説明

Fターム[2G088EE30]の内容

放射線の測定 (34,480) | 対象分野、対象装置 (4,049) | その他 (154)

Fターム[2G088EE30]に分類される特許

141 - 154 / 154


関心領域を複数の時点にわたってリンクさせるためのシステムおよび方法が提供される。方法は、第1の時点の画像データセットおよび第2の時点の画像データセットをロードするステップ(210)と、第1の時点の画像データセットおよび第2の時点の画像データセットをレジストレーションするステップ(220)と、第1の時点の画像データセットおよび第2の時点の画像データセットを表示するステップ(230)と、第1の時点の画像データセット内の関心領域および第2の時点の画像データセット内の関心領域を選択するステップ(240)と、第1の時点の画像データセット内の関心領域および第2の時点の画像データセット内の関心領域をリンクさせるステップ(250)とを含む。
(もっと読む)


【課題】本発明は従来の技術では平板投影装置で使用するには不都合であった、波長が50nm未満の放射線を検出可能な放射線センサが都合よく位置している平板投影装置を提供する。
【解決手段】50nm未満の波長λ1を有する放射線の投影ビームを提供する放射システムと、所望のパターンに従って投影ビームをパターン化するパターン化手段を支持する支持構造体と、基板を保持する基板テーブルと、パターン化したビームを基板の目標部分に投影する投影システムとを含む。更に、投影ビームからの放射線を受け取るように位置し、波長λ1の入射放射線を二次放射線に変換する放射線感受性材料からなる放射線センサと、前記材料の層から出てくる二次放射線を検出可能な感知手段とを含む。 (もっと読む)


【課題】 照射線量をリアルタイムに計測できる体内埋め込み型のマイクロ線量計装置およびその測定方法を提供する。
【解決手段】 ショットキ型CdTe検出器8に放射線が入射することにより発生する電流を電流電圧変換器9を介し電圧制御型増幅器10に制御信号として入力し、発信回路11からの基本信号に対して振幅変調を行う。変調信号を元にコイル12から一定周波数の交流磁場を発生させる。ショットキ型CdTe検出器8、電圧制御型増幅器10、発信回路11、コイル12は一体型の筐体に収めて生体内に埋め込む。コイル12より発生した信号磁場を体外のフラックスゲート磁束計14でリアルタイムで測定する。測定データをコンピュータ15により周波数解析することで信号磁場の変動に対応した放射線線量を知る事ができる。以上の構成から成る体内埋め込み型のマイクロ線量計装置により生体内の局所に照射される放射線線量をリアルタイムに計測する事が可能となる。
(もっと読む)


【課題】無指向の宇宙背景ニュ−トリノの検出方法を提供する。
【解決手段】平面コンデンサ−を大気中に置いて、絶縁膜或いは重水を染ませた紙と負極板の間のミクロなHビームまたはDビ−ムをニュートリノと相互作用させ、そのコンデンサ−を含む電気回路の電流発生でニュートリノを検出する。水素の場合は絶縁膜の自然吸着を利用し、重水素の場合は重水を染ませた紙を絶縁膜に重ねる。付加コンデンサ−と抵抗からなる電気回路にガルバノメ−タ−を入れ、平面コンデンサ−の端子電圧を調節し、無指向で発生する電流を、指針の振れの残像で観測する。 (もっと読む)


【課題】 核種を同定できると共に含有量を定量化できるようにする。
【解決手段】 分析対象試料18に、外部中性子源からパルス中性子を照射し、透過する中性子のエネルギー分布を中性子検出器22で検出し、飛行時間測定法によって核種毎に依存する中性子共鳴ピークの凹みを観測することにより、前記試料中に含まれる核種の同定と含有量の定量を行う。分析対象試料を1次元あるいは2次元の試料駆動台16に載せて、試料を移動してコリメートされたパルス中性子を照射し、遮蔽体によりバックグラウンドを除去した状態で透過中性子を中性子検出器によって測定すると、試料中に含まれる核種の種類と含有量の位置依存性も求めることができる。 (もっと読む)


本発明は、改良されたガンマ線検出モジュール(300)、および検出器(304)内のガンマ線相互作用の位置(340)をより正確に決定するために、検出モジュール(300)を操作する方法を提供する。検出モジュール(300)は、検出器(304)内に適用された他の配列に対してオフセット角度に設けられた誘導配列(311)を含む。このとき、誘導配列(311)およびコレクタ、または陽極(310)によるイオン化電子(306)の検出の相対時間は、イオン化電子(360)が生成される相互作用(340)の位置に対応する、少なくとも1つの座標を示す。この2次的位置決定装置および方法は、正確性を向上する、または検出装置の複雑さを減少させることによって、従来の位置決定装置または方法を補う、またはこれに置き換わる。
(もっと読む)


粒子および波動のシミュレーションを行うための本システムおよび方法は、核スペクトルおよび全てのスペクトル放射輸送、量子粒子輸送、プラズマ輸送および帯電粒子輸送を伴う計算に関して有用である。本発明は、一般的な3次元問題に埋め込むための正確な変数を生成するメカニズムを提供し、一連の単純単一衝突相互作用有限要素を拡張して、複合多重衝突有限要素を構築することができる手段について説明する。 (もっと読む)


本発明は、検出されたパルスに対応するデジタルデータの検出手段及び振幅測定手段を備えることにより、測定された振幅を検出されたパルス(24)に関連付ける分光測定診断用電子回路に関する。本発明は、検出されたデジタルデータから、パルス幅閾値(tc)を超える幅を有するパルスと、プログラムされた時間間隔(T3)の間において当該プログラムされた時間間隔の第1パルスが検出された後の新規パルス全てとを拒絶するために用いられるパルス拒絶手段を備えることを特徴とする。本発明は核反応連鎖中の粒子の計数に適している。
(もっと読む)


本発明では、放射線源(10)からの電離放射線によって一次電子がガス中に放出され、それが電界(2)によって読み出し電極(1)にドリフトされる、放射線検出器が提供される。前記放射線検出器は、電界集中領域のマトリックスであって、前記集中領域のそれぞれが、前記一次電子の1つから前記ガス中に電子なだれを発生させるのに十分な、局所電界勾配を発生させ、それにより前記ガス電子増倍管が、前記一次電子のための増幅器として動作する、電界集中領域のマトリックスと、読み出し電極(1)を備える位置感知信号検出器とを備える。前記放射線検出器はさらに、前記電界集中領域のマトリックス及び前記信号検出器が、同じ二重目的の物理的構造(3)内に一体化されていることを特徴とする。
(もっと読む)


一実施形態で、物体の中身を調査する方法は、物体を第1および第2の放射線エネルギーで走査し、第1および第2のエネルギーの放射線を検出し、対応するピクセルについて第1および第2のエネルギーで検出された放射線の第1の関数を計算することを含む。ピクセルは、物体を通過した放射線の検出器への投影である。複数のピクセルの第1の関数はグループ分けされ、物体が所定の原子番号よりも大きな原子番号を有する物質を少なくとも可能性として含むかどうかを決定するために、そのグループの第2の関数が解析される。第2の関数は第3の関数と比較することができ、この第3の関数は、所定の原子番号を有する物質に少なくとも部分的に基づいた値を有する閾値であってもよい。物質が核物質であるかどうかを決定するために、遅発中性子を検出することができる。また、システムも開示される。
(もっと読む)


【課題】 発光効率が高く、減衰時間が短い蛍光成分を持ち、かつその発光波長が可視光域、もしくはそれにより近いところにあるシンチレーター結晶、並びにそれを用いた高い時間分解能を持つ放射線検出装置を提供する。
【解決手段】 シンチレーター結晶として、塩化バリウム(BaCl2)を用いる。シンチレータとして塩化バリウム結晶を用い、シンチレータからの受光に光電子増倍管を用いた放射線検出装置であって、該シンチレータからの発光として波長が250〜350nmの光を用い、該シンチレータを低湿度雰囲気に置くことを特徴とする放射線検出装置である。
(もっと読む)


検出器の電極の構成を改良することで、信号の読み取り本数を減らす。検出器の有感面積が大きくなっても、歪みのない高分解能イメージングを可能とする。入射粒子の位置を検出する電極を、入射粒子のグローバル位置を検出するグローバル位置検出用電極と、入射粒子のローカル位置を検出する複数のローカル位置検出用電極とから構成する。グローバル位置検出用電極から検出したグローバル位置情報とローカル位置検出用電極から検出したローカル位置情報とから、入射粒子の位置を特定する。複数のローカル位置検出用電極は複数の群に分けられており、各群に属するローカル位置検出用電極を共通の信号線に接続する。所定数のローカル位置検出用電極が一つのグローバル位置に対応しており、一つのグローバル位置に対応する該所定数のローカル位置検出用電極は互いに異なる群に属している。 (もっと読む)


電離放射線を監視するためのアセンブリ(13)は、入射電離放射線に応答して電荷を生成すると共に、その中に形成された電離放射線検出ボリューム(12)のアレイを有する検出基板(2)を備える。検出ボリュームのアレイに対応する読出し回路(16)のアレイを支持するための回路基板(14)は、検出基板(14)に機械的かつ電気的に接続されている。各読出し回路(16)は、対応する検出ボリュームから電荷を受取るため、第一と第二の電荷集積モード間で切替え可能である。電荷集積回路(30)は、第一の電荷集積モードにおいて、対応する検出ボリュームにおける単一の電離放射線検出イベントの検出に対応して電荷を集積するとともに、第二の電荷集積モードにおいて、対応する検出ボリュームにおける複数の電離放射線検出イベントの検出に対応して電荷を集積するように、構成されている。別の実施例において、読出し回路構成は、光子計数回路構成(140)を含む。

(もっと読む)


イオン検出器から電子検出器へと切り換え可能な粒子検出器はイオン−電子変換器およびシンチレータ検出器を有する。構成部品への1セットの電圧で、変換器は電子の軌道上で最小限の衝突を有し、それゆえに電子がシンチレータ検出器によって効率的に検出される。構成部品への異なった電圧設定で、大部分のFIB応用について充分な効率で陽イオンを収集するように検出器が陽イオンのモードで動作することが可能である。このイオン−電子変換器は円筒の形状であるか、または複数の平行プレートを有することが好ましい。 (もっと読む)


141 - 154 / 154