説明

Fターム[2G050BA12]の内容

耐候試験、機械的方法による材料調査 (7,997) | 試験環境因子 (1,866) | 機械的応力 (149)

Fターム[2G050BA12]に分類される特許

61 - 80 / 149


【課題】亜鉛合金ダイカスト中の含有不純物に起因する粒界腐食感受性の評価法として、微量分析技術を必要としない、簡便な粒界腐食感受性の評価法を提供する。
【解決手段】亜鉛合金ダイカスト標準材及び亜鉛合金ダイカスト試験材のアノード分極曲線を塩化ナトリウム水溶液中で測定し、自然浸漬電位(mV)から自然浸漬電位+10〜50mVまで分極し、その範囲の電流値を積分して得られる電気エネルギー量を算出し、亜鉛合金ダイカスト標準材について求めた電気エネルギー量に対する亜鉛合金ダイカスト試験材について求めた電気エネルギー量の比を算出することによる亜鉛合金ダイカスト粒界腐食感受性評価法。 (もっと読む)


【課題】金型寿命を延命または推定するために重要な、潤滑剤の冷却特性と、金型材の耐熱衝撃性や熱疲労特性を評価できる。
【解決手段】ワークを間欠運動で送り出す工程と、上記ワークを加熱装置で加熱する工程と、上記ワークが直線運動停止時に上記ワーク上方に上下進退自在に配置された鍛造用金型材製パンチを上記ワークに接触させる工程と、および上記鍛造用金型材製パンチが上記ワークに接触し離脱した後に鍛造用潤滑剤または冷却剤を吹き付ける工程とが繰り返し行なわれ、上記パンチ先端温度と、所定回数の接触を行なった後のパンチの損傷状態を測定する。 (もっと読む)


本発明は、腐食性材料または異物材料を検知および測定するための機械的振動体である。要素は、機械的励起用の手段と機械的振動体とを含み、前記機械的振動体は、共鳴周波数fおよび性質係数Qを有する。振動体に固定される融解体が、振動体の振幅を、実質的にゼロから共鳴振幅に、或いは、共鳴振幅から実質的にゼロに変化させる。好ましい実施態様においては、機械的振動体が音叉の形状を有し、その1つの領域は作動環境の流体に適合し、他の領域は作動環境流体または他の汚染物質に適合していない。センサーは、その適合しない材料の所定の限界量が除去された時、或いは、その材料の物理的な強さが損なわれた時に、警報を発する。 (もっと読む)


【課題】本発明の目的は、所望の深さのき裂が付与される試験体及び試験体の製造方法を提供することである。
【解決手段】試験体は、第1溶接金属3と、第1溶接金属3に結合された第2溶接金属4とを具備する。第2溶接金属4に第1き裂6’が設けられている。第1き裂6’の深さ方向の先端は、第1溶接金属3と第2溶接金属4の第1境界領域3aに位置する。第1溶接金属3は、第1重量濃度の炭素と、第2重量濃度のクロムとを含むニッケル基合金である。第2溶接金属4は、第3重量濃度の炭素と、第4重量濃度のクロムとを含むニッケル基合金である。前記第3重量濃度は前記第1重量濃度より高い。前記第4重量濃度は前記第2重量濃度より低い。第2溶接金属4の割れ感受性が第1溶接金属の割れ感受性よりも高いため、第1き裂6’の深さ方向の先端位置が、第1境界領域3aに制御される。 (もっと読む)


【課題】実際の市場におけるタイヤの故障を再現することができる測定対象タイヤ、測定対象タイヤの前処理方法およびタイヤ耐久試験方法を提供すること。
【解決手段】タイヤ試験機を用いた試験により評価される測定対象タイヤの前処理方法において、内壁面14の一部を酸素透過性の低いシート2,2で覆い、内壁面14の一部が酸素透過性の低いシート2,2で覆われた測定対象タイヤ1内に酸素分圧が30%以上の気体を充填し、内壁面14の一部が酸素透過性の低いシート2,2で覆われ、酸素分圧が30%以上の気体が充填された状態で、加熱装置10により加熱する。これにより、促進測定対象タイヤの特定部分であるシート2,2で覆われていない部分のみを劣化させる。 (もっと読む)


【課題】特殊な工具を使わずに脆化度を評価するとともに、評価の精度を向上する、Cr−Mo−V鋼製タービンロータの脆化度評価方法を提供する。
【解決手段】Cr−Mo−V鋼製のタービンロータの脆化度を評価する方法は、温度Tで時間t使用による破面遷移温度の増加量(ΔFATTTt)を、ΔFATTTt=(425.0+1.778K2−0.9643T−0.001990K2T)×{1−exp(x2)erfc(x)}・・・・(式1)により求める。ここでx、yは特定の計算式により与えられる。 (もっと読む)


【課題】応力腐食割れ(SCC)を模擬した割れを、厚さが不均一な複雑な形状の試験体における所望の部位に付与する。
【解決手段】溶接部13に応力腐食割れを模擬した割れが付与された試験体10を製造する方法において、試験体10に一端を溶接部13に突き当てるようにして補強部材14を取り付けて補強部材付き試験体15とし、補強部材付き試験体15を曲げて溶接部13に引張応力を発生させることで、溶接部13に突き当てられた補強部材14の一端により溶接部13に応力集中を生じさせて、その応力集中により溶接部13に割れを付与し、その後、補強部材14を試験体10から取り外すようにした。 (もっと読む)


【課題】応力腐食割れによって生じる複数の微少亀裂が進展する過程において隣り合う微少亀裂同士が合体する過程を模擬的に再現して観察する方法を提供する。
【解決手段】試験片1を屈曲させた状態で腐食液3に浸漬し、試験片1の表面11に複数の微少亀裂12を発生させ、試験片1の表面11に、型取り材を積層させ剥がすことで各微少亀裂12が転写されたレプリカを採取し、試験片1に、表面11に引張応力が生じるように曲げを加えて各微少亀裂12を進展させ、試験片1の表面11に、型取り材を積層させ固化後に剥がすことで、進展した各微少亀裂12を転写したレプリカを採取し、試験片1の曲げとレプリカの採取とを交互に繰り返すことで、各微少亀裂12の進展を進めつつそれを転写したレプリカを採取し、これまで採取した複数のレプリカを観察することで、隣り合う微少亀裂12同士が合体する過程を観察する。 (もっと読む)


【課題】応力腐食割れ(SCC)を模擬した割れを、厚さが不均一な複雑な形状の試験体における所望の部位に付与する。
【解決手段】溶接部13に応力腐食割れを模擬した割れが付与された試験体10を製造する方法において、試験体10に溶接部13の割れを付与する部位を挟むようにして一対の柱状部材16、17を取り付け、それら一対の柱状部材16、17の内の一方の柱状部材16の自由端側の部分にボルト22を螺合すると共にそのボルト22の先端を他方の柱状部材17の自由端側の部分に当接させ、ボルト22を締め付け、一対の柱状部材16、17の自由端側の部分同士を離間させて溶接部13の割れを付与する部位に引張応力を発生させることで、その部位に割れを付与し、その後、一対の柱状部材16、17を試験体から取り外すようにした。 (もっと読む)


【課題】クリープボイドとその他の空隙とをより正確に、かつ簡便に判別することができるクリープボイドの検出方法およびこれを用いたクリープ損傷率の測定方法を提供することである。
【解決手段】金属に生じたクリープボイドを表面観察により検出する方法において、前記金属表面に存在する空隙の針状比、フェレ径比、主軸の傾斜角度および1個当たりの面積を計測することによって、クリープボイドとその他の空隙とを判別する。判別結果をもとにして、ボイド面積率法、Aパラメータ法およびボイド個数密度法から選ばれる少なくとも1種を用いてクリープ損傷の程度を評価する。 (もっと読む)


【課題】 担当者のレベル差に左右されることなく客観的に健全性の評価を行うことができるボイラー管および付属配管の健全性評価方法を提供する。
【解決手段】 ボイラー管および付属配管の健全性評価方法は、測定肉厚値T2が必要最小肉厚値T1よりも小さい場合は、最高使用圧力とその条件下での常用温度で第1の必要最小肉厚値T3を算出しおよび最高使用温度とその条件下での常用圧力で第2の必要最小肉厚値T4を算出した後、第1および第2の必要最小肉厚値T3、T4のいずれもが、測定肉厚値T2よりも小さいか否かを判断する段階を判断要素として、第1および第2の必要最小肉厚値T3、T4のいずれもが測定肉厚値T2よりも小さい場合は健全性が合格していると評価する。 (もっと読む)


【課題】遅れ破壊試験装置において、試験条件を安定に維持して、遅れ破壊の評価のばらつきを抑制することである。
【解決手段】遅れ破壊試験装置10は、試験容器20を用いて試験片8を試験液に浸漬し引張負荷を与える負荷試験部12と、試験容器20との間で試験液を循環させるための循環試験液タンク40と、新しい試験液を収容する新液タンク60と、循環試験液タンク40と新液タンク60との間に設けられる開閉弁50と、循環試験液タンク40に設けられ、ヒータ用熱源48に接続されるヒータ46とを備える。制御部70のpH調整部72は、pH検出器42の検出値に基づいて開閉弁50を制御して試験液82のpH調整を行い、温度調整部74は、試験液温度計44の検出値に基づいてヒータ用熱源48を調整して試験液82の温度調整を行う。 (もっと読む)


【課題】実機における所定部分の温度を実測し、その実測された温度を用いた熱伝導解析および熱応力解析の結果に基づいて損傷評価を行い、高精度な寿命評価を行うことができる高温機器の寿命評価装置および高温機器の寿命評価方法を提供することを目的とする。
【解決手段】高温機器の寿命評価装置は、高温機器の所定部位の、温度を計測する温度計測手段20と、応力を計測する応力計測手段50と、計測された温度を用いて熱伝導解析を行う熱伝導解析手段30と、解析された温度分布を用いて熱応力解析を行う熱応力解析手段40と、計測された応力値と解析された応力値を比較する応力値比較手段60と、応力差に基づいて、熱伝導解析に用いられる境界条件を解析し、すでに設定されている境界条件を変更する境界条件変更手段70と、熱応力の解析結果を用いて寿命を評価する寿命評価手段80とを具備する。 (もっと読む)


【課題】 加速試験で得られた2つのロット間で有為差有りと判断するために必要な寿命差を、簡単かつ迅速に試算することができ、かつ信頼性の高いものとでき、熟練者でなくても必要な寿命差を試算することのできる方法を提供する。
【解決手段】 あるワイブル分布から水準1のロットの試験個数分の乱数を発生させる(L21)。同じワイブル分布から水準2のロットの試験個数分の乱数を発生させる(L22)。その発生させた乱数から求まる寿命を演算して1組の寿命比を算出する(L23)。この処理を設定回数繰り返して設定回数の組数の寿命比を求め、この寿命比の確率分布と累積確率分布を作成する(L24)。上記累積確率分布から設定信頼幅内の最大および最小の寿命比を読み取り(L25)、必要寿命差として出力する(L26)。 (もっと読む)


【課題】 打切り時間および試験中止基準時間の適切な見積もりが、簡単にかつ迅速に行え、かつ信頼性の高いものとでき、また熟練を要しないものとする。
【解決手段】 試験対象の寿命分布となるワイブル分布を用い、その分布に従った乱数を試験個数分ずつ発生させて全てのワイブル乱数が何時間以上であるかを調べる過程を繰り返す。この処理を繰り返して累積分布を演算し、この累積分布からL10寿命等の信頼度に対応する時間を読み取って打切り時間とするコンピュータシミュレーションを行う。また、上記ワイブル分布に従った乱数を試験個数分ずつ発生させてそのうちの最も短いワイブル乱数が何時間以上であるかを調べる処理を繰り返し、この処理を繰り返して累積分布を演算する。この累積分布から、100%からL10寿命等の信頼度を減算した値に対応する時間を読み取って1個破損時の試験中止基準時間とするコンピュータシミュレーションを行う。 (もっと読む)


【課題】加速試験で得られた2つのロット間寿命から有為差有無の判定、および倍率による寿命差を算出する方法を提供する。
【解決手段】あるワイブル分布から水準1のロットの試験個数分の乱数を発生させ、同じワイブル分布から水準2のロットの試験個数分の乱数を発生させる。その乱数から求まる寿命を演算し1組の寿命比を算出する。この処理を設定回数繰り返し設定回数の組数の寿命比を求め、この寿命比の確率分布と累積確率分布を作成し、設定信頼幅内の最大および最小の寿命比を読み取り、有為差有無の判定を行う。有為差有りと判定した場合、異なるワイブル分布に変えて、上記累積確率分布分析手順を繰り返す。繰り返しにより得られた設定倍率と信頼幅内の最大の寿命比の関係を示すグラフを作成し、上記入力情報における水準1,水準2の寿命の寿命比に対応する上記設定倍率の値を読み取り、その読み取った値を少なくとも断定できる寿命差とする。 (もっと読む)


【課題】 高度な信頼性の算出寿命を得るための必要試験個数を、簡単かつ迅速に試算することができ、かつ信頼性の高いものとでき、熟練者でなくても必要試験個数を試算することのできる方法を提供する。
【解決手段】 あるワイブル分布から乱数を発生させ(J21)、同じワイブル分布から乱数を発生させる(J22)。その発生させた乱数から求まる寿命を演算して1組の寿命比を算出する(J23)。この処理を設定回数繰り返して設定回数の組数の寿命比を求め、この寿命比の確率分布と累積確率分布を作成する(J24)。個数を順次変えて、上記累積確率分布作成までの処理を繰り返し、試験個数と必要寿命差の関係を示すグラフを作成する(J25)。このグラフから、入力情報の寿命差に対応する個数を読み取って必要試験個数と定める(J26)。 (もっと読む)


【課題】寿命試験の設計と試験結果の解釈を、誰もが経験によらず正確に行う方法を提供。
【解決手段】寿命判断の基準となる打切り時間、寿命差、試験個数等の値を定める設計過程S1と、試験結果から試験対象品の寿命、有為性、寿命差等の解釈項目の判定を行う判定過程S3とを含む。設計過程では、試験対象品に対応する所定のワイブル分布に従ったワイブル乱数を、試験個数と見立てた個数だけ発生させる手順S11、およびそのワイブル乱数を分析する手順S12を繰り返すS13。この繰り返しによって得られた所定事項の確率分布を求めS14、確率分布を基に上記設計内容を定めるS15。判定過程では、試験結果に応じてワイブル乱数を試験個数分発生させる手順S31、およびその発生させたワイブル乱数を分析する手順S32を繰り返すS33。この繰り返しによって得られた所定事項の確率分布を求めS34、その確率分布を基に判定を行う。 (もっと読む)


【課題】高強度フェライト鋼の溶接部の余寿命の判断を適切にできる高強度鋼溶接部の寿命評価方法を提供する。
【解決手段】高強度鋼溶接部のクリープ伸びによる寿命評価方法の判定手法は、検査対象の高強度鋼溶接部の所定範囲の熱影響を受けた箇所のクリープ伸びの測定を行う溶接部のクリープ伸び測定工程(S101)と、前記クリープ伸び測定工程で得られた測定結果と、運転初期の前記高強度鋼溶接部の所定範囲の長さとを比較してクリープ歪みを求めるクリープ歪み計測工程(S102)と、予め求めた運転時間又はクリープ寿命消費率とクリープ歪みとの関係を示すクリープ歪み特性曲線に、前記得られたクリープ歪みの値を当てはめて、前記検査対象の寿命消費率を求める寿命消費率計測工程(S103)と、前記寿命消費率計測工程で得られた寿命消費率から前記溶接部の余寿命推測する余寿命推測工程(S104)とからなる。 (もっと読む)


【課題】 潤滑剤におけるトライボプラズマ現象の発生状況を把握し、潤滑剤の劣化を測定する方法及びそれに用いる測定装置を提供する。
【解決手段】
半球ピンと潤滑剤を載せたディスクの摺動接触点で発生する光子像を、紫外線透過レンズで構成された光学顕微鏡を通して検出し、UV像の発生の有無により、トライボプラズマが潤滑剤の潤滑点の近傍に発生しているかどうかを判定することからなる潤滑剤の劣化測定方法。 (もっと読む)


61 - 80 / 149