説明

Fターム[2G088HH08]の内容

放射線の測定 (34,480) | 測定試料の採取、分離 (393) | 採取容器(容器内試料の測定) (96)

Fターム[2G088HH08]の下位に属するFターム

Fターム[2G088HH08]に分類される特許

21 - 40 / 50


【課題】バイアル内での放射性薬剤のバイアル蓋等への飛沫付着にかかわらず、高精度の放射能測定を行なう。
【解決手段】放射線検出器として、シンチレータ5に加え、半導体検出器7を備え、遮蔽容器34の開口部から放射される、放射性薬剤1の放射線の線量を測定するための放射線検出器を複数備える。これら放射線検出器による測定結果に基づいて、バイアル40内中身の放射性薬剤1の放射能量と、バイアル蓋42等に付着の放射性薬剤1飛沫の放射能量を分離して測定することにより、正確に放射能量を求めることができる。 (もっと読む)


【課題】放射性物体の密度及び放射能濃度分布の如何に拘らず放射性物体の放射能濃度を精度よく測定することのできる放射能測定方法およびコンパクトで低コストな放射能測定装置を提供する。
【解決手段】放射性物体から放射される放射線を検出(a)して前記放射性物体に含まれる特定の核種による部分放射能量を求め(c)、前記放射性物体に含まれる全ての核種について予め得られている放射能量データ(b)を前記部分放射能量によって換算して前記放射性物体の全放射能量を求める(d)方法とする。 (もっと読む)


【課題】生体内での物質の動態についての鮮明な画像をリアルタイムで得る技術を実現する。
【解決手段】生体内情報を測定する測定部1;測定部1にて得られた情報を処理して画像情報を生成する制御部2;及び、制御部2から出力された画像情報を表示する表示部3を備えている、生体内情報についての画像化システム10を提供する。画像化システム10において、測定部1は、被験体を固定する固定手段;放射性核種を取り込んだ被験体から放出されるβ線を可視光に変換するシンチレータ;及び、該可視光を撮影する撮影手段6を有している。また、β線を放出する放射性核種を取り込んだ被験体から放出されるβ線を、シンチレータを介して可視光に変換する工程;及び、該可視光を撮影する工程を包含する、生体内情報をリアルタイムで画像化するための方法を提供する。 (もっと読む)


マイクロ流体デバイスは、マイクロ流体回路層と、マイクロ流体回路層の近傍に配置された荷電粒子検知層と、を備える。マイクロ流体デバイスは、動作中、マイクロ流体回路層内のサンプルから荷電粒子放出による二次元画像を提供する。生体サンプルの放射能を数量化する方法は、生物材料を含有する流体をマイクロ流体デバイスへ方向付けることと、生物材料が放出した荷電電子を、二次元撮像センサで検知することと、生体サンプルの放射能に対応する二次元画像を経時的に形成することと、を備える。 (もっと読む)


【課題】サンプル容器を押し上げる機構を備えたサンプル処理装置において、装置に存在する空きスペースを有効活用できるようにする。
【解決手段】押上棒31はサンプル容器を押し上げる部材であり、それは容器搬送機構14によって上下方向に駆動される。押上棒31における外筒32は外筒駆動機構111によって駆動される。押上棒31における中軸は中軸駆動機構132によって駆動される。中軸駆動機構132はフレキシブルシャフト130を有し、フレキシブルシャフト130を屈曲させることにより、装置内における空きスペースに各機構を収容することが可能である。 (もっと読む)


【課題】サンプル測定装置において、測定ユニットにおける光検出感度を高める。
【解決手段】測定ユニット18には一対の光電子増倍管52,54が設けられている。測定室50に容器13が位置決められると、容器13から放出された光が反射部材72の反射面によって反射され、各受光面52A,54Aに導かれる。これによって検出感度を高められる。 (もっと読む)


【課題】サンプルに含まれる放射性物質を測定するサンプル処理装置において、測定室内に収容されるサンプル容器から電荷を逃がすようにする。
【解決手段】サンプル容器13のヘッドを収容するキャップ部材100は導電性部材として構成されており、サンプル容器13が上昇運動すると、キャップ部材100に設けられた端子が、除電部材100に設けられた端子に物理的に接触し、これによって電気的な導通が図られ、サンプル容器13の帯電状態が解消される。導電部材102はスプリング状の部材として構成されるが、他の構成を用いるようにしてもよい。 (もっと読む)


【課題】サンプル測定装置において、測定室の内部に外来光が確実に進入しないようにする。
【解決手段】容器13の昇降経路上に2つのシャッタ機構20,22が設けられる。容器13の昇降運動に伴い、各シャッタ機構20,22が閉動作又は開動作する。少なくとも一方のシャッタ機構が常に閉状態となるように制御される。 (もっと読む)


サンプル70からの放射を検出するための集積化装置は、前記放射を検出するための光検出器20を形成すること、及びサイトの境界が前記光検出器の境界によって定められるように、サンプルを受け取るためのサイトを形成することを必要とする。ダイオードを用いたサイトの側壁は、追加のマスクステップなしで生体分子のようなサンプルのインクジェット印刷に適した側壁を提供することができる。サンプルからの放射線放出を検出するための方法は、上記の集積化装置にサンプルを適用するステップ、前記サンプルを照らすステップ、及び前記サンプルからの放射を検出するために光検出器を使用するステップを有する。
(もっと読む)


【課題】放射性薬液の取扱者の被爆量を低く維持しつつ、放射性薬液の効率的な合成を可能とする放射性薬液合成装置のメンテナンス方法、及び洗浄機能付放射性薬液合成装置を提供する。
【解決手段】放射性薬液の合成を行う反応容器16を含む取り外しモジュール12と、取り外しモジュール12が設置される固設モジュール14と、を備えた放射性薬液合成装置10のメンテナンス方法である。この方法では、反応容器16から合成した放射性薬液を排出した後、固設モジュール14に取り外しモジュール12を設置したままで、反応容器16内に洗浄液を導入し、導入した洗浄液により反応容器16内を洗浄し、反応容器16から洗浄液を排出した後、取り外しモジュール12を交換する。 (もっと読む)


【課題】建物の床や複雑な大型形状物等の測定対象から放射される放射線の強度および放射線の強度分布を測定精度よく簡便かつ正確に測定することができるもの。
【解決手段】本発明に係る放射線測定装置10は、気体を取り入れる気体取入手段33と気体を取り出す気体取出手段34と電極13を備えたイオン収集手段14と、気体を吸引して気体取入手段33から気体を取り込む気体吸引手段36と、電極13に電圧を印加させる電源17と、電極13で収集された気体中のイオンによる電流を測定する電流測定手段15と、電流測定手段15で測定された電流値から放射線の強度を算出する処理手段16とを備えたものである。 (もっと読む)


【課題】排水中のトリチウム濃度を精度良く検出できる水モニタを提供する。
【解決手段】被検出面の有感面積が広く、薄い中空のサンプリング容器3に被測定試料であるトリチウム水を導入し、サンプリング容器3を挟んで両側面(被検出面)に第一の検出部1aと第二の検出部1bの、2系統の検出部を近接して対向配置させる構成とする。
それぞれの検出部(1aまたは1b)は、サンプリング容器3に近接配置されるプラスチックシンチレータ以外の固体シンチレータ(2aまたは2b)を備えている。一方の固体シンチレータにおいて、トリチウム水から放出されたベータ線の入射を受けてシンチレーション光が発光されると、そのシンチレーション光は全方向に広がり、2つの検出部1a、1bの、両方の光電子増倍管7a、7bに伝搬される。 (もっと読む)


82Sr/82Rbジェネレータカラムは、容器を流体密封状態で閉じるためのカバーを有し、容器内に流体を送達するための導管の接続用の注入口と、容器から流体を伝導するための導管の接続用の排出口とをさらに有する、流体不浸透性円筒容器を使用して作られる。イオン交換材料は該容器を満たし、イオン交換材料が1平方インチにつき1.5ポンドの流体圧力(10kPa)で少なくとも5ml/分の速度で溶出することを可能にする密度まで容器内に圧縮される。ジェネレータカラムは、82Srを繰り返し再充填することが可能である。ジェネレータカラムは、3次元または2次元いずれかのポジトロン放出断層撮影システムと適合する。
(もっと読む)


【課題】本発明は、高レベル放射性試料取扱いボックスに設置されている遠隔操作機器により、高レベル放射性試料の希釈操作を容易に行い得ると共に、高レベル放射性試料による汚染物の減容化が図れる、放射性試料の希釈操作用治具及び移送方法を提案することを目的とする。
【解決手段】高レベル放射性試料を希釈し、低レベル放射能の分析ボックスに試料を移送する時に用いる放射性試料の希釈操作用治具1において、希釈試料を導くチューブ3と、同チューブ3先端に装着するニードル4と、同ニードル4を装着するニードル部2とを具え、同ニードル部2が遠隔操作機器に保持可能な把持部5の孔5a内に挿脱着可能であるようにした。 (もっと読む)


【課題】機器等に内包されているガンマ線源の放射性核種の識別、放射性核種別のガンマ線濃度及び空間分布を非破壊で計測し、画像化する。
【解決手段】ガンマ線源2を内包する容器1と、その周囲に配置されてガンマ線源から放出されるガンマ線をコリメータ6を通して検出するガンマ線検出器7と、検出したガンマ線検出信号を処理してエネルギーと計数値を計測するガンマ線検出信号処理装置9と、単位時間あるいは単位位置毎に計測したガンマ線エネルギーとガンマ線強度とのスペクトル分析により放射性核種の識別と放射性核種の強度とを解析するエネルギー弁別処理装置10と、識別された放射性核種毎にガンマ線源の濃度及び空間分布を画像化する画像化計算処理装置11と、その計算処理の結果に基づき可視化表示する画像化表示装置12とを有する可視化装置である。 (もっと読む)


【課題】 放射性廃棄物の焼却灰を飛散させることなく分析用サンプルを採取することができる放射性廃棄物焼却灰のサンプリング装置を提供する。
【解決手段】 焼却灰回収通路1の側面4の外部に、ホッパー状の底部5を有する密閉室6を配設し、その底部5には、分析用サンプルを収納するためのサンプル収納容器7を設ける。密閉室6には、焼却灰回収通路1に進出して落下途中の焼却灰を採取し、次いで、密閉室6に退却して採取した焼却灰をサンプル収納容器7に収納するためのサンプリング用アーム9を配設した。サンプリング用アーム9は、水平シャフト11の略中間部にサンプリング容器12を備えたものであって、サンプリング容器12を上向きとして焼却灰を採取し、下向きとして焼却灰をサンプル収納容器7に落下させることができる。 (もっと読む)


【課題】 ファントムに充填する放射性溶液の濃度調整を複数回必要とせず、1回の濃度調整のみで複数の放射能濃度の設定を行うことができるとともに、複数のガンマカメラ等の評価を行う際に同じ放射能濃度比の放射性溶液を繰り返し設定することができるガンマカメラ等の放射能濃度分解能評価用ファントムを提供する。
【解決手段】 ガンマカメラ等により断面像が撮影されるファントムであって、放射性溶液が充填される放射性溶液充填ユニット40が外側容器10の収納部5および収納部6にそれぞれ配置され、これら2つの放射性溶液充填ユニットは、それぞれガンマカメラ等により断面像が撮影される断面における単位面積当たりの放射性溶液量が調節可能であるファントム50とする。 (もっと読む)


【課題】 作業者の被ばく量を軽減できる放射性物質分注設備を提供することを目的とする。
【解決手段】 開閉自在の子扉11を有するホットセル10内に、放射性物質を含む液体が通過する流体輸送路を自動的に洗浄する洗浄手段と、放射性物質が分注されたカラム3を含む放射線遮蔽容器2をホットセル10の子扉11に対向する位置へ自動的に搬送する搬送手段12とを備える放射性物質分注装置1を設置する構成の放射性物質分注設備とした。 (もっと読む)


【課題】UおよびTh系列の放射性核種を含む、多数の試料を迅速に効率よく測定するための,前処理が簡易な測定用試料の作製法と測定解析法の提供。
【解決手段】
放射性廃棄物等から採取した試料に含まれるα線放出核種を定量するために、測定用試料厚さをα線の飛程に比べて十分に厚くし、α線放出核種が均一に分布した固体状のα線測定用試料として、試料内部にRnガスおよびその娘核種を閉じ込めるようにする。 α線放射核種の同定と定量は、試料のα線に対する阻止能を求め、Si半導体検出器により測定したα線スペクトルから求める手法を用いる。 (もっと読む)


【課題】外部に放射線の漏洩するおそれがなく、シリンジに注入された放射性試料の放射能量を高精度に測定することのできる放射性試料ホルダを提供する。
【解決手段】放射性試料が注入され放射線遮蔽ケース40に収納されたシリンジを放射性試料ホルダ62に装着し、放射能測定装置28に装填した後、上部の突出する操作部78を押し下げることにより、第2シャフト80a、80bに支持されたシリンジ保持台100がシリンジの鍔部32を保持した状態で下降し、放射線遮蔽ケース40からシリンジを抜き出す。そして、抜き出されたシリンジに注入されている放射性試料の放射能量の測定を行う。 (もっと読む)


21 - 40 / 50