融解して測定不能になるまで行う。また、歪みの大きさは0.1〜0.5%程度が推奨される。得られた応力から、公知の方法によって貯蔵弾性率と損失弾性率を求め、これの比で定義される損失正接(=損失弾性率/貯蔵弾性率)を温度に対してプロットすると0℃以下の温度領域で鋭いピークを示す。一般に0℃以下でのtanδのピークは非晶部のガラス転移を観測するものであり、ここでは本ピーク温度をガラス転移温度Tg(℃)として定義する。ガラス転移によるピーク温度は、好ましくは−5℃以下、より好ましくは−20〜−10℃である。
なお、測定温度範囲全体においては、20〜120℃程度に別の緩和のピークが現れる場合があり、α緩和と呼ばれる結晶緩和で、本発明で対象としているガラス転移とは区別される。
【0029】
(iii)昇温溶離分別法(TREF)
本発明に用いられるプロピレン−エチレン系共重合成分(A)に含まれる低結晶性のプロピレン・エチレンランダム共重合体成分(A2)は、相分離構造を取らず、かつ、充分な引張破断伸びの改良効果を有するために、エチレン含量を増加させて結晶性を充分に低下させることが必要であり、かつ、エチレン含有量が増加すると相溶性は低下していくので、特定の範囲内に抑えなくてはならない。
また、本発明に用いられるプロピレン−エチレン系共重合成分(A)に含まれる比較的結晶性の高いプロピレン・エチレンランダム共重合体成分(A1)は、高結晶側への結晶性分布が少ないことを特徴とし、結晶性分布が狭いことからより均一で微細な結晶構造を取ることで引張破断伸びが改良される。
【0030】
これら各成分の結晶性と結晶性分布や比率は、昇温溶離分別法(TREF)により特定される。
プロピレン−エチレン系共重合体の結晶性分布をTREFにより評価する手法は、当該業者によく知られるものであり、例えば、次の文献などで詳細な測定法が示されている。
G.Glockner,J.Appl.Polym.Sci.:Appl.Polym.Symp.;45,1−24(1990)
L.Wild,Adv.Polym.Sci.;98,1−47(1990)
J.B.P.Soares,A.E.Hamielec,Polymer;36,
8,1639−1654(1995)
TREF測定では、結晶性が低いものほど低温で溶出し、結晶性の高いものほど高温で溶出するため、ポリプロピレン系樹脂の結晶性がどのような分布を持っているかを正確に把握することができる。
本発明におけるプロピレン−エチレンランダムブロック共重合体は、成分(A1)及び(A2)各々の結晶性に大きな違いがあり、両成分をTREFにより精度良く分別することが可能である。
【0031】
本発明においては、TREF測定とは、具体的には次の様に測定する。試料を140℃でo−ジクロロベンゼン(0.5mg/mLのBHTを含む)に溶解し溶液とする。これを140℃のTREFカラムに導入した後に、8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で−15℃まで冷却し、60分間保持する。その後、溶媒であるo−ジクロロベンゼン(0.5mg/mLのBHTを含む)を1mL/分の流速でカラムに流し、TREFカラム中で−15℃のo−ジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、昇温に沿った溶出曲線を得る。
【0032】
(iv)溶出曲線におけるピーク温度による特定
溶出曲線は、o−ジクロロベンゼン溶媒を用いた−15℃〜140℃の温度範囲での昇温溶離分別法(TREF)による温度に対する溶出量(dwt%/dT)のプロットとして得られるTREF溶出曲線である。
本発明に用いられるプロピレン−エチレン系共重合成分(A)は、大分して2つの成分からなり各々の結晶性が異なるため、TREF溶出曲線において、2つのピークが観察される。ピークが2つ観察されないということは、成分が単一か、観測されないほど一方の量が少ないか、ピークを示さないほど結晶性分布が広いということで、いずれの場合にも充分な引張破断伸びの改良効果は得られないことから、本発明に用いられるプロピレン−エチレン系共重合成分(A)は2つのピークが観察されることが必要である。
【0033】
また、TREF測定において、溶出温度が高い成分ほど結晶性は高く、低い成分ほど結晶性は低下する。本発明に用いられるプロピレン−エチレン系共重合成分(A)中に含まれる比較的結晶性の高いプロピレン・エチレンランダム共重合体成分(A1)は、結晶性が低過ぎると成形性の悪化や耐熱性の顕著な低下といった問題を生じるため結晶性を低下させ過ぎてはならず、ピーク温度T(A1)は65℃以上であることが必要である。一方、結晶性が高くなり過ぎると引張破断伸びは低下するためT(A1)は95℃以下であることが必要である。
一方、本発明に用いられるプロピレン−エチレン系共重合成分(A)中に含まれる低結晶性のプロピレン・エチレンランダム共重合体成分(A2)は、結晶性が充分に低下していないと引張破断伸びの改良効果を発揮することができないため、ピーク温度T(A2)は45℃以下であることが必要である。
【0034】
プロピレン−エチレン系共重合成分(A)中に含まれる比較的結晶性の高いプロピレン・エチレンランダム共重合体成分(A1)と低結晶性のプロピレン・エチレンランダム共重合体成分(A2)は、TREF溶出曲線において観察される両成分のピークの中間の温度T(A3)でほぼ分離することができる。
ここで、正確に数式にて表現すると、T(A3)={T(A1)+T(A2)}/2である。
このとき、T(A3)までに溶出する成分は低結晶性のプロピレン・エチレンランダム共重合体成分(A2)であり、その量W(A2)は5〜70wt%である。これに従って、T(A3)までに溶出する成分を取り除いた後(溶出後)の成分は比較的結晶性の高いプロピレン・エチレンランダム共重合体成分(A1)であり、その量W(A1)は95〜30wt%である。
【0035】
W(A2)は引張破断伸びを改良するために必要な成分であり、W(A2)が5wt%未満の場合には充分な改良効果を得ることができないため、W(A2)は少なくとも5wt%以上であり、充分な改良効果を発揮するためには30wt%以上であることが好ましく、40wt%以上であることがより好ましい。すなわちW(A1)は95wt%以下であり、70wt%以下であることが好ましく、60wt%以下であることがより好ましい。一方、W(A2)が多過ぎる、即ち比較的結晶性の高い成分の量が少なくなり過ぎると、成形性の悪化や耐熱性の低下といった問題が発生するため、W(A2)は70wt%以下であることが必要であり、60wt%以下であることが好ましい。すなわちW(A1)は30wt%以上であることが必要でありあり、40wt%以上であることが好ましい。
このとき分別された成分をそれぞれ取り出し、各成分中を分析することで、各成分中のエチレン含有量を測定することができる。ここで、T(A3)までに溶出する低結晶性のプロピレン・エチレンランダム共重合体成分(A2)は、結晶性が充分に低下していないと引張破断伸びの改良効果を発揮することができないため、ピーク温度T(A2)は45℃以下であることが必要であり、好ましくは10〜40℃、より好ましくは20〜30℃である。このときプロピレン・エチレンランダム共重合体の結晶性はエチレン含有量が多いほど低下する傾向があるため、本発明において6wt%以上、好ましくは8wt%以上、のエチレンを含有することが必要である。一方で、エチレン含有量が多くなり過ぎると相分離構造を取ることから、相分離を生じない範囲内に抑えることが肝要で多くとも15wt%、好ましくは14wt%、であることが必要である。
【0036】
一方で、T(A3)までに溶出する成分を取り除いた後(溶出後)の比較的結晶性の高いプロピレン・エチレンランダム共重合体成分(A1)は、成形性や耐熱性を維持するためにピークT(A1)が65〜95℃の範囲にあることが必要で、好ましくは69〜88℃、より好ましくは73〜83℃である。成分(A1)の結晶性が高過ぎると樹脂成分の相溶性が低下するので、このときエチレン含有量は0〜6wt%、好ましくは1〜5wt%、より好ましくは2〜4wt%の範囲にあることが必要となる。
ここで、成分(A1)の結晶性が高いと、成分(A2)で相溶性を改良したとしても、難燃性を向上させるにはできるだけ多くの無機充填剤を添加することが好ましいため、このときには引張破断伸びが不足する場合がある。これをさらに改良するためには、成分(A1)の結晶性も特定の範囲にあることが好ましい。
即ち、成分(A1)自体の結晶性を耐熱性や成形性を維持できる範囲で下げ、また、結晶性分布が狭いものを選択することで結晶構造が微細化し、引張破断伸びは改善される。このためには、成分(A1)中のエチレン含有量は1wt%以上が好ましく、このとき結晶性の尺度であるTREF溶出曲線におけるピーク温度T(A1)は88℃以下であることが好ましい。このとき、T(A1)が下がったとしても、結晶性分布が広がり高結晶性成分が多く存在する場合には改良効果が低下することから、99wt%が溶出する温度T(A4)が90℃以下であることが好ましく、85℃以下であることがより好ましい。そして、ピークT(A1)からT(A4)までの温度差ΔT(T(A4)−T(A1))が5℃以下であることも好ましく、4℃以下であることがより好ましい。
【0037】
(v)エチレン含有量の測定法
イ.成分(A1)と(A2)の分離
先のTREF測定により求めたT(C)を基に、分取型分別装置を用い昇温カラム分別法により、T(A3)可溶成分の成分(A2)と、T(A3)不溶成分の成分(A1)とに分別し、NMRにより各成分のエチレン含有量を求める。
昇温カラム分別法とは、例えば、Macromolecules;21,314〜319(1988)に開示されたような測定方法をいう。
【0038】
ロ.分別条件
直径50mm・高さ500mmの円筒状カラムにガラスビーズ担体(80〜100メッシュ)を充填し、140℃に保持する。次に、140℃で溶解した試料のo−ジクロロベンゼン(ODCB)溶液(10mg/mL)200mLを前記カラムに導入する。その後、該カラムの温度を0℃まで10℃/時間の降温速度で冷却する。0℃で1時間保持後、10℃/時間の昇温速度でカラム温度をT(A3)まで加熱し、1時間保持する。なお、一連の操作を通じてのカラムの温度制御の精度は±1℃とする。
次いで、カラム温度をT(A3)に保持したまま、o−ジクロロベンゼンを20mL/分の流速で800mL流すことにより、カラム内に存在するT(A3)で可溶な成分を溶出させ回収する。
次いで10℃/分の昇温速度で当該カラム温度を140℃まで上げ、140℃で1時間静置後、140℃の溶媒(ODCB)を20mL/分の流速で800mL流すことにより、T(A3)で不溶な成分を溶出させ回収する。
分別によって得られたポリマーを含む溶液は、エバポレーターを用いて20mLまで濃縮された後、5倍量のメタノール中に析出される。析出ポリマーを濾過して回収後、真空乾燥器により一晩乾燥する。
【0039】
ハ.NMRによる測定
上記の分別により得られた成分(A1)と(A2)それぞれについてのエチレン含有量は、プロトン完全デカップリング法により以下の条件に従って測定した、13C−NMRスペクトルを解析することにより求める。
機種:日本電子(株)製 GSX-400又は、同等の装置(炭素核共鳴周波数100MHz以上) 溶媒:o−ジクロロベンゼン:重ベンゼン=4:1(体積比) 濃度:100mg/mL 温度:130℃ パルス角:90° パルス間隔:15秒 積算回数:5,000回以上
【0040】
スペクトルの帰属は、例えば、Macromolecules;17,1950 (1984)などを参考に行えばよい。上記の条件により測定されたスペクトルの帰属は、次の表Aの通りである。表中のSααなどの記号は、Carman他(Macromolecules;10,536(1977))の表記法に従い、Pはメチル炭素、Sはメチレン炭素、Tはメチン炭素をそれぞれ表わす。
【0041】
【表A】

【0042】
以下において、「P」を共重合体連鎖中のプロピレン単位、「E」をエチレン単位とすると、連鎖中にはPPP、PPE、EPE、PEP、PEE、及びEEEの6種類のトリアッドが存在し得る。Macromolecules;15,1150(1982)などに記されているように、これらのトリアッドの濃度と、スペクトルのピーク強度とは、以下の(1)〜(6)の関係式で結び付けられる。
[PPP]=k×I(Tββ) (1)
[PPE]=k×I(Tβδ) (2)
[EPE]=k×I(Tδδ) (3)
[PEP]=k×I(Sββ) (4)
[PEE]=k×I(Sβδ) (5)
[EEE]=k×{I(Sδδ)/2+I(Sγδ)/4} (6)
ここで[ ]はトリアッドの分率を示し、例えば[PPP]は全トリアッド中のPPPトリアッドの分率である。
したがって、
[PPP]+[PPE]+[EPE]+[PEP]+[PEE]+[EEE] =1 (7)
である。また、k は定数であり、Iはスペクトル強度を示し、例えばI(Tββ)は、Tββに帰属される28.7ppmのピークの強度を意味する。
上記(1)〜(7)の関係式を用いることにより、各トリアッドの分率が求まり、さらに下式によりエチレン含有量が求まる。
エチレン含有量(モル%)=([PEP]+[PEE]+[EEE])
×100
なお、本発明のプロピレンランダム共重合体には、少量のプロピレン異種結合(2,1−結合及び/又は1,3−結合)が含まれ、それにより、以下の表Bに記載された微小なピークを生じる。
【0043】
【表B】

【0044】
正確なエチレン含有量を求めるには、これらの異種結合に由来するピークも考慮して計算に含める必要があるが、異種結合由来のピークの完全な分離・同定が困難であり、また異種結合量が少量であることから、本発明のエチレン含有量は、実質的に異種結合を含まないチーグラー・ナッタ系触媒で製造された共重合体の解析と同じく、(1)〜(7)の関係式を用いて求めることとする。
エチレン含有量のモル%から重量%への換算は以下の式を用いて行う。
エチレン含有量(重量%)=(28×X/100)/{28×X/100+42×(1−X/100)}×100
ここでXはモル%表示でのエチレン含有量である。
ブロック共重合体全体のエチレン含有量は、上記より測定された成分(A)、(B)それぞれのエチレン含有量[E]A、[E]B、及び、TREFより算出される各成分の重量比率W(A)、W(B)[wt%]から以下の式により算出される。
[E]W=[E]A×W(A)/100+[E]B×W(B)/100 (wt%)
【0045】
(3)金属水和物成分(B)
金属水和物成分(B)は燃焼時(火災時)の有毒ガスの発生や毒性の問題なしに難燃性を発揮せしめるのに必要な成分であり、好ましくは、金属水和物である無機系難燃剤の水酸化アルミニウム及び/又は水酸化マグネシウムが選択される。
これらは、分散性の観点から、平均粒径は0.2〜4μmが好ましく、より好ましくは0.5〜2μmである。更に、所望により表面処理を行ってもよい。表面処理剤としては、ステアリン酸、シランカップリング剤、チタネートカップリング剤などを挙げることができる。しかし表面処理量が多くなると耐磨耗性の低下の問題が生じるため処理剤の含有量としては5重量%以下が望ましい。これらの中でも、特に水酸化マグネシウムが実用性能の点で最適である。
また、金属水和物成分(B)には、必要に応じて、赤燐、ポリ燐酸塩、尿素化合物、シリコーンオイル、シリコーン粉末などを難燃助剤として配合してもよい。
【0046】
このとき、難燃性成形体の酸素指数(JIS K7201 3mm厚シート)は、好ましくは21以上、より好ましくは23以上、更に好ましくは25以上であり、優れた自己消火性(難燃性)を有することが求められるため、金属水和物成分(B)はポリプロピレン系樹脂100重量部に対し50〜300重量部の範囲にあることが必要であり、好ましくは100〜200重量部である。金属水和物成分(B)が50重量部未満であると、適切な難燃性が得られず、300重量部を超えると、目的の引張破断伸びや、曲げ白化性の向上が得られない。
【0047】
(4)熱可塑性エラストマー成分(C)
(i)熱可塑性エラストマー
熱可塑性エラストマーは、一般に熱可塑性樹脂材料の改質剤でありポリプロピレン系樹脂組成物の柔軟性や耐衝撃性を高めるために配合添加されるものである。
本発明においては熱可塑性エラストマー成分(C)の配合添加は、柔軟性と一見相反する耐摩耗性をも向上されるのに寄与する。熱可塑性エラストマー成分(C)としては、スチレン・ビニルイソプレンブロック共重合体及びその水素添加物、エチレン・プロピレン共重合体、エチレン・プロピレンジエン三元共重合共重合体、エチレン・オクテン共重合体などのエチレンを主成分とするエチレンとα−オレフィンとの共重合体、スチレン・エチレンブタジエン・スチレン共重合体及び水素添加物、イソプレン共重合体などを挙げることができる。これらの中でスチレン・ビニルイソプレンブロック共重合体を用いることが耐磨耗性の観点より好ましい。熱可塑性エラストマー成分(C)のMFRは0.05〜15g/10分、好ましくは1〜10g/10分のものを挙げることができる。
【0048】
(ii)配合量
熱可塑性エラストマー成分(C)の配合割合は、成分(A)を100重量部としたときに5〜100重量部、好ましくは10〜100重量部、より好ましくは10〜80重量部である。
配合割合が5重量部を下回る量では、充分な柔軟性や耐白化性及び耐磨耗性を得ることができず、100重量部を上回る量では経済性に不利である。
【0049】
3.本発明の組成物材料の製造方法
(1)組成物の製造方法
本発明における難燃性ポリプロピレン系樹脂組成物は、プロピレン−エチレン系共重合体成分(A)と金属水和物成分(B)及び熱可塑性エラストマー成分(C)を必須成分とし、所望により本発明の効能(作用効果)を阻害しない範囲で付加的成分を配合し、これらを二軸押出機、ロール、バンバリーミキサーなどの公知の溶融混練法を用いて混合して製造することができる。
例えば、各成分を常温において混合した後、二軸の混練押出機を用いて溶融混練を行って製造してもよいし、混練押出機の途中にフィード孔を設け、そこから金属水和物をフィードし、溶融混練を同時に行うことで製造してもよい。
本発明の難燃性成形体は、上記で得られた難燃性プロピレン系樹脂組成物をペレットとしたものを用いるのが一般的であるが、マスターバッチ法や、ドライブレンド法では、ペレットブレンドの状態で成形する、または、重量式フィーダなどを用いて、連続計量し秤量しつつ成形することもできる。
【0050】
(2)プロピレン−エチレン系共重合体成分(A)の製造方法
本発明に用いられるプロピレン−エチレン系共重合体成分(A)は、比較的結晶性の高いプロピレン・エチレンランダム共重合体成分(A1)と低結晶性のプロピレン・エチレンランダム共重合体成分(A2)の、大分して2種の結晶性が異なるプロピレン・エチレンランダム共重合体からなり、本発明の要件を満たす限りどのような製造法を用いてもかまわない。
しかし、成分(A1)と成分(A2)は結晶性が異なるため、融解温度も大きく異なり、各成分が別々に溶融混練されると、成分(A2)は極めて早い段階で溶融し、その後温度が更に上昇してから成分(A1)が溶融するため、先に融けた成分(A2)中に無機充填剤が集中し、分散不良が生じ易くなる。そこで、成分(A1)と成分(A2)は逐次重合することで製造されることが最も好ましい。
【0051】
(3)重合方法
(i)成分(A1)と成分(A2)の逐次重合
本発明の成分(A1)と成分(A2)を製造実施するに際しては、成分(A1)と成分(A2)を逐次重合することが好ましい。
このとき、成分(A2)はエチレン含有量が多く単独ではべたつき易い共重合体であるので、反応器への付着などの問題を防止するために、成分(A1)を重合した後で成分(A2)を重合する方法を用いることが好ましい。
【0052】
逐次重合を行う際には、バッチ法と連続法のいずれを用いることも可能であるが、一般的には生産性の観点から連続法を用いることが望ましい。バッチ法の場合には時間と共に重合条件を変化させることにより単一の反応器を用いて成分(A1)と成分(A2)を個別に重合することが可能である。本発明の効能を阻害しない限り、複数の反応器を並列に接続して用いてもよい。
連続法の場合には成分(A1)と成分(A2)を個別に重合する必要から2個以上の反応器を直列に接続した製造設備を用いる必要があるが、本発明の効能を阻害しない限り成分(A1)及び成分(A2)のそれぞれについて複数の反応器を直列及び/又は並列に接続して用いてもよい。
【0053】
(ii)重合プロセス
重合プロセスは、スラリー法、バルク法、気相法など任意の重合方法を用いることができる。バルク法と気相法の中間的な条件として超臨界条件を用いることも可能であるが、実質的には気相法と同等であるため、特に区別することなく気相法に含める。
ここでエチレン含有量の多い成分(A2)は炭化水素などの有機溶媒や液化プロピレンに溶けやすいため、成分(A2)の製造に際しては気相法を用いることが望ましい。
結晶性プロピレン−エチレンランダム共重合体成分(A1)の製造に対してはどのプロセスを用いても特に問題はないが、比較的結晶性の低い成分(A1)を製造する場合には、付着などの問題を避けるために気相法を用いることが望ましい。
したがって、連続法を用いて、まず成分(A1)をバルク法又は気相法にて重合し、引き続き成分(A2)を気相法にて重合することが最も望ましい。
【0054】
(iii)その他の重合条件
重合温度は通常用いられている温度範囲であれば特に問題なく用いることができる。具体的には、0〜200℃、より好ましくは40〜100℃の範囲を用いることができる。
重合圧力は選択するプロセスによって差異が生じるが、通常用いられている圧力範囲であれば特に問題なく用いることができる。具体的には、0より大きく200MPaまで、より好ましくは0.1〜50MPaの範囲を用いることができる。その際に、窒素などの不活性ガスを共存させることもできる。
第一工程で成分(A1)、第二工程で成分(A2)の逐次重合を行う場合、第二工程にて系中に重合抑制剤を添加することが望ましい。第二工程のエチレン−プロピレンランダム共重合を行う反応器に重合抑制剤を添加すると、得られるパウダーの粒子性状(流動性など)やゲルなどの製品品質を改良することができる。この手法については各種技術検討がなされており、一例として特公昭63−54296号公報、特開平7−25960号公報、特開2003−2939号公報などを例示することができる。本発明にも当該手法を適用することが望ましい。
【0055】
(4)メタロセン系触媒
各成分は結晶性分布が狭い、即ち組成分布が狭いことが必要であることから、従来広くポリプロピレン系樹脂の製造に用いられているチーグラー・ナッタ型触媒では本発明の必要要件を満たすプロピレン・エチレンランダム共重合体を製造することは困難である。そこで、その製造にはメタロセン系触媒を用いることが最も好ましい。
メタロセン系触媒の種類は、本願発明の性能を有する共重合体を生成できる限りは、特に限定はされるものではないが、本発明の要件を満たすために、例えば、下記に示すような成分(a)及び(b)更に必要に応じて使用する成分(c)からなるメタロセン系触媒を用いることが好ましい。
成分(a):段落0056の一般式(1)で表される遷移金属化合物から選ば れる少なくとも1種のメタロセン遷移金属化合物
成分(b):下記(b−1)〜(b−4)から選ばれる少なくとも1種の固体
成分
(b−1)有機アルミオキシ化合物が担持された微粒子状担体
(b−2)成分(a)と反応して成分(a)をカチオンに変換することが 可能なイオン性化合物又はルイス酸が担持された微粒子状担体
(b−3)固体酸微粒子
(b−4)イオン交換性層状珪酸塩
成分(c):有機アルミニウム化合物
【0056】
(i)成分(a)
成分(a)としては、下記一般式(1)で表される遷移金属化合物から選ばれる少なくとも1種のメタロセン遷移金属化合物を使用することができる。
Q(C4−a−aR)(C4−b−bR)MeXY (1)
[ここで、Qは、2つの共役五員環配位子を架橋する2価の結合性基を示し、Meはチタン、ジルコニウム、ハフニウムから選ばれる金属原子を示し、X及びYは、水素原子、ハロゲン原子、炭化水素基、アルコキシ基、アミノ基、窒素含有炭化水素基、リン含有炭化水素基又はケイ素含有炭化水素基を示し、X及びYは、それぞれ独立に、即ち同一でも異なっていてもよい。R及びRは、水素、炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基又はリン含有炭化水素基を示す。a及びbは置換基の数である。]
【0057】
詳しくは、Qは、2つの共役五員環配位子を架橋する2価の結合性基を表し、例えば、2価の炭化水素基、シリレン基ないしオリゴシリレン基、炭化水素基を置換基として有するシリレン基或いはオリゴシリレン基、又は炭化水素基を置換基として有するゲルミレン基などが例示される。この中でも好ましいものは2価の炭化水素基と炭化水素基を置換基として有するシリレン基である。
X及びYは、水素原子、ハロゲン原子、炭化水素基、アルコキシ基、アミノ基、窒素含有炭化水素基、リン含有炭化水素基又はケイ素含有炭化水素基を示し、このうちで好ましいものとしては、水素、塩素、メチル、イソブチル、フェニル、ジメチルアミド、ジエチルアミド基などを例示することができる。
及びRは、水素、炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基又はリン含有炭化水素基を表す。炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、フェニル基、ナフチル基、ブテニル基、ブタジエニル基などが例示される。また、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基又はリン含有炭化水素基としては、メトキシ基、エトキシ基、フェノキシ基、トリメチルシリル基、ジエチルアミノ基、ジフェニルアミノ基、ピラゾリル基、インドリル基、ジメチルフォスフィノ基、ジフェニルフォスフィノ基、ジフェニルホウ素基、ジメトキシホウ素基などを典型的な例として例示できる。これらの中で、炭素数1〜20の炭化水素基であることが好ましく、メチル基、エチル基、プロピル基、ブチル基であることが特に好ましい。
ところで、隣接したRとRは、結合して環を形成してもよく、この環上に炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、窒素含有炭化水素基、酸素含有炭化水素基、ホウ素含有炭化水素基又はリン含有炭化水素基からなる置換基を有していてもよい。
Meは、チタン、ジルコニウム、ハフニウムの中から選ばれる金属原子であり、好ましくはジルコニウム、ハフニウムである。
【0058】
以上において記載した成分(a)の中で、本発明のプロピレン系重合体の製造に好ましいものは、炭化水素置換基を有するシリレン基、ゲルミレン基或いはアルキレン基で架橋された置換シクロペンタジエニル基、置換インデニル基、置換フルオレニル基、置換アズレニル基を有する配位子からなる遷移金属化合物であり、特に好ましくは、炭化水素置換基を有するシリレン基或いはゲルミレン基で架橋された2,4−位置換インデニル基、2,4−位置換アズレニル基を有する配位子からなる遷移金属化合物である。
【0059】
非限定的な具体例としては、ジメチルシリレンビス(2−メチル−4−フェニルインデニル)ジルコニウムジクロリド、ジフェニルシリレンビス(2−メチル−4−フェニルインデニル)ジルコニウムジクロリド、ジメチルシリレンビス(2−メチルベンゾインデニル)ジルコニウムジクロリド、ジメチルシリレンビス{2−イソプロピル−4−(3,5−ジイソプロピルフェニル)インデニル}ジルコニウムジクロリド、ジメチルシリレンビス(2−プロピル−4−フェナントリルインデニル)ジルコニウムジクロリド、ジメチルシリレンビス(2−メチル−4−フェニルアズレニル)ジルコニウムジクロリド、ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)アズレニル}ジルコニウムジクロリド、ジメチルシリレンビス(2−エチル−4−フェニルアズレニル)ジルコニウムジクロリド、ジメチルシリレンビス(2−イソプロピル−4−フェニルアズレニル)ジルコニウムジクロリド、ジメチルシリレンビス{2−エチル−4−(2−フルオロビフェニル)アズレニル}ジルコニウムジクロリド、ジメチルシリレンビス{2−エチル−4−(4−t−ブチル−3−クロロフェニル)アズレニル}ジルコニウムジクロリドなどが挙げられる。
これらの具体例の化合物のシリレン基をゲルミレン基に、ジルコニウムをハフニウムに置き換えた化合物も好適な化合物として例示される。
なお、触媒成分は本発明の重要要素ではないので、煩雑な列記を避け、代表的な例示に限定しているが、これにより本発明の有効範囲が制限されることが無いのは自明のことである。
【0060】
(ii)成分(b)
成分(b)としては、上述した成分(b−1)〜成分(b−4)から選ばれる少なくとも1種の固体成分を使用する。これらの各成分は公知のものであり、公知技術の中から適宜選択して使用することができる。その具体的な例示や製造方法については、特開2002−284808公報、特開2002−53609号公報、特開2002−69116号公報、特開2003−105015号公報などに詳細な例示がある。
ここで、成分(b−1)及び成分(b−2)に用いられる微粒子状担体としては、シリカ、アルミナ、マグネシア、シリカアルミナ、シリカマグネシアなどの無機酸化物、塩化マグネシウム、オキシ塩化マグネシウム、塩化アルミニウム、塩化ランタンなどの無機ハロゲン化物、更には、ポリプロピレン、ポリエチレン、ポリスチレン、スチレンジビニルベンセン共重合体、アクリル酸系共重合体などの多孔質の有機担体を挙げることができる。
【0061】
成分(b)の非限定的な具体例としては、成分(b−1)として、メチルアルモキサン、イソブチルアルモキサン、メチルイソブチルアルモキサン、ブチルボロン酸アルミニウムテトライソブチルなどが担持された微粒子状担体を、成分(b−2)として、トリフェニルボラン、トリス(3,5−ジフルオロフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどが担持された微粒子状担体を、成分(b−3)として、アルミナ、シリカアルミナ、塩化マグネシウムなどを、成分(b−4)として、モンモリロナイト、ザコウナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト、ベントナイト、テニオライトなどのスメクタイト族、バーミキュライト族、雲母族などが挙げられる。これらは、混合層を形成しているものでもよい。
上記成分(b)の中で特に好ましいものは、成分(b−4)のイオン交換性層状珪酸塩であり、更に好ましい物は、酸処理、アルカリ処理、塩処理、有機物処理などの化学処理が施されたイオン交換性層状珪酸塩である。
【0062】
(iii)成分(c)
必要に応じて成分(c)として用いられる有機アルミニウム化合物の例は、
一般式 AlR3−a
(式中、Rは、炭素数1から20の炭化水素基、Xは、水素、ハロゲン、アルコキシ基、aは0<a≦3の数)で示されるトリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム又はジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシドなどのハロゲン若しくはアルコキシ含有アルキルアルミニウムである。またこの他に、メチルアルミノキサンなどのアルミノキサン類なども使用できる。これらのうち特にトリアルキルアルミニウムが好ましい。
【0063】
(iv)触媒の形成
成分(a)及び成分(b)更に必要に応じて成分(c)を接触させて触媒とする。その接触方法は特に限定されないが、以下のような順序で接触させることができる。また、この接触は、触媒調製時だけでなく、オレフィンによる予備重合時又はオレフィンの重合時に行ってもよい。
1)成分(a)と成分(b)を接触させる
2)成分(a)と成分(b)を接触させた後に成分(c)を添加する
3)成分(a)と成分(c)を接触させた後に成分(b)を添加する
4)成分(b)と成分(c)を接触させた後に成分(a)を添加する
5)三成分を同時に接触させる
【0064】
本発明で使用する成分(a)と(b)及び(c)の使用量は任意である。例えば、成分(b)に対する成分(a)の使用量は、成分(b)1gに対して、好ましくは0.1μmol〜1,000μmol、特に好ましくは0.5μmol〜500μmolの範囲である。成分(b)に対する成分(c)の使用量は、成分(b)1gに対し、好ましくはアルミニウム金属の量が0.001〜100mmol、特に好ましくは0.005〜50mmolの範囲である。したがって、成分(a)に対する成分(c)の量は、金属のモル比で、好ましくは10−3〜10、特に好ましくは10−2〜10の範囲内である。
【0065】
(v)予備重合処理
本発明の触媒は、予めオレフィンを接触させて少量重合されることからなる予備重合処理に付すことが好ましい。使用するオレフィンは、特に限定はないが、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレンなどを使用することが可能であり、特にプロピレンを使用することが好ましい。
オレフィンの供給方法は、オレフィンを反応槽に定速的に或いは定圧状態になるように維持する供給方法やその組み合わせ、段階的な変化をさせるなど、任意の方法が可能である。
予備重合温度と時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。
また、予備重合量は、予備重合ポリマー量が成分(b)に対し、好ましくは0.01〜100部、更に好ましくは0.1〜50部である。
予備重合を終了した後に、触媒の使用形態に応じ、そのまま使用することが可能であるが、必要ならば乾燥を行うことも可能である。
更に、上記各成分の接触の際、若しくは接触の後に、ポリエチレン、ポリプロピレン、ポリスチレンなどの重合体やシリカ、チタニアなどの無機酸化物固体を共存させることも可能である。
【0066】
4.付加的成分
本発明の難燃性ポリプロピレン系樹脂組成物には、本発明の効能が損なわれない範囲で、他の特性を付与するために、付加的成分を配合することができる。例えば、耐熱安定剤、酸化防止剤、耐候安定剤、紫外線吸収剤、結晶造核剤、銅害防止剤、帯電防止剤、スリップ剤、抗ブロッキング剤、防曇剤、着色剤、充填剤、金属不活性剤、プロセスオイル、石油樹脂、抗菌剤、防蟻剤、可塑剤などを配合することができる。
【0067】
5.本発明の用途及び成形法
本発明の難燃性成形体の用途としては、特に自消性成形体が好適であるが、それに限定されずに、例えば、電線被覆、鋼管被覆、鋼線被覆、ケーブル被覆などの被覆押出成形体の分野、建築・土木産業資材、家電製品の部品、及び自動車部品などが挙げられる。
本発明の難燃性成形体は、例えば好適には、難燃性ポリプロピレン系樹脂組成物を被覆押出成形及び/又は異形押出成形により製造することができる。
被覆押出成形体としては、例えば、電線被覆、鋼管被覆、鋼線被覆、ケーブル被覆などを挙げることができる。
更に、射出成形法や圧縮成形法など各種の成形法により、多様な難燃性成形品への用途も展開される。
【実施例】
【0068】
本発明をさらに具体的に説明するために、以下に実施例及び比較例を掲げて説明するが、本発明をより明確にするために好適な実施の例などを記述するものであって、本発明の構成の要件の有意性と合理性及び比較例の従来技術に対する卓越性を実証するものである。
【0069】
[各データの測定方法]
1)メルトフローレート(MFR)
JIS K7210 A法 条件M に従い、以下の条件で測定した。
試験温度:230℃ 公称加重:2.16kg ダイ形状:直径2.095mm 長さ8.00mm
【0070】
2)TREF
〔溶出曲線の作成〕
段落0031に前述した方法による。
〔装置〕
(TREF部)
TREFカラム:4.3mmφ × 150mmステンレスカラム カラム充填材:100μm・表面不活性処理ガラスビーズ 加熱方式:アルミヒートブロック 冷却方式:ペルチェ素子(ペルチェ素子の冷却は水冷) 温度分布:±0.5℃ 温調器:(株)チノー・デジタルプログラム調節計KP1000(バルブオーブン) 加熱方式:空気浴式オーブン 測定時温度:140℃ 温度分布:±1℃ バルブ:6方バルブ・4方バルブ
(試料注入部)
注入方式:ループ注入方式 注入量:ループサイズ・0.1ml 注入口加熱方式:アルミヒートブロック 測定時温度:140℃
(検出部)
検出器:波長固定型赤外検出器 FOXBORO社製・MIRAN 1A 検出波長:3.42μm 高温フローセル:LC−IR用ミクロフローセル 光路長1.5mm 窓形状2φ×4mm長丸・合成サファイア窓板 測定時温度:140℃
(ポンプ部)
送液ポンプ:センシュウ科学社製・SSC−3461ポンプ
〔測定条件〕
溶媒:o−ジクロロベンゼン(0.5mg/mLのBHTを含む) 試料濃度:5mg/mL 試料注入量:0.1mL 溶媒流速 :1mL/分
【0071】
3)固体粘弾性測定
試料は下記条件により射出成形した厚さ2mmのシートから、10mm幅×18mm長×2mm厚の短冊状に切り出したものを用いた。装置はレオメトリック・サイエンティフィック社製のARESを用いた。周波数は1Hzである。測定温度は−60℃から段階状に昇温し、試料が融解して測定不能になるまで測定を行った。歪みは0.1〜0.5%の範囲で行った。
〔試験片の作成〕
規格番号:JIS−7152(ISO294−1) 成形機:東洋機械金属社製TU−15射出成形機 成形機設定温度:ホッパ下から 80,80,160,200,200,200℃ 金型温度:40℃ 射出速度:200mm/s(金型キャビティー内の速度) 射出圧力:800kgf/cm保持圧力:800kgf/cm 保圧時間:40秒 金型形状:平板(厚さ2mm 幅30mm 長さ90mm)
【0072】
4)DSC
セイコー社製DSCを用い、試料5.0mgを採り、200℃で5分間保持した後、40℃まで10℃/分の降温速度で結晶化させ、更に10℃/分の昇温速度で融解させたときの融解ピーク温度をTmとした(単位:℃)。昇温時の吸熱曲線の面積からdHmを求めた。
【0073】
5)酸素指数 段落0023に記載した方法による。
【0074】
6)エチレン含有量の算出 段落0037〜0044において詳述した方法による。
【0075】
[重合体製造例A−1]
(予備重合触媒の調製)
珪酸塩の化学処理:10リットルの撹拌翼の付いたガラス製セパラブルフラスコに、蒸留水3.75リットル、続いて濃硫酸(96%)2.5kgをゆっくりと添加した。50℃で、さらにモンモリロナイト(水澤化学社製ベンクレイSL;平均粒径=25μm 粒度分布=10〜60μm)を1kg分散させ、90℃に昇温し、6.5時間その温度を維持した。50℃まで冷却後、このスラリーを減圧濾過し、ケーキを回収した。このケーキに蒸留水を7リットル加え再スラリー化後、濾過した。この洗浄操作を、洗浄液(濾液)のpHが、3.5を越えるまで実施した。回収したケーキを窒素雰囲気下110℃で終夜乾燥した。乾燥後の重量は707gであった。
【0076】
(珪酸塩の乾燥)先に化学処理した珪酸塩は、キルン乾燥機により乾燥を実施した。仕様及び乾燥条件は以下の通りである。
回転筒:円筒状・内径50mm・加温帯550mm(電気炉) かき上げ翼付き回転数:2rpm 傾斜角:20/520 珪酸塩の供給速度:2.5g/分 ガス流速:窒素・96リットル/時間 向流乾燥温度:200℃(粉体温度)
【0077】
(触媒の調製)撹拌及び温度制御装置を有する内容積16リットルのオートクレーブを窒素で充分置換した。乾燥珪酸塩200gを導入し、混合ヘプタン1,160ml、更にトリエチルアルミニウムのヘプタン溶液(0.60M)840mlを加え、室温で撹拌した。1時間後、混合ヘプタンにて洗浄し、珪酸塩スラリーを2,000mlに調製した。次に、先に調製した珪酸塩スラリーにトリイソブチルアルミニウムのヘプタン溶液(0.71M/L)9.6mlを添加し、25℃で1時間反応させた。平行して、(r)−ジクロロ[1,1´−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4H−アズレニル}]ジルコニウム2,180mg(0.3mM)と混合ヘプタン870mlに、トリイソブチルアルミニウムのヘプタン溶液(0.71M)33.1mlを加えて、室温にて1時間反応させた混合物を、珪酸塩スラリーに加え、1時間撹拌後、混合ヘプタンを追加して5,000mlに調製した。
【0078】
(予備重合)続いて、槽内温度を40℃昇温し、温度が安定したところでプロピレンを100g/時間の速度で供給し、温度を維持した。4時間後プロピレンの供給を停止し、さらに2時間維持した。予備重合終了後、残モノマーをパージし、撹拌を停止させ約10分間静置後、上澄みを2,400mlデカントした。続いてトリイソブチルアルミニウム(0.71M/L)のヘプタン溶液9.5ml、更に混合ヘプタンを5,600ml添加し、40℃で30分間撹拌し、10分間静置した後に、上澄みを5,600ml除いた。更にこの操作を3回繰り返した。最後の上澄み液の成分分析を実施したところ有機アルミニウム成分の濃度は、1.23mモル/L、Zr濃度は8.6×10−6g/Lであり、仕込み量に対する上澄み液中の存在量は0.016%であった。続いて、トリイソブチルアルミニウム(0.71M/L)のヘプタン溶液を170ml添加した後に、45℃で減圧乾燥を実施した。触媒1g当たりポリプロピレンを2.0g含む予備重合触媒が得られた。
この予備重合触媒を用いて、以下の手順に従ってプロピレン−エチレン系共重合体の製造を行った。
【0079】
(第一工程)内容積0.4mの撹拌装置付き液相重合槽を用いてプロピレン−エチレンランダム共重合を実施した。液化プロピレンと液化エチレン、トリイソブチルアルミニウムをそれぞれ90kg/時、4.2kg/時、21.2g/時で連続的に供給した。水素供給量は第一工程のMFRが目標の値となるように調節した。更に、上記の予備重合触媒を、触媒として(予備重合ポリマーの重量は除く)、6.9g/時となるように供給した。また、重合温度が45℃となるように重合槽を冷却した。
第一工程で得られたプロピレン−エチレンランダム共重合を分析したところ、BD(嵩密度)は0.46g/cc、MFRは7.0g/10分、エチレン含有量は3.7wt%であった。
【0080】
(第二工程)内容積0.5mの撹拌式気相重合槽を用いてプロピレン−エチレンランダム共重合を実施した。第一工程の液相重合槽より重合体粒子を含んだスラリーを連続的に抜き出し、液化プロピレンをフラッシングした後、窒素で昇圧して気相重合槽へ連続的に供給した。重合槽は、温度が80℃でプロピレンとエチレンと水素の分圧の合計が1.5MPaとなるように制御した。その際にプロピレンとエチレンと水素の分圧の合計に占めるプロピレンとエチレン及び水素の濃度は、それぞれ66.97vol%、32.99vol%、420volppmとなるように制御した。さらに、活性抑制剤としてエタノールを気相重合槽に供給した。エタノールの供給量は、気相重合槽に供給される重合体粒子に随伴して供給されるトリイソブチルアルミニウム中のアルミニウムに対して、0.3mol/molとなるようにした。
得られたプロピレン−エチレン系共重合体を分析したところ、活性は8.7kg/g−触媒、BDは0.41g/cc、MFRは7.0g/10分、エチレン含有量は8.7wt%であった。
【0081】
(測定)得られたプロピレン−エチレン系共重合体(PP−1)のMFR、TREF、NMR(エチレン含量)、DMA、DSC、GPC、固体粘弾性の測定を行った。測定により得られた各データを表1に示す。得られた測定結果からPP−1は、−60〜20℃の温度範囲で観察されるガラス転移によるピークが1つであり、そのピーク温度が−16.4℃であり、TREF溶出曲線において2つのピークが観察され、プロピレン−エチレン系共重合体成分(A)として、本発明の請求項1における全ての要件を満たすといえる。
【0082】
[重合体製造例A−2]
重合体製造例A−1において、第二工程を行わずに第一工程のみを行った点以外は、重合体製造例A−1と同様にして重合を実施し、プロピレン−エチレンランダム共重合体(PP−2)の製造を行った。重合条件及び重合結果を表1に、得られたPP−2の各種分析結果を表2に示す。PP−2は、−60〜20℃の温度範囲で観察されるガラス転移によるピークが1つであり、そのピーク温度が1.8℃であり、TREF溶出曲線において1つのピークが観察された。
【0083】
[重合体製造例 A−3]
(担持型固体触媒成分の調製)
窒素置換した内容積500mlの温度計及び攪拌棒付きガラス製三つ口フラスコに、75mlの精製ヘプタン、75mlのチタンテトラブトキシド及び10gの無水塩化マグネシウムを加え、その後、フラスコを90℃まで昇温し2時間かけて無水塩化マグネシウムを完全に溶解させた。次に、フラスコを40℃まで降温してメチルハイドロジエンポリシロキサン15mlを添加することにより、塩化マグネシウム・チタンテトラブトキシド錯体を析出させた。これを精製ヘプタンで洗浄して灰白色の析出固体を得た。得られた析出固体の20gを含むヘプタンスラリー65mlを、窒素置換した内容積300mlの温度計及び攪拌棒付きガラス製三つ口フラスコに入れ、次いで、四塩化珪素8.7mlを含むヘプタン溶液25mlを室温で30分間かけて加え、その後、30℃で30分間反応させた。更に、90℃で1時間反応させ、反応終了後、精製ヘプタンで洗浄した。次に、塩化フタロイル1.6mlを含むヘプタン溶液50mlを加えて50℃で2時間反応させ、これを精製ヘプタンで再洗浄し、更に四塩化チタン25mlを加えて90℃で2時間反応させ、これをまた精製ヘプタンで洗浄して担持型固体触媒成分を得た。該担持型固体触媒成分のチタン含量は3.22重量%であった。
【0084】
(プロピレン・エチレンブロック共重合体((A)成分)の製造)
内容積200リットルの攪拌式オートクレーブをプロピレンで充分に置換した後、これに脱水及び脱酸素したn−ヘプタン60リットルを導入し、更にトリエチルアルミニウム15.0g、上記担持型固体触媒成分3.0g及び第三ブチルメチルジメトキシシラン4.3gを70℃でプロピレン雰囲気下で導入した。第1段目の重合は、オートクレーブを75℃まで昇温した後、水素濃度を13%に保ちながらプロピレンを9kg/時間の速度でフィードすることにより開始した。228分後、プロピレンのフィードを止め、75℃で90分間更に重合を継続させた。気相部プロピレンを0.2kg/cmGとなるまでパージした。次に、n−ブタノール4.9gを添加し、オートクレーブを60℃まで降温した後、第2段目の重合をプロピレン2.58kg/時間及びエチレン1.72kg/時間の速度で53分間フィードすることにより実施した。
この様にして得られたスラリーを濾過し、乾燥して粉末状のプロピレン・エチレンブロック共重合体(PP−3)を得た。該共重合体の物性は表1に示す通りである。PP−3は、−60〜20℃の温度範囲で観察されるガラス転移によるピークが2つであり、そのピーク温度は−36℃と4℃であり、TREF溶出曲線において2つのピークが観察された。
【0085】
[熱可塑性エラストマー成分(C)]
C−1:スチレン・ビニルイソプレンブロック共重合体の水素添加物としてクラレ社製 ハイブラー7311 MFR2g/10分
C−2:スチレン・エチレンブタジエン・スチレン共重合体の水素添加物として旭化成社製 タフテックM1943 MFR8g/10分
C−3:エチレン・オクテン共重合体のダウケミカル社製 エンゲージ8200 MFR10g/10分
C−4:エチレン・プロピレン共重合体のJSR社製 EP02P MFR3g/10分
【0086】
[実施例1]
(組成物の製造)配合:成分(A)として製造例A−1で得られたプロピレン−エチレン系共重合体(PP−1)100重量部と、成分(B)の水酸化マグネシウム(協和化学製・キスマー5A)を200重量部、成分(C)としてスチレン・ビニルイソプレンブロック共重合体のC−1を35重量部と、添加剤として以下の成分を配合した。
分散剤:ステアリン酸マグネシウム(試薬1級)0.3重量部
酸化防止剤1:トリス(2,4−ジ−t−ブチルフェニル)フォスファイト(チバ・スペシャルズケミカル社製・イルガフォス168)0.2重量部
酸化防止剤2:テトラキス[メチレン−3−(3´,5´−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン(チバ・スペシャルズケミカル社製・イルガノックス1010)0.1重量部
酸化防止剤3:ジミリスチルチオジプロピオネート(住友化学社製・スミライザーTPD)0.2重量部
これらをスーパーミキサーを用いてブレンドし、二軸押出機を用いて下記条件にて溶融混練し、ポリプロピレン系樹脂組成物ペレットを得た。
【0087】
(溶融混練)機器:神戸製鋼社製・NCM60 チャンバー温度:200℃ ローター回転数:500rpm 樹脂温度:200℃ 押出機のスクリュー回転数:25rpm
【0088】
(電線被覆成形)次に、得られたポリプロピレン系樹脂組成物を用い下記条件にて電線被覆成形を行った。
機器:日本製鋼所社製・電線被覆成形機 シリンダー設定温度:230℃
芯線:0.9mmφ軟銅線 被覆厚み:0.15mm 成型速度:100m/min 芯線予熱:120℃
【0089】
(評価)
イ)引張破断伸び
電線被覆押出成形体の引張り破断伸びの評価においては、長さ150mmの被覆線を用い、芯線を抜いて被覆層のみを取り出して試料とし、掴み具間距離100mm・引張速度50mm/分にて行う。引張り破断伸びは、破断点における掴み具間距離の変化率に基づき、次式により算出する。
破断点伸度=(破断点の掴み具間距離−100)/100×100[%]
ロ)曲げ白化
長さ150mmの被覆電線を用いて直径5mmの表面が滑らかな金属製の円筒に巻きつけた時の白化の状態を目視で評価した。表中の評価結果は以下の状態を表す。
○:白化が少なく殆ど目立たない △:白化がやや目立ち問題がある
×:極めて白化しやすい
ハ)酸素指数(JIS K7201準拠)
組成物ペレットをプレス成形(200℃予熱7分・加圧2Maで3分後取り出し30℃・13Maで3分間加圧冷却)し、厚さ3mmプレスシートを用い、試験片の形状IV(熱プレス品;3mm厚シート)の試料を作成し評価した。
ニ)耐磨耗性(JIS K7204準拠)
組成物ペレットを用い、射出成形機(日本製鋼製150t射出成形機・樹脂温度200℃・金型冷却温度30℃・冷却30秒)にて厚さ2mm・縦100mm・横100mmの試験片を作成し評価に供した。
試験磨耗輪はCS17を2個用い、荷重500gで1000回転における磨耗量を次の基準で評価した。
○:0〜40mg/1,000回転、 △:41〜80mg/1,000回転、 ×:81mg以上/1,000回転
配合と各種評価結果を表2に示す。
ホ)電線被覆成形性
得られた成形体の外観を目視にて観察し、次の基準で評価した。
○:押出外観良好 △:押出外観やや不良 ×:押出外観不良 配合と各種評価結果を表2に示す。
【0090】
[実施例2〜6]
成分(A)、成分(B)、成分(C)の配合割合を表2に示す通りに変更する以外は、実施例1と同様の配合で、同様の条件にて、造粒と成形及び評価を行った。配合と各種評価結果を表2に示す。
【0091】
[比較例1〜3]
成分(A)、成分(B)の配合割合を表3に示す通りに変更する以外は、実施例1と同様の配合で、同様の条件にて、造粒と成形及び評価を行った。配合と各種評価結果を表3に示す。
[比較例4〜5]
成分(A)、成分(B)、成分(C)の配合割合を表3に示す通りに変更する以外は、実施例1と同様の配合で、同様の条件にて、造粒と成形及び評価を行った。配合と各種評価結果を表3に示す。
【0092】
【表1】

【0093】
【表2】

【0094】
【表3】

【0095】
[実施例と比較例の結果の考察]
本発明の請求項1における構成の要件を全て満たす実施例1〜6の酸素指数は、酸素指数が全て30であり非常に良好な難燃性を示しており、各実施例では引張破断伸びが全て400%以上で格別に優れた引張特性を示し、耐白化性も全て良好で折り曲げた時の亀裂及び白化が非常に少なく、耐摩耗性にも優れ、電線被覆成形性に代表される成形加工性も押しなべて良好な結果になっている。
一方、比較例1では、熱可塑性エラストマーが無添加のため、耐摩耗性が多少劣っている。
比較例2では、主剤の熱可塑性樹脂が単独重合体であり、ガラス転移のピーク温度が0℃を超え、熱可塑性エラストマーも無添加のため、引張破断伸びが悪く白化性と耐摩耗性も劣っている。
比較例3では、主剤のプロピレン−エチレン系共重合体において、成分(A1)の溶出ピーク温度とW(A1)溶出量及び成分(A2)のエチレン含量が本発明の要件から外れており、熱可塑性エラストマーも無添加のため、成形加工性が低く、引張破断伸びが極端に悪く、白化性と耐摩耗性も劣っている。
比較例4では、主剤の熱可塑性樹脂が単独重合体であり、ガラス転移のピーク温度が0℃を超えているので、熱可塑性エラストマーを添加しているのに、引張破断伸びが悪く白化性と耐摩耗性も劣っている。
比較例5では、主剤のプロピレン−エチレン系共重合体において、成分(A1)の溶出ピーク温度とW(A1)溶出量及び成分(A2)のエチレン含量が本発明の要件から外れているので、熱可塑性エラストマーを添加しているのに、成形加工性が低く、引張破断伸びが悪く、白化性と耐摩耗性も劣っている。
以上の各実施例のデータ、及び各実施例と各比較例の対照結果よりして、本発明の難燃性ポリプロピレン系樹脂組成物が、従来の材料より、難燃性を保持しながら各性能において非常に優れており、本発明の構成の要件の合理性と有意性が実証され、従来技術への卓越性も明らかにされている。

【特許請求の範囲】
【請求項1】
下記の条件(i)〜(ii)を満たすプロピレン−エチレン系共重合体成分(A)100重量部と、金属水和物成分(B)50〜300重量部、及び熱可塑性エラストマー成分(C)5〜100重量部とを含有することを特徴とする、難燃性ポリプロピレン系樹脂組成物。
(i)固体粘弾性測定(DMA)により得られる温度−損失正接(tanδ)曲線において、−60〜20℃の温度範囲で観察されるガラス転移によるピークが、単一であり、かつ、そのピーク温度が0℃以下である
(ii)o−ジクロロベンゼン溶媒を用いた−15℃〜140℃の温度範囲での昇温溶離分別法(TREF)による温度に対する溶出量(dwt%/dT)のプロットとして得られるTREF溶出曲線において、以下の条件(ii−A)〜(ii−C)を満たす
(ii−A)溶出曲線において2つのピークが観察され、高温側に観測されるピークT(A1)が65〜95℃の範囲にあり、低温側に観測されるピークT(A2)が45℃以下にある
(ii−B)T(A1)とT(A2)両ピークの中間点の温度T(A3)までに溶出する成分(A2)の量W(A2)が5〜70wt%であり、該成分がエチレンを6〜15wt%含むプロピレン・エチレンランダム共重合体である
(ii−C)T(A3)までに溶出する成分の溶出後に溶出する成分(A1)の量W(A1)が95〜30wt%であり、該成分がエチレンを0〜6wt%含むプロピレン単独重合体又はプロピレン・エチレンランダム共重合体である
【請求項2】
プロピレン−エチレン系共重合体成分(A)が以下の条件(iii)を満たすことを特徴とする、請求項1に記載された難燃性ポリプロピレン系樹脂組成物。
(iii)メタロセン系触媒を用いて、第1工程でエチレン含有量0〜6wt%の結晶性プロピレン単独重合体成分又は結晶性プロピレン−エチレンランダム共重合体成分(A1)を95〜30wt%、第2工程でエチレン含有量が6〜15wt%の低結晶性プロピレン−エチレンランダム共重合体成分(A2)を5〜70wt%、逐次重合することで得られたものである
【請求項3】
プロピレン−エチレン系共重合体成分(A)が以下の条件(iv)を満たすことを特徴とする、請求項1又は請求項2に記載された難燃性ポリプロピレン系樹脂組成物。
(iv)o−ジクロロベンゼン溶媒を用いた−15℃〜140℃の温度範囲での昇温溶離分別法(TREF)による温度に対する溶出量(dwt%/dT)のプロットとして得られるTREF溶出曲線において、以下の条件(iv−A)〜(iv−D)を満たす
(iv−A)溶出曲線において2つのピークが観察され、高温側に観測されるピークT(A1)が65〜88℃の範囲にあり、低温側に観測されるピークT(A2)が45℃以下にある
(iv−B)T(A1)とT(A2)両ピークの中間点の温度T(A3)までに溶出する成分(A2)の量W(A2)が30〜70wt%であり、該成分がエチレンを8〜14wt%含むプロピレン・エチレンランダム共重合体である
(iv−C)T(A3)までに溶出する成分の溶出後に溶出する成分(A1)の量W(A1)が70〜30wt%であり、該成分がエチレンを1〜5wt%含むプロピレン・エチレンランダム共重合体である
(iv−D)99wt%が溶出する温度T(A4)が90℃以下であり、ピークT(A1)からT(A4)までの温度差ΔT(T(A4)−T(A1))が5℃以下である
【請求項4】
成分(B)の金属水和物が水酸化アルミニウム及び/又は水酸化マグネシウムであることを特徴とする、請求項1〜請求項3のいずれかに記載された難燃性ポリプロピレン系樹脂組成物。
【請求項5】
成分(C)の熱可塑性エラストマーがスチレン・ビニルイソプレンブロック共重合体又はその水素添加物であることを特徴とする、請求項1〜請求項4のいずれかに記載された難燃性ポリプロピレン系樹脂組成物。
【請求項6】
自消性成形体用であることを特徴とする、請求項1〜請求項5のいずれかに記載された難燃性ポリプロピレン系樹脂組成物。
【請求項7】
請求項1〜請求項6のいずれかに記載された難燃性ポリプロピレン系樹脂組成物を成形してなる成形体。
【請求項8】
請求項7の成形体が押出成形により製造されたことを特徴とする押出成形体。

【公開番号】特開2010−37402(P2010−37402A)
【公開日】平成22年2月18日(2010.2.18)
【国際特許分類】
【出願番号】特願2008−200297(P2008−200297)
【出願日】平成20年8月2日(2008.8.2)
【出願人】(596133485)日本ポリプロ株式会社 (577)
【Fターム(参考)】