Fターム[2G041GA04]の内容

その他の電気的手段による材料の調査、分析 (22,023) | 装置部品 (5,630) | 質量分析部 (4,146) | 四重極、RF (791) | リング電極を有するもの (59)

Fターム[2G041GA04]に分類される特許

1 - 20 / 59


【課題】翻訳後修飾を受けたタンパク質の同定を可能としたシステムにおいて非修飾タンパク質の同定性能の低下を防止するとともに同定時間の短縮化を図る。
【解決手段】公的なアミノ酸配列データベース等の登録情報など、既知のタンパク質のアミノ酸配列情報と翻訳後修飾情報とに基づいて、既知の修飾タンパク質のアミノ酸配列を含む同定用DB5を予め構築する。この際に、修飾されたアミノ酸を通常のアミノ酸と重複しない特定の記号で表記する。検索条件入力部44から同定対象のデータと翻訳後修飾を含む検索条件が指定されると、DB検索部43は指定されたデータを同定用DB5と照合してペプチドの候補を抽出する。修飾タンパク質は既知のものに限られるため検索空間はそれほど拡大しない。それによって、高い同定性能を確保しながら検索時間を短縮することができる。 (もっと読む)


【課題】N末端アミノ酸残基がグルタミンやカルバミドメチル化したシステインである場合、優先的な環化によってNH3やH2Oが脱離するためにm/zずれが生じてペプチド同定が困難になる。本発明はこのようなN-結合型糖ペプチドに対しても高い精度でペプチドを同定することを目的とする。
【解決手段】MS2スペクトルに現れる糖鎖組成を示すピーク列についてデノボシーケンス処理を実施する際に、そのピークの1つとMS2プリカーサとの質量電荷比差からNH3又はH2O脱離によるm/zずれの有無を推定する(S4、S5)。さらに、MS2スペクトル上のN-結合型糖ペプチドに特徴的なトリプレットピークとMS1スペクトル上のトリプレットピークとの質量電荷比差からも同様のm/zずれの有無を推定する(S6、S7)。N末端アミノ酸残基の環化ありと判断されたならば、それをデータベース検索の際の検索条件の1つとすることでペプチドの同定精度を高める。 (もっと読む)


【課題】MS2スペクトル上で観測されるイオンピークに目的化合物に由来しないピークが混じることを防止し、データベース検索による化合物同定の信頼性を向上させる。
【解決手段】ペプチドに対し質量分析を行って得られたマススペクトル上で、所定の選択条件に照らしてプリカーサイオンを選択しMS2分析を実行する(S1〜S3)。取得されたMS2スペクトル上でプリカーサイオンピークのm/z(Mp)とそれより57[Da]低いm/z(Mp-57)との範囲内にMp−17又はMp−18以外のイオンピークが存在したならば(S5、S6)、同位体ピーククラスタの一部が外れるように選択条件を変更した上でプリカーサイオンの選択を行い、再びMS2分析を実行する(S8、S2−S3)。これにより、同位体ピーククラスタに重畳している夾雑ピークをプリカーサイオンから除外し、純度の高いMS2スペクトルを取得することができる。 (もっと読む)


【課題】イオントラップからイオンを出射する際のターンアラウンドタイムを短縮することにより質量分解能を改善する。
【解決手段】イオン出射前のクーリング行程の最終段階で、捕捉電場を形成するためにリング電極に印加する矩形波電圧の周波数を数周期の期間だけ上昇させる。これにより、イオントラップ内部の閉じ込めポテンシャルが浅くなり、捕捉されているイオンの速度が下がる。そのため、矩形波電圧の印加が停止され加速電場が形成された際のイオンのターンアラウンドタイムが短くなり、同一質量電荷比のイオンの飛行時間のばらつきが小さくなる。閉じ込めポテンシャルが浅くなることでイオンは空間的に拡がるが、その拡がりがTOFMSにおいて補正可能なエネルギ幅内に収まるように周波数を上昇させる時間を定めておくことにより、質量分解能を改善することができる。 (もっと読む)


【課題】ETDプロダクトイオンまたはETDフラグメントイオンが有する比較的高い電荷状態を低減する質量分析計を提供する。
【解決手段】親イオンの電子移動解離フラグメンテーションによって生成された高電荷のフラグメントイオンの電荷状態が、当該フラグメントイオンをオクタヒドロピリミドールアゼピンなどの中性超強塩基試薬ガスと反応させることによってプロトン移動反応セル内で低減される質量分析計が開示される。 (もっと読む)


【課題】デジタルイオントラップにおいて、q値を略一定に保ちつつ任意のm/zのプリカーサ分離を短時間で行う。
【解決手段】ノッチのあるFNF信号をデジタル化したデータをFNF波形記憶部15に記憶しておき、プリカーサ分離の際に主電圧タイミング制御部7及び主電圧発生部9は基準クロック信号CKに基づき矩形波電圧を発生し、補助信号生成部14はFNF波形記憶部15から読み出したデータを基準クロック信号CKに同期したクロック信号によりD/A変換してFNF信号を生成する。基準クロック発生部6は制御部30の制御の下に、目的イオンのm/zに応じた周波数の基準クロック信号CKを生成するため、目的イオンのm/zが変わると基準クロック信号CKの周波数が変化し、同じ比率で矩形波電圧の周波数、FNF信号のノッチの中心周波数も変化する。 (もっと読む)


【課題】短い測定時間で広い質量電荷比範囲のマススペクトルを取得可能な分析と、複雑な分子構造の解析に有用なMSスペクトルを取得可能な分析とを、1台の質量分析装置で切り替えて実施できるようにする。
【解決手段】MALDIイオン源、イオンを加速する引出し電極13、イオンを収束させるイオン光学系14などを含むイオン導入部10と、イオンを直線的に飛行させる飛行空間を内部に形成するフライトチューブ34との間に、イオントラップを含むイオン捕捉部20と第2検出部31とを配置する。通常分析の際には、イオン導入穴24及びイオン導出穴25を通過するようにイオン光学系14でイオン流を絞り、フライトチューブ34内空間のほかイオントラップ内空間や第2検出部31内の空間も自由飛行領域として飛行時間を計測する。MS分析の際にはイオントラップに一旦イオンを捕捉し、イオントラップで質量分離して吐き出したイオンを第2検出部31で検出する。 (もっと読む)


【課題】高いイオン輸送効率を示すファンネル構造の電極部にイオンを導入する効率を高めることで、総合的な輸送効率一層高める。
【解決手段】大気圧下で試料のイオン化を行うイオン化室1から、直管状のキャピラリ管3を通してイオンを、第1中間真空室4内に配置されたファンネル構造の電極部10の内部空間に導入する。複数のリング電極の一部を、周方向に一部を切り欠いた略C形状の電極に置き換えることでキャピラリ管3を配設する空間を確保し、イオンの導入方向をイオン輸送方向と略直交させる。導入されたイオンは衝突冷却によりエネルギーを減じ、高周波電場の閉じ込め作用によりイオン光軸C近傍に収束し、直流電場の電位勾配に従って出口開口に向かって効率良く移動する。ガス流はリング電極間の空隙を抜けるのでリング電極内空間の出口付近のガス圧が高くならず、後段の真空を損なうことも防止できる。 (もっと読む)


【課題】シアル酸等、脱離し易い修飾物が結合した糖鎖、ペプチドをMS分析する際に、得られるマス(MS)スペクトルの感度を高めることで構造解析の精度を向上させる。
【解決手段】分析対象の化合物Aから生成された各種イオンをイオントラップ内に捕捉した後に、質量選別を行うことなく(シアル酸が脱離したイオンを捕捉したまま)[M+H]に対するCIDを実行する。これにより、1個のシアル酸が脱離した[M−Sia+2H]が増加するから、次に質量選別を行うことなく[M−Sia+2H]に対するCIDを実行する。このようにして全てのシアル酸が脱離した[M−3Sia+4H]を増量した後に、該イオンに対する質量選別及びCIDを実行し、該イオンに由来する各種プロダクトイオンを生成させてそれを質量分析・イオン検出する。従来手法では分析に使用されていないイオンがマススペクトルに反映されるため高感度となる。 (もっと読む)


【課題】イオン移動度測定と質量分析を単一装置で行う事により、輸送工程の排除や解析の自由度を増すシステムを提供する。
【解決手段】単一組の複数の電極に異なる電位を異なる時間に印加する事により、イオン移動度に基づく分析(FAIMS)と質量分析(MS)とを単一装置で実行可能とする。前記複数の電極は、分離装置内の単一の室10に外部円筒電極14と同軸配置された環状棒電極12とを備える。FAIMSを実行する際には、環状棒電極12は定電位又はグラウンドに維持され、非対称FAIMS波形が外部円筒電極14に印加される。 (もっと読む)


【課題】質量分析計の大気圧イオン源から真空ステージへのイオンの効率的な移送を実現する、改良された質量分析計を提供する。
【解決手段】サンプリングコーン3とコーン−ガスコーン4とを含み、サンプリングコーン3を通過し、質量分析計の後続ステージに入り、当該ステージを通過する分子質量が高いイオンの移送を向上させるために、使用時に、六フッ化硫黄(「SF6」)をコーンガス5としてコーン−ガスコーン4とサンプリングコーン3との間の環状部へ供給する質量分析計が開示される。 (もっと読む)


【課題】イオン捕捉用の高周波電場をイオントラップ内に形成するためにリング電極に矩形波電圧を印加するデジタルイオントラップを用いた質量分析装置において、MSn分析の際に生成される低質量のプロダクトイオンを的確に捕捉し検出可能とする。
【解決手段】MSn分析において、低質量のプロダクトイオンが生成される開裂操作(S16)の前にリング電極に印加されるイオン捕捉用の矩形波電圧の振幅を下げる(S10)。矩形波電圧の振幅を下げることにより安定捕捉条件を満たす最小質量が下がり、低質量のプロダクトイオンも捕捉可能となる。一方、イオントラップに捕捉されるイオンのm/zが比較的高い状態のとき(S1〜S7)には、矩形波電圧の振幅は大きいので擬電位ポテンシャルは深く、高い効率でイオンを捕捉することが可能である。 (もっと読む)


【課題】イオン発生時やイオントラップへのイオン導入時ではなくイオントラップにイオンを導入した後にイオン数の調整を可能とすることで、イオントラップ内の空間電荷効果の影響を低減して分析性能を高める。
【解決手段】イオントラップ2内にイオンを捕捉した後に、ソレノイドコイル26に電流を供給して直流磁場Bを形成すると共に捕捉用高周波電場を解除し、エンドキャップ電極22、24には反対極性の電圧を印加する。捕捉されていたイオンのほぼ半数は磁力線に沿って入口側エンドキャップ電極22に向かい消滅する。残りの約半数のイオンは磁力線に沿って出口側エンドキャップ電極24に向かい、電場により反射される。反射されたイオンが入口側エンドキャップ電極22に到達する前に直流磁場Bを解除して捕捉用電場を復活させることにより、イオンを約半分に減らすことができる。この操作の繰り返しによりさらにイオン数を減らすこともできる。 (もっと読む)


【課題】実用的なプロテオーム解析用質量分析装置を提供する。
【解決手段】直交加速型イオントラップ結合飛行時間型質量分析計において、イオントラップから射出されたイオンの速度分布を縮小する手段を設けることにより、一度に分析できる質量対電荷比範囲を拡大する。
【効果】プロテオーム解析におけるタンパク同定の効率が向上される。 (もっと読む)


【課題】待機状態から分析を開始するに際し、リング電極へ印加する矩形波電圧の振幅の僅かな変動を防止することにより、イオントラップからのイオン排出の時間ドリフトを軽減する。
【解決手段】或る分析終了時から次の分析までの待機期間中に、待機時周波数決定部72は、予め温度制御用データ記憶部73に格納されているデータを参照して、次に実行する分析の分析条件に対応した安定温度を求め、その安定温度を維持する駆動パルスの周波数f1を算出する。制御部7の制御の下に、タイミング信号発生部6は周波数f1の駆動パルスを生成してスイッチング素子43、44を交互にオンするように駆動する。このスイッチング動作により主電源部4の温度は次の分析時の安定温度に近い状態に維持されるため、次の分析が開始されても温度の変化は殆ど生じず、温度変化に起因するイオン排出の時間ドリフトは軽減される。 (もっと読む)


【課題】従来のイオントラップでは、十分な擬電位ポテンシャルを確保しつつCIDに十分な運動エネルギーをプリカーサイオンに与えるような駆動条件を設定した場合、低m/zのプロダクトイオンが安定捕捉領域を外れて観測できなくなる。
【解決手段】プリカーサイオンの選別を行う際には、リング電極31に高周波高電圧を印加し、エンドキャップ電極32、33に共鳴励振用の交流電圧を印加する。それに引き続くCID時には、リング電極31ではなくエンドキャップ電極32、32に高周波高電圧を印加することで、プリカーサイオンと開裂により生成されたプロダクトイオンとを捕捉する。その際には、イオン選別時の高周波高電圧よりも周波数を高くするとともに振幅も大きくし、q値を小さくする一方、擬電位ポテンシャルを大きくする。これにより、低m/zのプロダクトイオンが良好に捕捉され、そうしたイオンも観測できるようになる。 (もっと読む)


【課題】目的の糖ペプチド由来のイオンをプリカーサイオンとしたMS/MSスペクトルに基づくデータベース検索により、糖ペプチドを構成するペプチドのアミノ酸配列と糖鎖結合部位とを高い信頼度で推定する。
【解決手段】MSスペクトルから糖ペプチド由来のイオンを見つけてMS/MSスペクトルを取得し(S1〜S3)、該スペクトルから全ての糖鎖が脱離したペプチドに帰属される、及び、糖による単純な修飾を受けたペプチドに帰属されるプロダクトイオンを抽出し、各プロダクトイオン以下のm/zを持つピークのリストをそれぞれ作成する(S4,S5)。S4で判明する修飾条件(糖の種類)を検索条件としピークリストをデータベース検索に供し、一致度の高いペプチドの候補をリスト化する(S6〜S8)。各ピークリストの検索結果を総合的に判定し、アミノ酸配列及び糖鎖結合部位の候補のリストを表示する(S9)。 (もっと読む)


【解決手段】開示されるイオン源において、試料導入用キャピラリー管(2)を介して、イオン源の試料チャンバ(1)内に、気相で試料を導入する。酸化銅等の酸化剤で被覆された加熱表面(6)に導入された試料を入射することにより、試料に含まれる炭素が酸化されて、二酸化炭素が形成される。形成された二酸化炭素分子を、電子ビーム(3)を用いた電子衝撃イオン化によりイオン化する。得られたイオンを質量分析器に送り、質量分析を行なう。 (もっと読む)


【課題】タンデム質量分析法は、通常の質量分析法に比べて時間がかかるため、探知装置に求められる探知スピードが達成できなかった。
【解決手段】質量分析装置を用いた分析方法において、質量スペクトルを取得するステップ(201)と、固有のm/zのイオンが存在するか判定するステップ(202)を用いて高速でスクリーニングを行う。前記判定するステップ(202)の判定結果に応じて分析条件をデータベースから読み込み、タンデム質量分析を行うステップ(203)に切り替え、精査する。タンデム質量分析法で得られた結果から、固有のm/zのイオンが存在するか判定するステップ(204)を行う。 (もっと読む)


【課題】目的のイオンが十分な確保でき、MS/MS測定が最適化されたイオントラップ質量分析装置を提供する。
【解決手段】試料をイオン化するイオン源部と、イオン源にて生成されたイオンを、三次元四重極電界を形成することで所定の質量電荷比に従いイオンを閉じ込め、不要なイオンを排出し、目的のイオンのみを四重極電界内に閉じ込め、衝突誘起解離を行い、フラグメントイオンを生成し、そのイオンを質量分離し、検出器に輸送するイオントラップ部とイオンの量を電流値に変換する検出部とで構成される質量分析装置において、イオン捕捉操作における捕捉イオン量かつ目的イオン量をMS/MS測定を行うために最適化し、イオン選択操作および衝突誘起解離操作を行い、MS/MSスペクトルを得る。 (もっと読む)


1 - 20 / 59