説明

高強度鋼板の製造方法

【課題】加工性に優れかつその機械的特性の安定性に優れる引張強さ(TS)が980MPa以上の高強度鋼板の製造方法を提供する。
【解決手段】Cを所定量含有する鋼板を、オーステナイト単相域または(オーステナイト+フェライト)2相域に加熱後、マルテンサイト変態開始温度Ms未満Ms-150℃以上の温度域に冷却し、未変態オーステナイトの一部をマルテンサイト変態させたのち、昇温してマルテンサイトの焼戻しを行うことによる高強度鋼板の製造に際し、上記鋼板の板幅方向にわたる最冷部位を、目標とする冷却停止温度から(冷却停止温度+15℃)の温度域に、15秒以上100秒以下の時間保持する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、自動車、電気等の産業分野で使用される加工性、とりわけ延性と伸びフランジ性に優れた引張強さ(TS)が980MPa以上の高強度鋼板の製造方法に関するものである。
【背景技術】
【0002】
近年、地球環境保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により車体部品の薄肉化を図り、車体そのものを軽量化しようとする動きが活発である。
一般に、鋼板の高強度化を図るためには、鋼板の組織全体に対してマルテンサイトやベイナイトなどの硬質相の割合を増加させる必要がある。しかしながら、硬質相の割合を増加させることによる鋼板の高強度化は加工性の低下を招くことから、高強度と優れた加工性を併せ持つ鋼板の開発が望まれている。これまでに、フェライト−マルテンサイト二相鋼(DP鋼)や残留オーステナイトの変態誘起塑性を利用したTRIP鋼など、種々の複合組織鋼板が開発されてきた。
【0003】
複合組織鋼板において硬質相の割合を増加させた場合、鋼板の加工性は硬質相の加工性の影響を強く受けるようになる。すなわち、硬質相の割合が少なく軟質なポリゴナルフェライトが多い場合には、ポリゴナルフェライトの変形能が鋼板の加工性に対して支配的となり、硬質相の加工性が十分でない場合であっても延性等の加工性は確保される。しかしながら、硬質相の割合が多いと、ポリゴナルフェライトの変形ではなく硬質相自体の変形能が鋼板の成形性に直接影響するため、硬質相自体の加工性が十分でない場合には、鋼板の加工性が大きく劣化してしまう。
【0004】
このため、冷延鋼板の場合には、焼鈍およびその後の冷却過程で生成するポリゴナルフェライトの量を調整する熱処理を行い、鋼板を水焼入れしてマルテンサイトを生成させ、ついで、鋼板を昇温して高温保持することにより、マルテンサイトを焼戻し、硬質相であるマルテンサイト中に炭化物を生成させて、マルテンサイトの加工性を向上させてきた。
しかしながら、通常の連続焼鈍水焼入れ設備の場合には、焼入れ後の鋼板温度は必然的に水温近傍となるため、未変態オーステナイトのほとんどがマルテンサイト変態してしまう。そのために、残留オーステナイトやその他の低温変態組織の活用が困難である。また、硬質組織の加工性の向上はあくまでマルテンサイトの焼戻しによる効果に限られ、結果的に鋼板の加工性向上も限られたものになっていた。
【0005】
さらに、マルテンサイト以外を硬質相とする鋼板として、主相をポリゴナルフェライト、硬質相をベイナイトやパーライトとし、かつ硬質相であるベイナイトやパーライトに炭化物を生成させた鋼板がある。この鋼板は、ポリゴナルフェライトのみで加工性を向上させるのではなく、硬質相中に炭化物を生成させることにより硬質相自体の加工性も向上させ、特に、伸びフランジ性の向上を図るための鋼板である。
【0006】
例えば、特許文献1には、合金成分を規定し、鋼組織を、残留オーステナイトを有する微細で均一なベイナイトとすることにより、曲げ加工性および衝撃特性に優れる高張力鋼板が提案されている。
また、特許文献2には、所定の合金成分を規定し、鋼組織を、残留オーステナイトを有するベイナイトとし、かつベイナイト中の残留オーステナイト量を規定することにより、焼付け硬化性に優れた複合組織鋼板が提案されている。
さらに、特許文献3には、所定の合金成分を規定し、鋼組織を、残留オーステナイトを有するベイナイトを面積率で90%以上、ベイナイト中の残留オーステナイト量を1%以上15%以下とし、かつベイナイトの硬度(Hv)を規定することにより、耐衝撃性に優れた複合組織鋼板が提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平4−235253号公報
【特許文献2】特開2004−76114号公報
【特許文献3】特開平11−256273号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上述した鋼板にはそれぞれ以下に述べる課題がある。
特許文献1に記載される成分組成では、鋼板に歪みを付与した際に、高歪域でTRIP効果を発現する安定した残留オーステナイトの量を確保することが困難であり、曲げ性は得られるものの、塑性不安定が生じるまでの延性が低く、張り出し性に劣る。
特許文献2に記載の鋼板は、焼付硬化性は得られるものの引張強さ(TS)を980MPa以上あるいはさらに1050MPa以上に高強度化しようとしても、ベイナイトあるいはさらにフェライトを主体とするマルテンサイトを極力抑制した組織であるため、強度の確保あるいは強度を高めた場合の延性や伸びフランジ性など、加工性の確保が難しい。
特許文献3に記載の鋼板は、耐衝撃性を向上させることを主目的としており、硬さがHv:250以下のベイナイトを主相とし、具体的にはベイナイトを90%超の割合で含む組織であるため、980MPa以上の強度確保が難しい。
【0009】
ここに、プレス加工により成形される自動車部品のうち、比較的形状が複雑な構造部品であるメンバー類やセンターピラーインナーなどの構造部品には980MPa以上の引張り強さ(TS)が要求されており、さらに、今後、1180MPa級以上の引張り強さ(TS)が要求されると予想される。
また、自動車衝突時に変形を抑制するドアインパクトビームやバンパーレインフォース等、特に強度が要求される部品の素材として用いられる鋼板では、1180MPa級以上の引張り強さが要求されており、さらに、今後、1470MPa級以上の引張り強さが要求されると考えられる。
【0010】
このように、鋼板の高強度化への要求の高まりとともに、種々の鋼板が開発されているが、高強度鋼板での安定した成形性を確保するためには、機械的特性の安定性が極めて重要となる。例えば、低温域で未変態オーステナイトから変態する硬質組織を活用し、硬質組織としてマルテンサイトなどの各組織を単一に含まず、種々の硬質組織を含む複合組織を持つ高強度鋼板が開発されている。しかしながら、特にこのような複合組織の場合は、各硬質組織の分率を精度良く制御することが鋼板の機械的特性の安定性に極めて重要であるものの、その精度の制御は未だ十分とは言えなかった。
すなわち、鋼板に、仕上げ焼鈍などの加熱処理を施す際、鋼板内の板温にはバラツキが生じ易い。従って、その後に所定量のマルテンサイトを生成させるべく、鋼板を目標とする温度まで急冷したとしても、上記のような板温のバラツキに起因して、鋼板全体にわたって同比率のマルテンサイトとなるわけではなく、その結果、鋼板の機械的特性にバラツキが生じていたのである。
【0011】
本発明は、上記した課題を有利に解決するもので、加工性、特に延性と伸びフランジ性に優れ、しかもかかる機械的特性の安定性に優れる引張強さ(TS)が980MPa以上の高強度鋼板の製造方法を提供することを目的とする。
具体的には、未変態オーステナイトの一部を焼戻しマルテンサイトとし、残りの未変態オーステナイトをベイナイトや残留オーステナイトなどの組織とすることによって、高強度と加工性を両立する高強度鋼板を製造する方法に関するものである。また、本発明の高強度鋼板には、鋼板の表面に溶融亜鉛めっきまたは合金化溶融亜鉛めっきを施した鋼板を含むものとする。
なお、本発明において、加工性に優れるとは、引張強さと全伸びの積、すなわちTS×T.ELの値が20000MPa・%以上、かつ引張強さと限界穴拡げ率の積、すなわちTS×λの値が25000MPa・%以上を満足することとし、機械的特性の安定性に優れるとは、板幅方向のTSおよびT.ELの標準偏差σがそれぞれ10MPa以下および2.0%以下であるものを意味する。
【課題を解決するための手段】
【0012】
鋼板に、所望の組織、例えば一定比率のマルテンサイトを生成させようとする場合には、それに見合った温度を目標温度として冷却処理を施す。しかしながら、鋼板を加熱処理した場合には、板温に温度ムラが生じやすいことは前述したとおりである。従って、このような温度ムラのある鋼板を冷却した場合、図1(a)に示すように、鋼板内において最も温度が低い点(最冷部位)が、目標温度に達したときは、鋼板内において最も温度が高い点(最熱部位)は、まだ、最冷部位ほどにはマルテンサイトが十分に生成しない領域であり、従って、鋼組織にバラツキが生じる。一方、図2(b)に示すように、最熱部位点が目標温度に達したときは最冷部位では、組織のマルテンサイト化が進み過ぎることになり、鋼組織のバラツキを引き起こす。
このように、鋼板内の板温にバラツキが生じていると、それに起因して、鋼組成の不均一、ひいては機械的特性のバラツキが避けられない。
【0013】
そこで、発明者らは、目標温度での熱処理条件を、図2(c)に示すように、最冷部位を基準として、この最冷部位を目標温度まで冷却したのち、この目標温度直上域に一定時間保持することにより、鋼板の組織が均一化し、その結果、鋼板の強度などの機械的特性のバラツキが低減できることを見出した。
本発明は上記知見に立脚するものである。
【0014】
すなわち、本発明の要旨構成は次のとおりである。
1.Cを0.10質量%以上含有する鋼板を、オーステナイト単相域または(オーステナイト+フェライト)2相域に加熱後、マルテンサイト変態開始温度Msを指標として、Ms未満、Ms-150℃以上の温度域に目標とする冷却停止温度を設けて冷却し、未変態オーステナイトの一部をマルテンサイト変態させたのち、昇温してマルテンサイトの焼戻しを行うことによる高強度鋼板製造に際し、上記鋼板の板幅方向にわたる最冷部位を、目標とする冷却停止温度から(冷却停止温度+15℃)の温度域に、15秒以上100秒以下の時間保持することを特徴とする高強度鋼板の製造方法。
【0015】
2.前記オーステナイト単相域または(オーステナイト+フェライト)2相域に加熱後、前記冷却停止までの間、もしくは前記焼戻し工程またはその後の工程において、溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を施すことを特徴とする前記1に記載の高強度鋼板の製造方法。
【0016】
3.前記鋼板が、質量%で、
C:0.10%以上0.73%以下、
Si:3.0%以下、
Mn:0.5%以上3.0%以下、
P:0.1%以下、
S:0.07%以下、
Al:3.0%以下および
N:0.010%以下
を含有し、残部はFeおよび不可避不純物の成分組成からなる鋼板であることを特徴とする前記1または2に記載の高強度鋼板の製造方法。
【0017】
4.前記鋼板がさらに、質量%で、
Cr:0.05%以上5.0%以下、
V:0.005%以上1.0%以下および
Mo:0.005%以上0.5%以下
のうちから選んだ1種または2種以上を含有することを特徴とする前記3に記載の高強度鋼板の製造方法。
【0018】
5.前記鋼板がさらに、質量%で、
Ti:0.01%以上0.1%以下および
Nb:0.01%以上0.1%以下
のうちから選んだ1種または2種を含有することを特徴とする前記3または4に記載の高強度鋼板の製造方法。
【0019】
6.前記鋼板がさらに、質量%で、
B:0.0003%以上0.0050%以下
を含有することを特徴とする前記3乃至5のいづれか1に記載の高強度鋼板の製造方法。
【0020】
7.前記鋼板がさらに、質量%で、
Ni:0.05%以上2.0%以下および
Cu:0.05%以上2.0%以下
のうちから選んだ1種または2種を含有することを特徴とする前記3乃至6のいづれか1に記載の高強度鋼板の製造方法。
【0021】
8.前記成分組成がさらに、質量%で、
Ca:0.001%以上0.005%以下および
REM:0.001%以上0.005%以下
のうちから選んだ1種または2種を含有することを特徴とする前記3乃至7のいづれか1に記載の高強度鋼板の製造方法。
【発明の効果】
【0022】
本発明によれば、加工性に優れ、かつ機械的特性の安定性にも優れる高強度鋼板を提供することができるため、鋼板の厚みを抑えることで軽量化を図ることができる。その結果、自動車車体を効果的に軽量化することができる。
【図面の簡単な説明】
【0023】
【図1】(a)〜(c)は、鋼板を加熱、急冷処理して、一定比率のマルテンサイトを生成させる熱処理の温度パターンを示した図である。
【図2】本発明に従う製造方法の熱処理の温度パターンを示した図である。
【発明を実施するための形態】
【0024】
以下、本発明を具体的に説明する。
本発明に従う高強度鋼板は、Cを0.10質量%(以下、鋼板成分を表す場合は、単に%で示す。)以上含有する成分組成に調整した鋼片を、熱間圧延し、ついで必要に応じて冷間圧延する工程により作製して素材鋼板とするが、これらの工程において特に制限はなく、常法に従って行えば良い。
【0025】
本発明において、Cは、少なくとも0.10%を必要とする。というのは、鋼板の高強度化およびに必要不可欠な元素であり、マルテンサイト量の確保および室温でオーステナイトを残留させるために必要な元素だからである。
【0026】
ここに、代表的な製造条件を示すと次のとおりである。
まず、鋼片を、1000℃以上1300℃以下の温度域に加熱した後、870℃以上950℃以下の温度域で熱間圧延を終了し、得られた熱延鋼板を350℃以上720℃以下の温度域で巻き取る。ついで、熱延鋼板を酸洗後、40%以上90%以下の範囲の圧下率で冷間圧延を行い冷延鋼板とする。
なお、本発明に用いる素材鋼板を製造するには、例えば、薄スラブ鋳造やストリップ鋳造などにより熱間圧延工程の一部または全部を省略することができる。
かようにして得られた素材鋼板を、本発明に従い、以下の工程で高強度鋼板とする。
【0027】
図2に、本発明に従う製造方法の熱処理の温度パターンの一例を示す。
同図に示したように、本発明では、鋼板を、オーステナイト単相域または(オーステナイト+フェライト)2相域に加熱して焼鈍する。焼鈍温度に関しては、(オーステナイト+フェライト)2相域以上の温度であれば特に限定はないが、焼鈍温度が1000℃を超えるとオーステナイト粒の成長が著しく、後の冷却によって生じる鋼板を構成する各組織の粒径の粗大化を引き起こして靭性などを劣化させる。従って、焼鈍温度は1000℃以下とすることが好ましい。
【0028】
また、焼鈍時間が15秒に満たないと、焼鈍前から鋼板内に存在する炭化物の溶解および鋼板組織のオーステナイトへの逆変態が十分に進まない場合がある。一方、焼鈍時間が600秒を超えると、過剰なエネルギー消費による処理費用の増加を招く。従って、焼鈍時間は15秒以上600秒以下の範囲が好ましい。
【0029】
上記焼鈍後の鋼板を、図2に示したように、Ms未満、Ms−150℃以上の第1温度域に冷却する。この時、第1温度域の範囲内に目標とする冷却停止温度:T1(以下、T1という)を設定する。
上記の冷却は、鋼板を、Ms未満まで冷却することによりオーステナイトの一部をマルテンサイト変態させるものである。ここで、第1温度域の下限がMs−150℃未満となった場合、未変態オーステナイトが、この時点でほとんど全てマルテンサイト化してしまう。そのため、残留オーステナイトなど加工性の向上に有効な組織を活用することが出来なくなる。
一方、第1温度域の上限がMs点以上となった場合、冷却の停止時において、鋼板にマルテンサイトは生成しておらず、後の昇温過程で生じる焼戻しマルテンサイト量を確保できなくなる。従って、T1を設定するための第1温度域の温度範囲は、Ms未満、Ms−150℃以上の範囲とする。
なお、本発明では、上記第1温度域に到達するまでの鋼板の冷却速度は特に規定しないが、平均冷却速度が3℃/sに満たないと、ポリゴナルフェライトの過剰な生成や成長、また、パーライト等が析出し、所望の鋼板組織を得られないおそれがある。従って、焼鈍温度から第1温度域までの平均冷却速度は、3℃/s以上とすることが好ましい。
【0030】
また、本発明において特に重要なことは、図2のハッチング部分に示したように、冷却により未変態オーステナイトの一部をマルテンサイト変態させるに当たり、板幅方向における最冷部位の温度を、第1温度域内であって、さらに、目標とする冷却停止温度T1に対して、T1〜T1+15℃の温度域に保持することである。というのは、最冷部位の温度が、T1℃未満になると、未変態オーステナイトが、目標温度であるT1に見合うマルテンサイト量に対して過剰にマルテンサイト化してしまう箇所が生じて、所定時間保持しても、マルテンサイト量のバラツキを解消することができず、所望の特性を安定して得ることができないためである。一方、最冷部位の温度がT1+15℃を超えると、目標温度であるT1に見合うマルテンサイト量に対して、マルテンサイトが十分に生成しない箇所が生じるため、後の昇温過程で生じるベイナイト、残留オーステナイトおよび焼戻しマルテンサイト量にバラツキが生じて所望の特性を安定して得られなくなるためである。
【0031】
本発明において、上記最冷部位の温度を、T1〜T1+15℃の温度域に、15秒以上100秒以下の時間保持する必要がある。というのは、保持時間が15秒未満の場合、最冷部位以外の板温の追従が不十分となって、所望の鋼板組織とならない箇所が生じ、得られた鋼板の加工性にバラツキが生じるからである。一方、保持時間が100秒を超える場合は、上記板温の追従効果が飽和し処理時間を伸ばすこととなるだけだからである。
【0032】
本発明における最冷部位とは、鋼板の板幅方向における最も板温の低い箇所である。また、最冷部位の箇所は、通常、鋼板のエッジ部となる場合が多い。しかし、製造ラインの特性によってはその他の部位となることもある。この場合には、鋼板を試験通板することにより、あらかじめ最冷部位の箇所を調査し、その箇所の板温を制御すればよい。
なお、最冷部位の実温度を測定するためには、鋼板温度の板幅方向全体に渡って温度分布を確認することができる温度計を具備している設備が望ましい。しかし、具備していない設備でも、上述したように、試験通板を行った時に求めた最冷部位の箇所の温度を測定して制御することで、本発明に従う熱処理条件に制御することができる。
また、本発明において、保持中の板温を、T1〜T1+15℃の温度域に保つには、例えば、板幅方向を数ブロックに分割し、各々のブロックで板温をフィードバック制御することが有効である。
【0033】
以上、本発明では、鋼板の最冷部位を所定時間、所定温度とすることで、高強度鋼板における、鋼板内の引張強度等の機械的特性のバラツキを大幅に低減することができる。
その理由は明確ではないが、鋼板の板厚方向や通板速度幅方向に対する温度のバラツキなどにより鋼板内の温度がMs点から過冷され、例え鋼板内でのマルテンサイトの生成量にバラツキが生じたとしても、上記した処理を施すことによって、鋼板内でのマルテンサイトの生成量を安定させることができ、その結果として、鋼板全体でマルテンサイト変態量が均一化し、鋼板の機械的特性の安定化が図れるものと発明者らは考えている。
【0034】
次に、図2に示したように、上記の第1温度域で保持処理後、常法に従い昇温してマルテンサイトの焼戻し処理を施す。
かかる処理の温度域に限定はないが、マルテンサイトの焼戻し効率を考えた場合、200℃以上であることが望ましい。また、冷却停止温度が200℃以上である場合は、その温度域で保持することで、上記した昇温を省略することも可能である。また、昇温温度の上限は570℃を超えると、未変態オーステナイトから炭化物が析出して、所望の組織が得られないおそれがあるため570℃以下が望ましい。
【0035】
また、昇温後の保持時間についても特に限定はないが、保持時間が5秒未満の場合、マルテンサイトの焼戻しなどが不十分となって、所望の鋼板組織とすることができずに、得られた鋼板の加工性が劣る場合がある。一方、保持時間が1000秒を超える場合は、例えば鋼板の最終組織として残留オーステナイトとなる未変態オーステナイトから炭化物が析出してC濃化した安定な残留オーステナイトが得られないため、所望の強度と延性またはその両方が得られない場合がある。従って、保持時間は5秒以上1000秒以下とすることが好ましい。
【0036】
なお、本発明において、上述した加熱処理や焼戻し処理では、所定の温度範囲内であれば、保持温度は一点に固定する必要はなく、所定の温度範囲内であれば変動しても本発明の趣旨を損うことはない。冷却速度についても同様に、速度が変動しても構わない。また、前記した熱履歴を満足することができれば、いかなる設備で熱処理を施しても構わない。さらに、本発明では、熱処理後に、形状矯正のために鋼板の表面に調質圧延を施すことや電気めっき等の表面処理を施すこともできる。
【0037】
本発明の高強度鋼板の製造方法には、さらに、溶融亜鉛めっき処理、あるいは溶融亜鉛めっき処理にさらに合金化処理を加えた合金化溶融亜鉛めっき処理を加えることができる。上記したマルテンサイトの焼戻し処理の温度域で、溶融亜鉛めっき処理、あるいは合金化溶融亜鉛めっき処理を行う場合、上記温度域での保持時間は、溶融亜鉛めっき処理あるいは合金化亜鉛めっき処理の処理時間も含めて5秒以上1000秒以下の範囲とすることが望ましい。
なお、溶融亜鉛めっき処理あるいは合金化溶融亜鉛めっき処理は、連続溶融亜鉛めっきラインにて行うことが好ましい。
【0038】
また、本発明の高強度鋼板の製造方法では、熱処理まで終了させた高強度鋼板に、改めて溶融亜鉛めっき処理、あるいはさらに合金化処理を施すこともできる。
【0039】
本発明における鋼板に溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を行う手順は、次のとおりである。
まず、鋼板をめっき浴中に浸入させ、ガスワイピングなどで付着量を調整する。この時、めっき浴中の溶解Al量は、溶融亜鉛めっき処理にあっては0.12%以上0.22%以下の範囲、合金化溶融亜鉛めっき処理にあっては0.08%以上0.18%以下の範囲とすることが好ましい。また、溶融亜鉛めっき処理の場合、めっき浴の温度は通常の450℃以上500℃以下の範囲であればよく、さらに合金化処理を施す場合は、合金化時の温度は570℃以下とすることが好ましい。
ここに、合金化温度が570℃を超える場合、未変態オーステナイトから炭化物が析出したり、場合によってはパーライトが生成するため、強度や加工性またはその両方が得られず、また、めっき層のパウダリング性も劣化するおそれがある。一方、合金化時の温度が450℃未満では合金化が進行しない場合があるため、450℃以上とすることが好ましい。
【0040】
本発明において、鋼板に亜鉛めっき等のめっきを施す際には、めっき付着量を片面当たり20g/m以上150g/m以下の範囲とすることが好ましい。めっき付着量が20g/m未満では耐食性が不足し、一方、150g/mを超えても耐食効果は飽和し、コストアップを招くだけである。
めっき層の合金化度(Fe質量%(Fe含有量))は7%以上15%以下の範囲が好ましい。めっき層の合金化度が7%未満では、合金化ムラが生じ外観品質が劣化したり、めっき層中にいわゆるζ相が生成され鋼板の摺動性が劣化したりする。一方、めっき層の合金化度が15%を超えると、硬質で脆いΓ相が多量に形成され、めっき密着性が劣化する。
【0041】
以上が、本発明の高強度鋼板の製造における条件の基本構成である。
次に、本発明の製造方法の素材として好適な鋼板の成分組成について述べる。
【0042】
C:0.10%以上0.73%以下
前述したとおり、本発明では、少なくとも0.10%のCを必要とする。
しかしながら、C量が0.73%を超えると、溶接部および熱影響部の硬化が著しくなり溶接性が劣化しやすくなる。従って、上限値は0.73%以下とすることが好ましい。より好ましくは、0.15%を超え0.48%以下の範囲である。
【0043】
Si:3.0%以下(0%を含む)
Siは、固溶強化により鋼の強度向上に寄与する有用な元素である。しかしながら、Si量が3.0%を超えると、ポリゴナルフェライトおよびベイニティックフェライト中への固溶量が増加し、加工性、靭性の劣化を招く。また、溶融めっきを施す場合には、Si量が3.0%を超えると、めっき付着性および密着性の劣化を引き起こす。従って、Si量は3.0%以下が好ましい。より好ましくは2.6%以下である。さらに好ましくは、2.2%以下である。
また、Siは、炭化物の生成を抑制し、残留オーステナイトの生成を促進するのに有用な元素であることから、Si量は0.5%以上とすることが好ましいが、炭化物の生成をAlのみで抑制する場合には、Siは添加する必要はなく、Si量は0%であっても良い。
【0044】
Mn:0.5%以上3.0%以下
Mnは、鋼の強化に有効な元素である。Mn量が0.5%未満では、焼鈍後の冷却中にベイナイトやマルテンサイトが生成する温度よりも高い温度域で炭化物が析出するため、鋼の強化に寄与する硬質相の量を確保することができない。一方、Mn量が3.0%を超えると、鋳造性が劣化するおそれがある。従って、Mn量は0.5%以上3.0%以下の範囲が好ましい。より好ましくは1.5%以上2.5%以下の範囲とする。
【0045】
P:0.1%以下
Pは、鋼の強化に有用な元素であるが、P量が0.1%を超えると、粒界偏析により脆化して耐衝撃性を劣化させる。また、鋼板に合金化溶融亜鉛めっきを施す場合には、合金化速度を遅延させてしまう。従って、P量は0.1%以下が好ましい。より好ましくは0.05%以下である。
なお、P量は、極力低減することが好ましいが、0.005%未満とするためには大幅な精製コストの増加を引き起こすため、その下限は0.005%程度とする。
【0046】
S:0.07%以下
Sは、MnSを生成して介在物となり、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となるため、S量を極力低減することが好ましい。しかしながら、S量を過度に低減することは、製造コストの増加を招くことから、S量は0.07%程度までは許容される。好ましくは0.05%以下であり、より好ましくは0.01%以下である。なお、Sは0.0005%未満とするには大きなコストの増加を伴うため、その下限は0.0005%程度とする。
【0047】
Al:3.0%以下
Alは、製鋼工程で脱酸剤として添加される有用な元素である。Al量が3.0%を超えると、鋼板中の介在物が多くなり延性を劣化させる。従って、Al量は3.0%程度までは許容される。好ましくは、2.0%以下である。
また、Alは、炭化物の生成を抑制し、残留オーステナイトの生成を促進するのに有用な元素であり、脱酸効果もある。その効果を発現させるために、Al量は0.001%以上とすることが好ましく、より好ましくは0.005%以上とする。
なお、本発明におけるAl量とは、脱酸後に鋼板中に含有するAl量を意味する。
【0048】
N:0.010%以下
Nは、鋼の耐時効性を最も大きく劣化させる元素であり、極力低減することが好ましいが、0.010%程度までは許容される。なお、Nを0.001%未満とするには大きな製造コストの増加を招くため、その下限は0.001%程度とする。
【0049】
また、本発明では、上記したC以外の任意成分の他に、さらに以下に述べる成分を適宜含有させることができる。
Cr:0.05%以上5.0%以下、V:0.005%以上1.0%以下、Mo:0.005%以上0.5%以下のうちから選ばれる1種または2種以上
Cr、VおよびMoは焼鈍温度からの冷却時にパーライトの生成を抑制する作用を有する元素である。その効果は、Cr:0.05%以上、V:0.005%以上およびMo:0.005%以上で得られる。一方、Cr:5.0%、V:1.0%およびMo:0.5%を超えると、硬質なマルテンサイトの量が過大となって、高強度となり、それに伴って脆くなる。従って、Cr、VおよびMoを含有させる場合には、Cr:0.05%以上5.0%以下、V:0.005%以上1.0%以下およびMo:0.005%以上0.5%以下の範囲とする。
【0050】
Ti:0.01%以上0.1%以下、Nb:0.01%以上0.1%以下のうちから選ばれる1種または2種
TiおよびNbは鋼の析出強化に有用で、その効果は、それぞれの含有量が0.01%以上で得られる。一方、それぞれの含有量が0.1%を超えると加工性および形状凍結性が低下する。従って、TiおよびNbを含有させる場合は、Ti:0.01%以上0.1%以下およびNb:0.01%以上0.1%以下の範囲とする。
【0051】
B:0.0003%以上0.0050%以下
Bは、オーステナイト粒界からフェライトが生成・成長することを抑制するのに有用な元素である。その効果は0.0003%以上の含有で得られる。一方、含有量が0.0050%を超えると加工性が低下する。従って、Bを含有させる場合は、B:0.0003%以上0.0050%以下の範囲とする。
【0052】
Ni:0.05%以上2.0%以下およびCu:0.05%以上2.0%以下のうちから選ばれる1種または2種
NiおよびCuは、鋼の強化に有効な元素である。また、鋼板に溶融亜鉛めっきまたは合金化溶融亜鉛めっきを施す場合には、鋼板表層部の内部酸化を促進してめっき密着性を向上する効果も持っている。これらの効果は、それぞれの含有量が0.05%以上で得られる。一方、それぞれの含有量が2.0%を超えると、鋼板の加工性を低下させる。従って、NiおよびCuを含有させる場合には、Ni:0.05%以上2.0%以下およびCu:0.05%以上2.0%以下の範囲とする。
【0053】
Ca:0.001%以上0.005%以下およびREM:0.001%以上0.005%以下のうちから選ばれる1種または2種
CaおよびREMは、硫化物の形状を球状化し、伸びフランジ性への硫化物の悪影響を改善するために有用である。その効果は、それぞれの含有量が0.001%以上とした場合に得られる。一方、それぞれの含有量が0.005%を超えると、介在物等の増加を招き、表面欠陥および内部欠陥などを引き起こす。従って、CaおよびREMを含有させる場合には、Ca:0.001%以上0.005%以下およびREM:0.001%以上0.005%以下の範囲とする。
【0054】
本発明の鋼板において、上記以外の成分は、Feおよび不可避不純物である。ただし、本発明の効果を損なわない範囲内であれば、上記以外の成分の含有を拒むものではない。
【実施例】
【0055】
(実施例1)
以下、本発明を実施例によってさらに詳細に説明するが、以下の実施例は本発明を限定するものではない。また、本発明の範囲内で構成を変更しても、本発明の効力を発現することは言うまでもない。
【0056】
表1に示す成分組成の鋼を溶製して得た鋳片を、1200℃に加熱し、870℃で仕上げ熱間圧延した熱延鋼板を650℃で巻き取り、ついで熱延鋼板を酸洗後、65%の圧延率(圧下率)で冷間圧延し、板厚:1.2mmの冷延鋼板とした。得られた冷延鋼板を、表2に示す条件で熱処理を施した。
なお、熱処理温度(焼鈍処理温度)は、試料No.4を除いて、全てオーステナイト単相域または(オーステナイト+フェライト)2相域の温度とした。
【0057】
また、一部の冷延鋼板については、焼戻し処理中またはその後に、溶融亜鉛めっき処理あるいは合金化溶融亜鉛めっき処理を施した。ここで、溶融亜鉛めっき処理は、めっき浴温度:463℃、目付け量(片面あたり):50g/mとなるように両面めっきを施した。また、合金化溶融亜鉛めっき処理は、同じくめっき浴温度:463℃、目付け量(片面あたり):50g/mとして合金化度(Fe質量%(Fe含有量))が9%となるように合金化温度:550℃以下で合金化条件を調整して両面めっきを施した。
めっき処理を施さない鋼板には熱処理後直接に、また、溶融亜鉛めっき処理あるいは合金化溶融亜鉛めっき処理を施した鋼板にはこれらの処理の後に、それぞれ圧延率(伸び率):0.3%の調質圧延を施した。
【0058】
【表1】

【0059】
【表2】

【0060】
かくして得られた鋼板の諸特性を以下の方法で評価した。
引張試験は、鋼板の圧延方向に対して垂直な方向から採取したJIS5号試験片を用いて、JISZ2241に準拠して行った。TS(引張強さ)、T.EL(全伸び)を測定し、強度と全伸びの積(TS×T.EL)を算出して、強度と加工性(延性)のバランスを評価した。なお、TS×T.EL≧20000(MPa・%)であれば、強度−伸びバランスが良好といえる。
【0061】
伸びフランジ性は、日本鉄鋼連盟規格JFST1001に準拠して評価した。得られた各鋼板を100mm×100mmに切断後、クリアランスを板厚の12%で直径:10mmの穴を打ち抜き、内径:75mmのダイスを用いて、しわ押さえ力:88.2kNで押さえた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定し、(1)の式から、限界穴拡げ率λ(%)を求めることで伸びフランジ性を評価した。
限界穴拡げ率λ(%)={(D−D)/D}×100 ・・・(1)
ただし、Dは亀裂発生時の穴径(mm)、Dは初期穴径(mm)とする。
また、このようにして測定したλを用いて強度と限界穴拡げ率の積(TS×λ)を算出して、強度と伸びフランジ性のバランスを評価した。
なお、TS×λ≧25000(MPa・%)であれば、伸びフランジ性は良好といえる。
【0062】
結果を表3に示す。
【0063】
【表3】

【0064】
同表から明らかなように、本発明に従う製造方法になる鋼板は、そのいずれも、引張強さが980MPa以上、かつTS×T.ELの値が20000MPa・%以上およびTS×λの値が25000MPa・%以上を満足し、高強度と優れた加工性、とりわけ優れた伸びフランジ性を兼ね備えていることが確認できた。
【0065】
これに対し、試料No.4は、焼鈍温度が(オーステナイト+フェライト)2相域まで加熱されていないため、所望の鋼板組織が得られず、TS×λの値は25000MPa・%以上を満足し、伸びフランジ性に優れるものの、引張強さ(TS)が980MPaに達せず、TS×T.ELの値も20000MPa・%未満であった。
試料No.2および3はT1が第1温度域の範囲外であることから、所望の鋼板組織が得られず、引張強さ(TS)は980MPa以上を満足するものの、TS×T.EL≧20000MPa・%およびTS×λ≧25000MPa・%のいずれかを満足しなかった。
試料No.6は、最冷部の温度が保持中に目標温度を下回り適正範囲外の温度となり、所望の鋼板組織が得られず、引張強さ(TS)≧980MPaを満足するものの、TS×T.EL≧20000MPa・%を満足しなかった。
試料No.7は、C含有量が本発明の適正範囲外であることから、所望の鋼板組織が得られず、所望の特性を得ることができなかった。
【0066】
(実施例2)
さらに、表1の鋼種Aを用い、表4に示す条件で熱処理した。それぞれの場合における機械的特性およびそのバラツキについて調べた結果を表5に示す。なお、鋼板の機械的特性のバラツキは、圧延方向長さ:1000mmの範囲内から圧延方向長さ40mm×幅250mmに切断した材料を、両最エッジ部から鋼板中央部にかけて評価部が幅方向に均等に分散するように20枚採取し、JIS5号試験片に加工後、引張り試験を行った。引張強さおよびT.ELの標準偏差σがそれぞれ10MPa以下および2.0%以下である場合を良好と判断した。
【0067】
【表4】

【0068】
【表5】

表5に示したとおり。本発明に従う条件で熱処理した試料No.18,22は引張強さおよびT.ELの標準偏差σがいずれも10MPa以下および2.0%以下で、機械的特性が安定しているのに対し、最冷部位の温度がT1〜T1+15℃を外れている試料No.19,20および最冷部位の保持時間が15〜100sを外れている試料No.21はバラツキが大きく、引張強さの標準偏差σが10MPaを超え、あるいはさらにT.ELの標準偏差σが2.0%を超えていることがわかる。
【0069】
また、表3に示した発明例について、上記と同様に機械的特性のバラツキを確認したが、引張強さおよびT.ELの標準偏差σはいずれも10MPa以下および2.0%以下で、機械的特性が安定していることを確認した。
【産業上の利用可能性】
【0070】
本発明に従う高強度鋼板は、加工性および引張強さ(TS)に優れ、かつ機械的特性の安定性にも優れているので、自動車、電気等の産業分野での利用価値は非常に大きく、特に、自動車車体の軽量化に貢献する。

【特許請求の範囲】
【請求項1】
Cを0.10質量%以上含有する鋼板を、オーステナイト単相域または(オーステナイト+フェライト)2相域に加熱後、マルテンサイト変態開始温度Msを指標として、Ms未満、Ms-150℃以上の温度域に目標とする冷却停止温度を設けて冷却し、未変態オーステナイトの一部をマルテンサイト変態させたのち、昇温してマルテンサイトの焼戻しを行うことによる高強度鋼板の製造に際し、上記鋼板の板幅方向にわたる最冷部位を、目標とする冷却停止温度から(冷却停止温度+15℃)の温度域に、15秒以上100秒以下の時間保持することを特徴とする高強度鋼板の製造方法。
【請求項2】
前記オーステナイト単相域または(オーステナイト+フェライト)2相域に加熱後、前記冷却停止までの間、もしくは前記焼戻し工程またはその後の工程において、溶融亜鉛めっき処理または合金化溶融亜鉛めっき処理を施すことを特徴とする請求項1に記載の高強度鋼板の製造方法。
【請求項3】
前記鋼板が、質量%で、
C:0.10%以上0.73%以下、
Si:3.0%以下、
Mn:0.5%以上3.0%以下、
P:0.1%以下、
S:0.07%以下、
Al:3.0%以下および
N:0.010%以下
を含有し、残部はFeおよび不可避不純物の成分組成からなる鋼板であることを特徴とする請求項1または2に記載の高強度鋼板の製造方法。
【請求項4】
前記鋼板がさらに、質量%で、
Cr:0.05%以上5.0%以下、
V:0.005%以上1.0%以下および
Mo:0.005%以上0.5%以下
のうちから選んだ1種または2種以上を含有することを特徴とする請求項3に記載の高強度鋼板の製造方法。
【請求項5】
前記鋼板がさらに、質量%で、
Ti:0.01%以上0.1%以下および
Nb:0.01%以上0.1%以下
のうちから選んだ1種または2種を含有することを特徴とする請求項3または4に記載の高強度鋼板の製造方法。
【請求項6】
前記鋼板がさらに、質量%で、
B:0.0003%以上0.0050%以下
を含有することを特徴とする請求項3乃至5のいづれか1項に記載の高強度鋼板の製造方法。
【請求項7】
前記鋼板がさらに、質量%で、
Ni:0.05%以上2.0%以下および
Cu:0.05%以上2.0%以下
のうちから選んだ1種または2種を含有することを特徴とする請求項3乃至6のいづれか1項に記載の高強度鋼板の製造方法。
【請求項8】
前記成分組成がさらに、質量%で、
Ca:0.001%以上0.005%以下および
REM:0.001%以上0.005%以下
のうちから選んだ1種または2種を含有することを特徴とする請求項3乃至7のいづれか1項に記載の高強度鋼板の製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−184757(P2011−184757A)
【公開日】平成23年9月22日(2011.9.22)
【国際特許分類】
【出願番号】特願2010−52323(P2010−52323)
【出願日】平成22年3月9日(2010.3.9)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】