説明

高級α−オレフィン共重合体及びその製造方法

【課題】熱可塑性樹脂、潤滑油や燃料油やワックスとの相溶性、無機充填剤との混合性、二次加工性に優れ、融解・結晶化の温度域が狭い結晶性高級α−オレフィン共重合体及びその製造方法を提供することを課題とする。
【解決手段】炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合して得られ、以下の(1)〜(3)を満足することを特徴とする結晶性高級α−オレフィン共重合体である。
(1):高級α−オレフィン単位含有量が50モル%以上、
(2):示差走査型熱量計(DSC)を用い、該共重合体を窒素雰囲気下190℃で5分間保持した後、−10℃まで5℃/分で降温させ、−10℃で5分間保持後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測される融点(Tm)が20〜100℃の範囲にあり、
(3):広角X線散乱強度分布における、15deg<2θ<30degに観測される側鎖結晶化に由来する、単一のピークX1が観測される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂の改質剤、粘着剤成分、接着剤成分、潤滑油成分、有機無機複合材料、蓄熱材、軽油などの燃料油の改質剤、アスファルトの改質剤、高性能ワックスとして有用な炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合して得られる、結晶性高級α−オレフィン共重合体及びその製造方法に関するものである。
【背景技術】
【0002】
炭素数10以上の高級α−オレフィンの重合に関する検討は、従来より行われているが、主にチーグラーナッタ系触媒を用いて検討されている(例えば、特許文献1、非特許文献1、非特許文献2及び非特許文献3)。
しかしながら,これらの文献において得られる高級α−オレフィン重合体は、分子量が低い場合や、規則性が高いために融点が高く、又、融点が2つあるなど不均一であることが示されている。
また、メタロセン触媒と呼ばれる均一系触媒により高級α−オレフィン重合体が得られることが記載されている(例えば、非特許文献4、非特許文献5、非特許文献6及び非特許文献7)。
しかしながら、不均一系触媒により得られた重合体と同様に、分子量が十分高いと言えなかったり、規則性が高いために融点が高く、又、融点が2つあるなど、不均一であることが示されている。
【0003】
【特許文献1】特開平7−145205号公報
【非特許文献1】PolymerJ.,10,619(1978)
【非特許文献2】Macromol.Chem.,190,2683(1989)
【非特許文献3】Makromol.Chem.,RapidComm.,13,447(1992)
【非特許文献4】Macromol.Sci.PureAppl.Chem.,A35、473(1998)
【非特許文献5】J.Polym.Sci.A、38,233(2000)
【非特許文献6】Macromol.Mater.Eng.,286,350(2001)
【非特許文献7】Macromol.Mater.Eng.,286,480(2001)
【0004】
融点が複数あることは結晶の大きさなどが不均一であることを示しており、べとつきの原因となることもある。
改質剤として他の素材と混合した場合、ブレンドが均一に行われず、所望の改良物性が得られないこともある。
また、蓄熱剤などの用途では、効率向上の為に特定温度において急激に融解や結晶化が起こることで急激な発熱・吸熱が生じることが望まれており、不均一な樹脂は使用が難しい。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、熱可塑性樹脂、特に、ポリオレフィンとの相溶性、潤滑油や燃料油やワックスとの相溶性、無機充填剤との混合性、二次加工性に優れ、融解・結晶化の温度域が狭い結晶性高級α−オレフィン共重合体及びその製造方法を提供することを課題とするものである。
【課題を解決するための手段】
【0006】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合して得られる結晶性高級α−オレフィン共重合体が本課題を解決するものであり、特定のメタロセン触媒を用いることによりこのような共重合体を効率よく製造できることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明は、
1.炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合して得られ、以下の(1)〜(3)を満足することを特徴とする結晶性高級α−オレフィン共重合体。
(1):高級α−オレフィン単位含有量が50モル%以上、
(2):示差走査型熱量計(DSC)を用い、該共重合体を窒素雰囲気下190℃で5分間保持した後、−10℃まで5℃/分で降温させ、−10℃で5分間保持後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測される融点(Tm)が20〜100℃の範囲にあり、
(3):広角X線散乱強度分布における、15deg<2θ<30degに観測される側鎖結晶化に由来する、単一のピークX1が観測される。
2.ゲルパーミエイションクロマトグラフ(GPC)法により測定したポリスチレン換算重量平均分子量(Mw)が1,000〜10,000,000の範囲にあり、分子量分布(Mw/Mn)が5.0以下である上記1に記載の結晶性高級α−オレフィン共重合体、
3.炭素数10以上の高級α−オレフィン連鎖部に由来する立体規則性指標値M2が、50モル%以上である上記1又は2に記載の結晶性高級α−オレフィン共重合体、
4.示差走査型熱量計(DSC)を用いることにより得られた融解吸熱カーブから観測される半値幅(Wm)が、10℃以下である上記1〜3のいずれかに記載の結晶性高級α−オレフィン共重合体、
5.(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合させることを特徴とする上記1に記載の結晶性高級α−オレフィン共重合体の製造方法。
【0008】
【化1】

【0009】
〔式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基,ホスフィド基,炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。
Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
を提供するものである。
【発明の効果】
【0010】
本発明の炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合して得られる結晶性高級α−オレフィン共重合体は、単独重合体に比べ融点及び結晶性の制御が容易となり、二次加工性及び溶剤への溶解性が向上する。
従って、本発明の結晶性高級α−オレフィン共重合体は、接着剤、油改質剤、樹脂改質剤など、特にワックス及びワックス改質剤として好適に用いることができる。
【発明を実施するための最良の形態】
【0011】
以下に、本発明について詳細に説明する。
先ず、本発明の結晶性高級α−オレフィン共重合体は、炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合して得られたものである。
上記他のオレフィンとしては、炭素数2〜30のオレフィンを用いることができ、α−オレフィンが好ましい。
α−オレフィンとしては、例えば、エチレン、プロピレン、1−ペンテン、4−メチルペンテン−1、1−ヘキセン、1−オクテン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセンなどが挙げられ、これらのうち一種又は二種以上を用いることができる。
また、炭素数10以上の高級α−オレフィンとしては、炭素数10〜35のα−オレフィンを用いることができ、例えば、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセンなどが挙げられ、これらのうち一種又は二種以上を用いることができる。
共重合に用いるα−オレフィンの炭素数が10以上であると、共重合して得られる高級α−オレフィン共重合体は、結晶性が高く、べたつきもなく更に強度が向上する。
また、共重合に用いるα−オレフィンの炭素数が35以下であると、共重合して得られる高級α−オレフィン共重合体は、未反応モノマーが少なく、融解、結晶化の温度域が狭い均一な組成となる。
【0012】
本発明の結晶性高級α−オレフィン共重合体中の炭素数10以上の高級α−オレフィン単位の含有量は50モル%以上であり、好ましくは70〜100モル%、更に好ましくは85〜100モル%である。
特に、炭素数10以上の高級α−オレフィンのみからなる共重合体が好ましい。
炭素数10以上の高級α−オレフィン単位の含有量が50モル%以上であると、結晶性の共重合体が得られ、且つ融点が低いため各種物質、例えば、溶剤、油、アスファルト、潤滑油等との相溶性が向上する。
尚、炭素数10以上の高級α−オレフィンの単独重合体では、重合体の融点及び結晶性の制御が困難であったが、炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合することにより、共重合体の融点(耐熱性、二次加工性)及び結晶性(溶解性、改質効果)の制御が容易となり、二次加工性及び溶剤への溶解性が向上した。
【0013】
本発明の結晶性高級α−オレフィン共重合体は、炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合して得られ、以下の(1)〜(3)の要件を満足する共重合体であり、以下の要件2〜4を満足することが好ましい。
(1):高級α−オレフィン単位含有量が50モル%以上、
(2):示差走査型熱量計(DSC)を用い、該共重合体を窒素雰囲気下190℃で5分間保持した後、−10℃まで5℃/分で降温させ、−10℃で5分間保持後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測される融点(Tm)が20〜100℃の範囲にあり、
(3):広角X線散乱強度分布における、15deg<2θ<30degに観測される側鎖結晶化に由来する、単一のピークX1が観測される。
2.ゲルパーミエイションクロマトグラフ(GPC)法により測定したポリスチレン換算重量平均分子量(Mw)が1,000〜10,000,000の範囲にあり、分子量分布(Mw/Mn)が5.0以下である。
3.炭素数10以上の高級α−オレフィン連鎖部に由来する立体規則性指標値M2が、50モル%以上である。
4.示差走査型熱量計(DSC)を用いることにより得られた融解吸熱カーブから観測される半値幅(Wm)が、10℃以下である。
【0014】
本発明の結晶性高級α−オレフィン共重合体の融点(Tm)は、20〜100℃であり、好ましくは25〜100℃、更に好ましくは25〜80℃である。
このような融点(Tm)範囲を持つ本発明の結晶性高級α−オレフィン共重合体は、常温でべたつきが発生し難く、貯蔵性や二次加工性に優れたものとなると共に、低温で均一に溶融するため加工性に優れたものとなる。
【0015】
本発明の結晶性高級α−オレフィン共重合体は、広角X線散乱強度分布において、15deg<2θ<30degに観測される側鎖結晶化に由来する、単一のピークX1が観測される。
広角X線散乱強度分布において、側鎖結晶化に由来するピークが観測されない場合、ベタツキ、更には強度が著しく低下する。
また、側鎖結晶化に由来するピークが単一でない場合、共重合体の結晶成分が広くなるため、ベタツキの原因及び強度低下、特に、融解ピークがシャープでなくなることにより、貯蔵性、2次加工性の低下につながる。
(広角X線散乱強度分布測定方法)
理学電機社製対陰極型ロータフレックスRU−200を用い、30kV,100mA出力のCuKα線(波長=1.54Å)の単色光を1.5mmのピンホールでコリメーションし、位置敏感型比例計数管を用い、露光時間1分で広角X線散乱(WAXS)強度分布を測定した。
【0016】
本発明の結晶性高級α−オレフィン共重合体は、ゲルパーミエイションクロマトグラフ(GPC)法により測定したポリスチレン換算重量平均分子量(Mw)が1,000〜10,000,000であることが好ましく、更に好ましくは10,000〜10,000,000である。
Mwが1,000以上であると、結晶性高級α−オレフィン共重合体の強度が向上し、Mwが10,000,000以下であると、成形及び混練が容易となる。
また、本発明の結晶性高級α−オレフィン共重合体は、GPC法により測定した分子量分布(Mw/Mn)が5.0以下であることが好ましく、更に好ましくは1.5〜3.5、特に好ましくは1.5〜3.0である。
分子量分布(Mw/Mn)が5.0以下であると、結晶性高級α−オレフィン共重合体の組成分布が狭く、表面特性が良好で、べたつきがなく、強度向上につながる。
尚、上記の分子量分布(Mw/Mn)は、GPC法により、下記の装置及び条件で測定したポリスチレン換算の重量平均分子量Mw及び数平均分子量Mnより算出した値である。
GPC測定装置
カラム :TOSO GMHHR−H(S)HT
検出器 :液体クロマトグラム用RI検出器 WATERS 150C
測定条件
溶媒 :1,2,4−トリクロロベンゼン
測定温度 :145℃
流速 :1.0ミリリットル/分
試料濃度 :2.2mg/ミリリットル
注入量 :160マイクロリットル
検量線 :Universal Calibration
解析プログラム:HT−GPC(Ver.1.0)
【0017】
本発明の結晶性高級α−オレフィン共重合体は、アイソタクチック構造であり、且つ炭素数10以上の高級α−オレフィン連鎖部に由来する立体規則性指標値M2が、50モル%以上であることが好ましい。
更に好ましくは50〜90モル%、特に好ましくは55〜85モル%、一層好ましくは55〜75モル%である。
立体規則性指標値のM2が50モル%以上の場合、共重合体がアイソタクチック構造をとり、共重合体の結晶性が向上し、表面特性が良好で、特にべたつきがなく、強度向上につながる。
このように立体規則性を中程度以上、更には中程度に制御することにより、本発明の目的を達成することができるようになる。
この立体規則性指標値M2は、T.Asakura,M.Demura,Y.Nishiyamaにより報告された「Macromolecules,24,2334(1991)」で提案された方法に準拠して求めた。
即ち、13CNMRスペクトルで、高級α−オレフィンに由来する、側鎖α位のCH2炭素が立体規則性の違いを反映して分裂して観測されることを利用してM2を求めることができる。
このM2の値が大きいほどアイソタクティシティーが高いことを示し、耐熱性の向上、強度向上につながる。
尚、13C−NMRの測定は以下の装置、条件にて行う。
装置:日本電子(株)製 EX−400
測定温度:130℃
パルス幅:45°
積算回数:1000回
溶媒:1,2,4−トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
また、立体規則性指標値M2の計算は以下のようにして求める。
混合溶媒に基づく大きな吸収ピークが、127〜135ppmに6本見られる。
このピークのうち、低磁場側から4本目のピーク値を131.1ppmとし、化学シフトの基準とする。
このとき側鎖α位のCH2炭素に基づく吸収ピークが34〜37ppm付近に観測される。
このとき、以下の式を用いてM2(モル%)を求める。
M2=〔(36.2〜35.3ppmの積分強度)/(36.2〜34.5ppmの積分強度)〕×100
【0018】
本発明の結晶性高級α−オレフィン共重合体は、示差走査型熱量計(DSC)を用いることにより得られた融解吸熱カーブから観測される半値幅(Wm)が10℃以下であることが好ましく、更に好ましくは6℃以下、特に好ましくは2〜4℃である。
半値幅(Wm)とは、DSCにて融点(Tm)を測定した際の吸熱ピークの50%高さにおけるピーク幅を言い、この半値幅が小さいほど、均一な結晶が形成されていることを意味し、材料の均一性を示している。
結晶性高級α−オレフィン共重合体の半値幅が10℃以下であると、融解挙動が迅速であることを示す。
例えば、結晶性高級α−オレフィン共重合体を温度感応性の粘着剤の主材料として用いた場合、粘着−非粘着のスイッチ温度域が狭くなるため、粘着力が温度の急激な変化に対応することができ、温度感応性の向上につながり好ましい。
【0019】
本発明の結晶性高級α−オレフィン共重合体は、以下に示すメタロセン系触媒を用いて製造することができ、その中でも特に、アイソタクチックポリマーを合成できる、C2対称及び、C1対称の遷移金属化合物を用いることが好ましい。
即ち、(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、炭素数10以上の高級α−オレフィン二種以上を、又は炭素数10以上の高級α−オレフィン一種以上と他のオレフィン一種以上とを共重合させる方法である。
【0020】
【化2】

【0021】
〔式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基,ホスフィド基,炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。
Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
【0022】
上記一般式(I)において、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、具体例としてはチタン,ジルコニウム,ハフニウム,イットリウム,バナジウム,クロム,マンガン,ニッケル,コバルト,パラジウム及びランタノイド系金属などが挙げられるが、これらの中ではオレフィン共重合活性などの点からチタン,ジルコニウム及びハフニウムが好適である。
1及びE2はそれぞれ、置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基(−N<),ホスフィン基(−P<),炭化水素基〔>CR−,>C<〕及び珪素含有基〔>SiR−,>Si<〕(但し、Rは水素又は炭素数1〜20の炭化水素基あるいはヘテロ原子含有基である)の中から選ばれた配位子を示し、A1及びA2を介して架橋構造を形成している。
また、E1及びE2は互いに同一でも異なっていてもよい。
このE1及びE2としては、置換シクロペンタジエニル基,インデニル基及び置換インデニル基が好ましい。
【0023】
また、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。
該Xの具体例としては、ハロゲン原子,炭素数1〜20の炭化水素基,炭素数1〜20のアルコキシ基,炭素数6〜20のアリールオキシ基,炭素数1〜20のアミド基,炭素数1〜20の珪素含有基,炭素数1〜20のホスフィド基,炭素数1〜20のスルフィド基,炭素数1〜20のアシル基などが挙げられる。
一方、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のYやE1,E2又はXと架橋していてもよい。
該Yのルイス塩基の具体例としては、アミン類,エーテル類,ホスフィン類,チオエーテル類などを挙げることができる。
【0024】
次に、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子又は炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。
このような架橋基としては、例えば、一般式
【0025】
【化3】

【0026】
(Dは炭素、ケイ素又はスズ、R2及びR3はそれぞれ水素原子又は炭素数1〜20の炭化水素基で、それらは互いに同一でも異なっていてもよく、又互いに結合して環構造を形成していてもよい。eは1〜4の整数を示す。)
で表されるものが挙げられ、その具体例としては、メチレン基,エチレン基,エチリデン基,プロピリデン基,イソプロピリデン基,シクロヘキシリデン基,1,2−シクロヘキシレン基,ビニリデン基(CH2=C=),ジメチルシリレン基,ジフェニルシリレン基,メチルフェニルシリレン基,ジメチルゲルミレン基,ジメチルスタニレン基,テトラメチルジシリレン基,ジフェニルジシリレン基などを挙げることができる。
これらの中で、エチレン基,イソプロピリデン基及びジメチルシリレン基が好適である。
qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。
このような一般式(I)で表される遷移金属化合物の中では、一般式(II)
【0027】
【化4】

【0028】
で表される二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物が好ましい。
上記一般式(II)において、M,A1,A2,q及びrは、一般式(I)と同じである。
1はσ結合性の配位子を示し、X1が複数ある場合、複数のX1は同じでも異なっていてもよく、他のX1又はY1と架橋していてもよい。
このX1の具体例としては、一般式(I)のXの説明で例示したものと同じものを挙げることができる。
1はルイス塩基を示し、Y1が複数ある場合、複数のY1は同じでも異なっていてもよく、他のY1又はX1と架橋していてもよい。
このY1の具体例としては、一般式(I)のYの説明で例示したものと同じものを挙げることができる。
4〜R9はそれぞれ水素原子,ハロゲン原子,炭素数1〜20の炭化水素基,炭素数1〜20のハロゲン含有炭化水素基,珪素含有基又はヘテロ原子含有基を示すが、その少なくとも一つは水素原子でないことが必要である。
また、R4〜R9は互いに同一でも異なっていてもよく、隣接する基同士が互いに結合して環を形成していてもよい。
なかでも、R6とR7は環を形成していること及びR8とR9は環を形成していることが好ましい。
4及びR5としては、酸素、ハロゲン、珪素などのヘテロ原子を含有する基が共重合活性が高くなり好ましい。
【0029】
この二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物は、配位子間の架橋基にケイ素を含むものが好ましい。
一般式(I)で表される遷移金属化合物の具体例としては、(1,2’−エチレン)(2,1’−エチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4,5−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(5,6−ジメチルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4,7−ジイソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(4−フェニルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(3−メチル−4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−エチレン)−ビス(5,6−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−エチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−フェニルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4,5−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4−イソプロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(5,6−ジメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4,7−ジ−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(4−フェニルインデニル)ジルコニウムジクロリド,(1 ,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−メチル−4−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(5,6−ベンゾインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)−ビス(3−フェニルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(インデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−メチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−i−プロピルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−n−ブチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド,(1,2’−ジフェニルシリレン)(2,1’−メチレン)−ビス(3−トリメチルシリルインデニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)(3−メチルシクロペンタジエニル)(3’−メチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−イソプロピリデン)(2,1’−イソプロピリデン)(3,4−ジメチルシクロペンタジエニル)(3’,4’−ジメチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−イソプロピルシクロペンタジエニル)(3’−メチル−5’−イソプロピルシクロペンタジエニル)ジルコニウムジクロリド、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)(3−メチル−5−フェニルシクロペンジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−イソプロピリデン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−エチレン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−エチルシクロペンタジエニル)(3’−メチル−5’−エチルシクロペンジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロ


ペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−n−ブチルシクロペンタジエニル)(3’−メチル−5’−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−ジメチルシリレン)(2,1’−メチレン)(3−メチル−5−フェニルシクロペンタジエニル)(3’−メチル−5’−フェニルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−エチレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−メチレン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド,(1,2’−メチレン)(2,1’−イソプロピリデン)(3−メチル−5−i−プロピルシクロペンタジエニル)(3’−メチル−5’−i−プロピルシクロペンタジエニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジメチルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジイソプロピルシリレン) ビスインデニルジルコニウムジクロリド、(1,1’−ジメチルシリレンインデニル) (2,2’−ジメチルシリレン−3−トリメチルシリルインデニル) ジルコニウムジクロリド、(1,1’−ジフェニルシリレンインデニル) (2,2’−ジフェニルシリレン−3−トリメチルシリルインデニル) ジルコニウムジクロリド、(1,1’−ジフェニルシリレンインデニル) (2,2’−ジメチルシリレン−3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、 (1,1’−ジフェニルシリレン)(2,2’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジイソブロピルシリレン)(インデニル)(3−トリメチルシリルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジフェニルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジフェニルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジメチルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジメチルシリレン)(2,2’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,1’−ジイソプロピルシリレン)(2,2’−ジイソプロピルシリレン)(インデニル)(3−トリメチルシリルメチルインデニル)ジルコニウムジクロリドなど及びこれらの化合物におけるジルコニウムをチタン又はハフニウムに置換したものを挙げることができる。
もちろんこれらに限定されるものではない。
また、他の族又はランタノイド系列の金属元素の類似化合物であってもよい。
また、上記化合物において、(1,1’−)(2,2’−)が(1,2’−)(2,1’−)であってもよく、(1,2’−)(2,1’−)が(1,1’−)(2,2’−)であってもよい。
【0030】
次に、(B)成分のうちの(B−1)成分としては、上記(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物であれば、いずれのものでも使用できるが、次の一般式(III),(IV)
(〔L1−R10k+a(〔Z〕-b ・・・(III)
(〔L2k+a(〔Z〕-b ・・・(IV)
(ただし、L2はM2、R11123、R133C又はR143である。)
〔(III),(IV)式中、L1はルイス塩基、〔Z〕-は、非配位性アニオン〔Z1-及び〔Z2-、ここで〔Z1〕−は複数の基が元素に結合したアニオン、即ち〔M112・・・Gf-(ここで、M1は周期律表第5〜15族元素、好ましくは周期律表第13〜15族元素を示す。G1〜Gfはそれぞれ水素原子,ハロゲン原子,炭素数1〜20のアルキル基,炭素数2〜40のジアルキルアミノ基,炭素数1〜20のアルコキシ基,炭素数6〜20のアリール基,炭素数6〜20のアリールオキシ基,炭素数7〜40のアルキルアリール基,炭素数7〜40のアリールアルキル基,炭素数1〜20のハロゲン置換炭化水素基,炭素数1〜20のアシルオキシ基,有機メタロイド基、又は炭素数2〜20のヘテロ原子含有炭化水素基を示す。G1〜Gfのうち2つ以上が環を形成していてもよい。fは〔(中心金属M1の原子価)+1〕の整数を示す。)、〔Z2-は、酸解離定数の逆数の対数(pKa)が−10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩基を示す。また、ルイス塩基が配位していてもよい。また、R10は水素原子,炭素数1〜20のアルキル基,炭素数6〜20のアリール基,アルキルアリール基又はアリールアルキル基を示し、R11及びR12はそれぞれシクロペンタジエニル基,置換シクロペンタジエニル基,インデニル基又はフルオレニル基、R13は炭素数1〜20のアルキル基,アリール基,アルキルアリール基又はアリールアルキル基を示す。R14はテトラフェニルポルフィリン,フタロシアニンなどの大環状配位子を示す。kは〔L1−R10〕,〔L2〕のイオン価数で1〜3の整数、aは1以上の整数、b=(k×a)である。M2は、周期律表第1〜3、11〜13、17族元素を含むものであり、M3は、周期律表第7〜12族元素を示す。〕
で表されるものを好適に使用することができる。
【0031】
ここで、L1の具体例としては、アンモニア,メチルアミン,アニリン,ジメチルアミン,ジエチルアミン,N−メチルアニリン,ジフェニルアミン,N,N−ジメチルアニリン,トリメチルアミン,トリエチルアミン,トリ−n−ブチルアミン,メチルジフェニルアミン,ピリジン,p−ブロモ−N,N−ジメチルアニリン,p−ニトロ−N,N−ジメチルアニリンなどのアミン類、トリエチルホスフィン,トリフェニルホスフィン,ジフェニルホスフィンなどのホスフィン類、テトラヒドロチオフェンなどのチオエーテル類、安息香酸エチルなどのエステル類、アセトニトリル,ベンゾニトリルなどのニトリル類などを挙げることができる。
【0032】
10の具体例としては水素,メチル基,エチル基,ベンジル基,トリチル基などを挙げることができ、R11,R12の具体例としては、シクロペンタジエニル基,メチルシクロペンタジエニル基,エチルシクロペンタジエニル基,ペンタメチルシクロペンタジエニル基などを挙げることができる。
13の具体例としては、フェニル基,p−トリル基,p−メトキシフェニル基などを挙げることができ、R14の具体例としてはテトラフェニルポルフィリン,フタロシアニン,アリル,メタリルなどを挙げることができる。
また、M2の具体例としては、Li,Na,K,Ag,Cu,Br,I,I3などを挙げることができ、M3の具体例としては、Mn,Fe,Co,Ni,Znなどを挙げることができる。
【0033】
また、〔Z1-、即ち〔M112・・・Gf〕において、M1の具体例としてはB,Al,Si,P,As,Sbなど、好ましくはB及びAlが挙げられる。
また、G1,G2〜Gfの具体例としては、ジアルキルアミノ基としてジメチルアミノ基,ジエチルアミノ基など、アルコキシ基若しくはアリールオキシ基としてメトキシ基,エトキシ基,n−ブトキシ基,フェノキシ基など、炭化水素基としてメチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,n−オクチル基,n−エイコシル基,フェニル基,p−トリル基,ベンジル基,4−t−ブチルフェニル基,3,5−ジメチルフェニル基など、ハロゲン原子としてフッ素,塩素,臭素,ヨウ素,ヘテロ原子含有炭化水素基としてp−フルオロフェニル基,3,5−ジフルオロフェニル基,ペンタクロロフェニル基,3,4,5−トリフルオロフェニル基,ペンタフルオロフェニル基,3,5−ビス(トリフルオロメチル)フェニル基,ビス(トリメチルシリル)メチル基など、有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基,トリメチルゲルミル基,ジフェニルアルシン基,ジシクロヘキシルアンチモン基,ジフェニル硼素などが挙げられる。
【0034】
また、非配位性のアニオン、即ちpKaが−10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基〔Z2-の具体例としては、トリフルオロメタンスルホン酸アニオン(CF3SO3-,ビス(トリフルオロメタンスルホニル)メチルアニオン,ビス(トリフルオロメタンスルホニル)ベンジルアニオン,ビス(トリフルオロメタンスルホニル)アミド,過塩素酸アニオン(ClO4-,トリフルオロ酢酸アニオン(CF3CO2-,ヘキサフルオロアンチモンアニオン(SbF6-,フルオロスルホン酸アニオン(FSO3-,クロロスルホン酸アニオン(ClSO3-,フルオロスルホン酸アニオン/5−フッ化アンチモン(FSO3/SbF5-,フルオロスルホン酸アニオン/5−フッ化砒素(FSO3/AsF5-,トリフルオロメタンスルホン酸/5−フッ化アンチモン(CF3SO3/SbF5-などを挙げることができる。
【0035】
このような前記(A)成分の遷移金属化合物と反応してイオン性の錯体を形成するイオン性化合物、即ち(B−1)成分化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム,テトラフェニル硼酸トリ−n−ブチルアンモニウム,テトラフェニル硼酸トリメチルアンモニウム,テトラフェニル硼酸テトラエチルアンモニウム,テトラフェニル硼酸メチル(トリ−n−ブチル)アンモニウム,テトラフェニル硼酸ベンジル(トリ−n−ブチル)アンモニウム,テトラフェニル硼酸ジメチルジフェニルアンモニウム,テトラフェニル硼酸トリフェニル(メチル)アンモニウム,テトラフェニル硼酸トリメチルアニリニウム,テトラフェニル硼酸メチルピリジニウム,テトラフェニル硼酸ベンジルピリジニウム,テトラフェニル硼酸メチル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリ−n−ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラ−n−ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ−n−ブチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸メチル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸メチル(4−シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム,テトラキス〔ビス(3,5−ジトリフルオロメチル)フェニル〕硼酸ジメチルアニリニウム,テトラフェニル硼酸フェロセニウム,テトラフェニル硼酸銀、テトラフェニル硼酸トリチル,テトラフェニル硼酸テトラフェニルポルフィリンマンガン,テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸(1,1’−ジメチルフェロセニウム),テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル,テトラキス(ペンタフルオロフェニル)硼酸リチウム,テトラキス(ペンタフルオロフェニル)硼酸ナトリウム,テトラキス(ペンタフルオロフェニル)硼酸テトラフェニルポルフィリンマンガン,テトラフルオロ硼酸銀,ヘキサフルオロ燐酸銀,ヘキサフルオロ砒素酸銀,過塩素酸銀,トリフルオロ酢酸銀,トリフルオロメタンスルホン酸銀などを挙げることができる。
(B−1)は一種用いてもよく、又二種以上を組み合わせて用いてもよい。
一方、(B−2)成分のアルミノキサンとしては、一般式(V)
【0036】
【化5】

【0037】
(式中、R15は炭素数1〜20、好ましくは1〜12のアルキル基,アルケニル基,アリール基,アリールアルキル基などの炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2〜50、好ましくは2〜40の整数である。尚、各R15は同じでも異なっていてもよい。)
で示される鎖状アルミノキサン、及び一般式(VI)
【0038】
【化6】

【0039】
(式中、R15及びwは前記一般式(V)におけるものと同じである。)
で示される環状アルミノキサンを挙げることができる。
【0040】
前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。
例えば、(a)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、(b)重合時に当初有機アルミニウム化合物を加えておき、後に水を添加する方法、(c)金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(d)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、更に水を反応させる方法などがある。
尚、アルミノキサンとしては、トルエン不溶性のものであってもよい。
これらのアルミノキサンは一種用いてもよく、二種以上を組み合わせて用いてもよい。
【0041】
(A)触媒成分と(B)触媒成分との使用割合は、(B)触媒成分として(B−1)化合物を用いた場合には、モル比で好ましくは10:1〜1:100、より好ましくは2:1〜1:10の範囲が望ましく、上記範囲にあれば、単位質量ポリマー当りの触媒コストがあまり高くならず、実用的である。
また、(B−2)化合物を用いた場合には、モル比で好ましくは1:1〜1:1000000、より好ましくは1:10〜1:10000の範囲が望ましい。
この範囲にあれば、単位質量ポリマー当りの触媒コストががあまり高くならず、実用的である。
また、触媒成分(B)としては(B−1),(B−2)を単独又は二種以上組み合わせて用いることもできる。
【0042】
また、本発明の結晶性高級α−オレフィン共重合体を製造する際の重合用触媒は、上記(A)成分及び(B)成分に加えて(C)成分として有機アルミニウム化合物を用いることができる。
ここで、(C)成分の有機アルミニウム化合物としては、一般式(VII)
16vAlJ3-v ・・・(VII)
〔式中、R16は炭素数1〜10のアルキル基、Jは水素原子、炭素数1〜20のアルコキシ基、炭素数6〜20のアリール基又はハロゲン原子を示し、vは1〜3の整数である〕
で示される化合物が用いられる。
前記一般式(VII)で示される化合物の具体例としては、トリメチルアルミニウム,トリエチルアルミニウム,トリイソプロピルアルミニウム,トリイソブチルアルミニウム,ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,メチルアルミニウムジクロリド,エチルアルミニウムジクロリド,ジメチルアルミニウムフルオリド,ジイソブチルアルミニウムヒドリド,ジエチルアルミニウムヒドリド,エチルアルミニウムセスキクロリドなどが挙げられる。
これらの有機アルミニウム化合物は一種用いてもよく、二種以上を組合せて用いてもよい。
【0043】
前記(A)触媒成分と(C)触媒成分との使用割合は、モル比で好ましくは1:1〜1:10000、より好ましくは1:5〜1:2000、更に好ましくは1:10ないし1:1000の範囲が望ましい。
該(C)触媒成分を用いることにより、遷移金属当たりの共重合活性を向上させることができるが、あまり多いと有機アルミニウム化合物が無駄になると共に、共重合体中に多量に残存し、好ましくない。
本発明の結晶性高級α−オレフィン共重合体の製造においては、触媒成分の少なくとも一種を適当な担体に担持して用いることができる。
該担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特に無機酸化物担体あるいはそれ以外の無機担体が好ましい。
【0044】
本発明の結晶性高級α−オレフィン共重合体において、共重合方法は特に制限されず、スラリー重合法,気相重合法,塊状重合法,溶液重合法,懸濁重合法などのいずれの方法を用いてもよいが、スラリー重合法,気相重合法が特に好ましい。
共重合条件については、共重合温度は通常−100〜250℃、好ましくは−50〜200℃、より好ましくは0〜130℃である。
共重合時間は通常5分〜10時間、反応圧力は好ましくは常圧〜20MPa(gauge)、更に好ましくは常圧〜10MPa(gauge)である。
【0045】
本発明の結晶性高級α−オレフィン共重合体の製造方法において、水素を添加すると共重合活性が向上するので好ましい。
水素を用いる場合は、通常、常圧〜5MPa(gauge)、好ましくは常圧〜3MPa(gauge)、更に好ましくは常圧〜2MPa(gauge)である。
共重合溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタンなどのハロゲン化炭化水素などを用いることができる。
これらの溶媒は一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。
また、α−オレフィンなどのモノマーを溶媒として用いてもよい。
尚、共重合方法によっては無溶媒で行うことができる。
【0046】
共重合に際しては、前記重合用触媒を用いて予備重合を行うことができる。
予備重合は、固体触媒成分に、例えば、少量のオレフィンを接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。
予備重合に用いるオレフィンについては特に制限はなく、前記に例示したものと同様のもの、例えば、エチレン、炭素数3〜20のオレフィン、あるいはこれらの混合物などを挙げることができるが、該共重合において用いる高級α−オレフィン又はオレフィンと同じオレフィンを用いることが有利である。
【0047】
予備重合温度は、通常−20〜200℃、好ましくは−10〜130℃、より好ましくは0〜80℃である。
予備重合においては、溶媒として、脂肪族炭化水素,芳香族炭化水素,モノマーなどを用いることができる。
これらの中で特に好ましいのは脂肪族炭化水素である。
また、予備重合は無溶媒で行ってもよい。
予備重合においては、予備重合生成物の極限粘度〔η〕(135℃デカリン中で測定)が0.1デシリットル/g以上、触媒中の遷移金属成分1ミリモル当たりに対する予備重合生成物の量が1〜10000g、特に10〜1000gとなるように条件を調整することが望ましい。
また、共重合体の分子量の調節方法としては、各触媒成分の種類、使用量、共重合温度の選択、更には水素存在下での共重合などがある。
窒素などの不活性ガスを存在させても良い。
以上のように、本発明の方法により、結晶性高級α−オレフィン共重合体を効率よく得ることができ、低温特性、剛性、耐熱性、潤滑油との相溶性、無機充填剤との混合性、二次加工性が優れた結晶性高級α−オレフィン共重合体が得られる。
【実施例】
【0048】
次に、本発明を実施例により、更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
【0049】
先ず、本発明の結晶性高級α−オレフィン共重合体の物性の評価方法について説明する。
(1)DSC測定
示差走査型熱量計(パーキン・エルマー社製、DSC−7)を用い、試料10mgを窒素雰囲気下190℃で5分間保持した後、−10℃まで、5℃/分で降温させ、−10℃で5分間保持後、190℃まで10℃/分で昇温させることにより得られた融解吸熱量(ΔH)カーブから観測されるピークのピークトップの融点(Tm)を測定した。
(2)広角X線散乱強度分布
明細書本文中に記載した方法により測定した。
(3)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
明細書本文中に記載した方法により測定した。
(4)立体規則性指標値のM2
明細書本文中に記載した方法により測定した。
(5)半値幅(Wm)
明細書本文中に記載した方法により測定した。
【0050】
触媒製造例1
(a)(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドの製造
窒素気流下、200ミリリットルのシュレンク瓶に(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(インデン)2.5g(7.2ミリモル)とエーテル100ミリリットルを加えた。
−78℃に冷却しn−ブチルリチウム(n−BuLi)のヘキサン溶液(1.6モル/リットル)を9.0ミリリットル(14.8ミリモル)加えた後、室温で12時間攪拌した。
溶媒を留去し、得られた固体をヘキサン20ミリリットルで洗浄し減圧乾燥することによりリチウム塩を白色固体として定量的に得た。
シュレンク瓶中、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(インデン)のリチウム塩(6.97ミリモル)をTHF(テトラヒドロフラン)50ミリリットルに溶解し、室温でヨードメチルトリメチルシラン2.1ミリリットル(14.2ミリモル)をゆっくりと滴下し12時間攪拌した。
溶媒を留去し、エーテル50ミリリットル加えて飽和塩化アンモニウム溶液で洗浄した。
分液後、有機相を乾燥し、溶媒を除去することにより(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデン)3.04g(5.9ミリモル)を得た。(収率84%)
次に、窒素気流下においてシュレンク瓶に、上記で得られた(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデン)3.04g(5.9ミリモル)とエーテル50ミリリットルを加えた。
−78℃に冷却し、n−ブチルリチウム(n−BuLi)のヘキサン溶液(1.6モル/リットル)を7.4ミリリットル(11.8ミリモル)を加えた後、室温で12時間攪拌した。
溶媒を留去し、得られた固体をヘキサン40ミリリットルで洗浄することによりリチウム塩をエーテル付加体として3.06gを得た。
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(90MHz,THF−d8):δ0.04(s,−SiMe3,18H),0.48(s,−Me2Si−,12H),1.10(t,−CH3,6H),2.59(s,−CH2−,4H),3.38(q,−CH2−,4H),6.2−7.7(m,Ar−H,8H)
窒素気流下で上記で得られたリチウム塩3.06gをトルエン50ミリリットルに懸濁させた。
−78℃に冷却し、ここへ予め−78℃に冷却した四塩化ジルコニウム1.2g(5.1ミリモル)のトルエン(20ミリリットル)懸濁液を滴下した。
滴下後、室温で6時間攪拌した。
反応溶液の溶媒を留去後、得られた残渣をジクロロメタンにより再結晶化することにより(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドの黄色微結晶0.9g(1.33ミリモル)を得た。(収率26%)
このものの1H−NMRを求めたところ、次の結果が得られた。
1H−NMR(90MHz,CDCl3):δ0.0(s,―SiMe3−,18H),1.02,1.12(s,−Me2Si−,12H),2.51(dd,−CH2−,4H),7.1−7.6(m,Ar−H,8H)
【0051】
実施例1
加熱乾燥した1リットルオートクレーブに、出光石油化学(株)製「リニアレン2024」(主として炭素数20,22,24のα−オレフィンの混合体)を2.8Kg、ヘプタン4リットルを入れ、共重合温度60℃まで昇温した後、トリイソブチルアルミニウム5ミリモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを20マイクロモル、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート40マイクロモルを加え、水素0.1MPaを導入し、8時間共重合した。
共重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級α−オレフィン共重合体1.5Kgを得た。
得られた共重合体の物性測定結果を第1表に示す。
【0052】
実施例2
加熱乾燥した1リットルオートクレーブに、1−オクタデセン(C18)200ミリリットル、ヘプタン200ミリリットルを加え、共重合温度60℃にした後、トリイソブチルアルミニウム0.5ミリモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを2マイクロモル、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート10マイクロモルを加え、さらに水素0.1MPa、エチレン0.03MPaを導入し、8時間共重合した。
共重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級α−オレフィン共重合体32gを得た。
得られた共重合体の物性測定結果を第1表に示す。
【0053】
実施例3
加熱乾燥した1リットルオートクレーブに、出光石油化学(株)製「リニアレン2024」(主として炭素数20,22,24のα−オレフィンの混合体)140gを含んだヘプタン溶液400ミリリットル、1−ブテン40ミリリットルを入れ、水素0.1MPaを導入し、共重合温度60℃まで昇温、昇圧した。
次に、トリイソブチルアルミニウム5ミリモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを5マイクロモル、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート25マイクロモルを加え、120分間共重合した。
共重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級αオレフィン共重合体17.6gを得た。
得られた共重合体の物性測定結果を第1表に示す。
【0054】
実施例4
加熱乾燥した1リットルオートクレーブに、出光石油化学(株)製「リニアレン2024」(主として炭素数20,22,24のα−オレフィンの混合体)140gを含んだヘプタン溶液400ミリリットル、1−ブテン20ミリリットルを入れ、水素0.1MPaを導入し、共重合温度60℃まで昇温、昇圧した。
次に、トリイソブチルアルミニウム5ミリモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを5マイクロモル、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート25マイクロモルを加え、120分間共重合した。
共重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級α−オレフィン共重合体24.0gを得た。
得られた共重合体の物性測定結果を第1表に示す。
【0055】
実施例5
加熱乾燥した1リットルオートクレーブに、1−ヘキサデセン(C16)100ミリリットル、1−オクタデセン(C18)100ミリリットル、ヘプタン200ミリリットルを加え、共重合温度60℃にした後、トリイソブチルアルミニウム4.0ミリモル、(1,2’−ジメチルシリレン)(2,1’−ジメチルシリレン)ビス(3−トリメチルシリルメチルインデニル)ジルコニウムジクロライドを4マイクロモル、メチルアルミノキサン4ミリモルを加え、さらに水素0.05MPaを導入し、2時間共重合した。
共重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級α−オレフィン共重合体を92g得た。
得られた共重合体の物性測定結果を第1表に示す。
【0056】
比較触媒製造例1
(a)固体触媒成分の製造
内容積0.5リットルの攪拌機付きの三つ口フラスコを窒素ガスで置換した後、脱水処理したヘプタンを80ミリリットル、ジエトキシマグネシウム4.0g(35ミリモル)を加えた。
次に、80℃まで昇温した後、フタル酸−n−ジブチル13.2ミリモルを添加した。
この溶液を80℃で保持し、引き続き四塩化チタンを116ミリリットル(1.06モル)加え、内温110℃で、2時間攪拌して担持操作を行った。
次に、脱水ヘプタンを用いて充分に洗浄した。
更に、四塩化チタンを116ミリリットル(1.06モル)加え、内温110℃で、2時間攪拌して2回目の担持操作を行った。
次に、脱水ヘプタンを用いて充分に洗浄を行い、固体触媒成分(チタン担持量:1.21質量%)を得た。
【0057】
比較例1
加熱乾燥した1リットルオートクレーブに、出光石油化学(株)製「リニアレン2024」(主として炭素数20,22,24のα−オレフィンの混合体)140gを含んだヘプタン溶液400ミリリットル、トリイソブチルアルミニウム0.8ミリモル、ジシクロペンチルジメトキシシラン40マイクロモル、固体触媒成分をチタン金属当り8マイクロモル加え、更に水素0.05MPaを導入し、共重合温度80℃にて120分間共重合した。
共重合反応終了後、反応物をアセトンにて沈殿させた後、加熱、減圧下、乾燥処理することにより、高級αオレフィン共重合体を14g得た。
得られた共重合体の物性測定結果を第1表に示す。
【0058】
【表1】


【特許請求の範囲】
【請求項1】
炭素数10以上の高級α−オレフィン二種以上を共重合して得られ、以下の(1)〜(3)の要件を満足することを特徴とする結晶性高級α−オレフィン共重合体。
(1):高級α−オレフィン単位含有量が50モル%以上、
(2):示差走査型熱量計(DSC)を用い、該共重合体を窒素雰囲気下190℃で5分間保持した後、−10℃まで5℃/分で降温させ、−10℃で5分間保持後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測される融点(Tm)が20〜100℃の範囲にあり、
(3):広角X線散乱強度分布における、15deg<2θ<30degに観測される側鎖結晶化に由来する、単一のピークX1が観測される。
【請求項2】
ゲルパーミエイションクロマトグラフ(GPC)法により測定したポリスチレン換算重量平均分子量(Mw)が1,000〜10,000,000の範囲にあり、分子量分布(Mw/Mn)が5.0以下である請求項1に記載の結晶性高級α−オレフィン共重合体。
【請求項3】
炭素数10以上の高級α−オレフィン連鎖部に由来する立体規則性指標値M2が、50モル%以上である請求項1又は2に記載の結晶性高級α−オレフィン共重合体。
【請求項4】
示差走査型熱量計(DSC)を用いることにより得られた融解吸熱カーブから観測される半値幅(Wm)が、10℃以下である請求項1〜3のいずれかに記載の結晶性高級α−オレフィン共重合体。
【請求項5】
(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、共重合して得られる請求項1〜4のいずれかに記載の結晶性高級α−オレフィン共重合体。
【化1】

〔式中、Mはチタン、ジルコニウム又はハフニウムを示し、E1及びE2はそれぞれインデニル基又は置換インデニル基であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。
Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2はジメチルシリレン基を示す。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕
【請求項6】
蓄熱材用である請求項1〜5のいずれかに記載の結晶性高級α−オレフィン共重合体。
【請求項7】
前記融点(Tm)が32.2〜40.0℃の範囲にある請求項1〜6のいずれかに記載の結晶性高級α−オレフィン共重合体。
【請求項8】
(A)下記一般式(I)で表される遷移金属化合物、及び(B)(B−1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B−2)アルミノキサンから選ばれる少なくとも一種類の成分を含有する重合用触媒の存在下、炭素数10以上の高級α−オレフィン二種以上を共重合させることを特徴とする請求項1に記載の結晶性高級α−オレフィン共重合体の製造方法。
【化2】

〔式中、Mはチタン、ジルコニウム又はハフニウムを示し、E1及びE2はそれぞれインデニル基又は置換インデニル基であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。
Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2はジメチルシリレン基を示す。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。〕

【公開番号】特開2009−57573(P2009−57573A)
【公開日】平成21年3月19日(2009.3.19)
【国際特許分類】
【出願番号】特願2008−285204(P2008−285204)
【出願日】平成20年11月6日(2008.11.6)
【分割の表示】特願2003−307164(P2003−307164)の分割
【原出願日】平成15年8月29日(2003.8.29)
【出願人】(000183646)出光興産株式会社 (2,069)
【Fターム(参考)】