説明

Fターム[2G088MM01]の内容

放射線の測定 (34,480) | 表示、警報、記録 (701) | 線源の位置 (30)

Fターム[2G088MM01]に分類される特許

1 - 20 / 30


【課題】測定結果の入力と評価エリアマップの入力自動化を図ることで,評価算出速度の向上,結果の精度向上を図る。
【解決手段】広範囲の監視区域を格子状に複数個所に分割し評価エリアを設定するエリア設定手段と、格子状に分割した複数個所での測定又は推定した線量を入力する測定手段と、エリア設定手段と測定手段から得られた情報を用いて、格子状に配置された複数箇所の評価点の線量を計算する処理装置と、処理装置の演算結果を出力する出力装置を含む広域空間線量評価装置において、処理装置は、格子状に配置された複数箇所の線量を入力した線源から,格子状に配置された複数箇所の格子状評価点における環境放射線量を、距離と線量の相関を示す近似式を使用して求め,分割された複数の格子状評価点ごとに環境放射線量の和を求め、出力装置は、評価エリアごとの環境放射線量を空間線量マップとして表示する。 (もっと読む)


【課題】煩雑になる検査要員を必要とせず、迅速で有効な乗物の内室、荷物コンテナ、または他の対象の検査装置を提供する。
【解決手段】道路走行能力があるバンなどの包囲された運搬機構に基づいて、人間も含む検査対象を検査する検査システム。運搬機構は、格納ボディまたは装甲により特徴付けられる。貫通放射線源と貫通放射線をビームに形成するための空間モジュレータとは、共に運搬機構のボディ内に完全に収容されており、時間変化走査プロファイルにより対象を照射する。検出器モジュールは対象の内容物により散乱された貫通放射線に基づく散乱信号を発生し、相対移動センサは運搬機構と検査対象との相対配置に基づいて相対移動信号を生成する。散乱信号及び相対移動信号に部分的に依存して信号から対象の内容物の画像が形成される。散乱検出器モジュールとは別々でも部分でもよい検出器が、放射性物質の崩壊生成物に対する感度を示すようにしてもよい。 (もっと読む)


【課題】前期収集画像と後期収集画像との差異を自動的に検出してディスプレイ表示し、PET装置による画像診断を簡単かつ正確に行えるようにする。
【解決手段】RI線源を含む薬剤が投与された被検体8の周囲を取り巻いて配置され、被検体内における電子・陽電子対消滅によって発生した放射線対を同時計数するリング型検出部1と、リング型検出部による同時計数データを収集するデータ収集部2と、データ収集部により収集された同時計数データに基づいて、被検体内のRI分布画像を再構成する画像処理部3を備える。画像処理部は、薬剤投与後の第1の測定時刻に収集された同時計数データに基づいて再構成した第1のRI分布画像と、第1の測定時刻から所定時間経過後の第2の測定時刻に収集された同時計数データに基づいて再構成した第2のRI分布画像との差分を計算して差分画像を生成する。 (もっと読む)


【課題】広い範囲のエネルギーをもつガンマ線を検出することのできる核医学診断装置の提供
【解決手段】ガスが充填されこのガス中のコンプトン散乱によって生じる荷電粒子の情報を検知する前段検出器と、散乱光子の情報を検出する後段検出器とを備えるコンプトンカメラを備え、
ガスの種類を異ならしめた前記前段検出器を複数積層させて構成する。 (もっと読む)


【課題】X線透過像の撮影範囲を設定する際に放射性同位元素の集積度が高い範囲が撮影範囲に含まれているか否かを確認する手段を提供することを目的とする。
【解決手段】PET/CT装置において、先にPET装置30によりPET画像が取得される。医師等は、取得されたPET画像を基に、PET画像上で癌化の可能性の高い範囲(放射性同位元素の集積度が高い範囲)を特定する。放射性同位元素の集積度が高い範囲を基に、X線透過像の撮影範囲を決定する。その際に、入力部2を操作し、指標表示制御部10を介して、PET画像上にX線透過像の撮影範囲を示す指標を画像表示部6に表示する。指標がX線透過像の撮影範囲を示すので、医師等は、X線透過像の撮影前に、このX線透過像の撮影範囲に放射性同位元素の集積度が高い範囲が含まれているかを確認することができる。 (もっと読む)


【課題】医用画像観察における偽陽性や偽陰性を低め真陽性を高め、特徴的部位認識効率を高めた医用動画像生成表示装置を提供する。
【解決手段】画像再構成・補正の方法・条件を変化させた互いに雑音成分の現れ方が異なる複数の静止画像を動画表示することを特徴とする医用動画像生成表示装置。前記画像再構成・補正の方法・条件に加えて画像表示方法・条件を含めることができる。好ましくは、前記複数の静止画像を毎秒数コマから数十コマのアニメーションとして自動的に切り替え動画表示する。 (もっと読む)


【課題】複数の医用画像を組み合わせた画像診断を効率良く行うことができる医用画像表示装置及び医用画像診断装置を提供すること。
【解決手段】画像入力部3を介して入力された第1の画像と第2の画像の位置合わせが位置合わせ部5において行われる。その後、入力部2により第1の画像において関心領域の位置が指定された場合に関心領域抽出部8によって関心領域が抽出される。この抽出された関心領域に相当する位置の第2の画像が制御部1によって選択され、表示部7に表示される。 (もっと読む)


【課題】同一人の同一部位を異なる手法で撮影した複数種類の画像を相互比較することにより、各画像から把握できる被験者の状態同士の関連を把握可能とするための画像処理技術を提供する。
【解決手段】医用画像処理装置1は、同一人の所定部位のSPECT画像及びMRI画像の正規化データを記憶する、それぞれの正規化データ記憶部15,17と、SPECT画像の正規化データとMRI画像の正規化データとを用いて所定の演算を行う比較演算部22と、演算結果に基づいて、所定部位の画像を表示装置に表示させるための処理を行う表示制御部25と、を備える。 (もっと読む)


【課題】生体内での物質の動態についての鮮明な画像をリアルタイムで得る技術を実現する。
【解決手段】生体内情報を測定する測定部1;測定部1にて得られた情報を処理して画像情報を生成する制御部2;及び、制御部2から出力された画像情報を表示する表示部3を備えている、生体内情報についての画像化システム10を提供する。画像化システム10において、測定部1は、被験体を固定する固定手段;放射性核種を取り込んだ被験体から放出されるβ線を可視光に変換するシンチレータ;及び、該可視光を撮影する撮影手段6を有している。また、β線を放出する放射性核種を取り込んだ被験体から放出されるβ線を、シンチレータを介して可視光に変換する工程;及び、該可視光を撮影する工程を包含する、生体内情報をリアルタイムで画像化するための方法を提供する。 (もっと読む)


【課題】漏洩箇所を短時間により精度良く検出できる原子力施設の漏洩監視システムを提供する。
【解決手段】原子炉格納容器1内で蒸気系及び原子炉冷却水系の近くに配置された複数のサンプリング口13は、セレクターバルブを介して管路23に接続される。Ge検出器を有する放射能測定部30Aが管路23に設けられる。Ge検出器は、各サンプリング口からサンプリングされたガス中の放射性核種(N−13,N−16,Mn−54,Co−60)のγ線を検出する。波高分析器34Aはγ線検出信号を用いて核種分析を行う。データ処理装置36は、核種分析情報を入力し、N−13,Mn−54等の放射能量に基づいて漏洩が蒸気系か原子炉冷却水系かを判定する。蒸気系の漏洩の場合、データ処理装置36はN−13/N−16比を用いて蒸気系における漏洩箇所を特定する。その漏洩箇所の情報は表示装置37Bに表示される。 (もっと読む)


【課題】局限化閉鎖部材等の医療用標的確認デバイスを提供する。
【解決手段】一実施形態では、医療用標的確認デバイスは、先端及び基端によって画定された細長い本体部材29を含む。先端内を少なくとも一つの穴35が延びている。この穴は、その内部に造影剤を受け入れる。医療用標的確認デバイスを使用するための方法も開示される。 (もっと読む)


【課題】PET診断受診者が着座したままで医療受診施設内を容易に移動でき、かつ、周囲の医療従事者が受診者からの放射線に被曝することを防止できると共に、受診者の体内から放射される放射線量をリアルタイムに把握する。
【解決手段】自力または他力によって移動できる手段を備えた被曝防止機能付き車椅子であって、放射線遮蔽に有効な材質を含有し、少なくとも視野が確保できる程度の透明なパネルで構成され、受診者の周囲を覆う遮蔽体1と、遮蔽体1の内部に配置され、受診者の対内から放射される放射線量を測定・表示する第1の放射線検出器(放射線モニタ3)を備える。 (もっと読む)


【課題】採取したスワイプ試料中に含まれる極微量核分裂性物質を含む粒子をフィッショントラック法によって検出する手法において、原子間力顕微鏡のような特殊な装置を用いた高度な測定技術を必要とせず、また、フィッショントラックのコアの形状が粒子の表面形状に依存する影響をなくして、短時間で容易に核分裂性物質を含む粒子を濃縮度別に検出する。
【解決手段】スワイプ試料から粒子を回収する際に粒径を調整することにより粒径の影響をなくすと共に、検出器の化学エッチングによりフィッショントラックが現れるまでの時間とフィッショントラックの形状は核分裂性粒子の濃縮度に依存することを利用して、検出器のエッチング時間を制御する。なお、粒子回収の際の粒径調整法としては2段式粒子吸引法を用いる事が出来る。 (もっと読む)


【課題】 従来の核分裂性物質を含む粒子の検出法では、フィッショントラック検出器のエッチングの際、検出器が粒子層から完全に分離されるため、フィッショントラックとそれに対応する粒子を正確に重ね合わせるのが難しい。また、エッチングのため検出器を粒子層から分離させるとき、検出器の変形が生じる。これらの理由で、フィッショントラックから目的粒子の同定工程に長時間を要した。
【解決方法】 原子力施設内外で採取したスワイプ試料中に含まれる極微量核分裂性物質を含む粒子をフィッショントラック法によって検出する方法において、吸引回収された粒子から作製した粒子層とフィッショントラック検出器の一端を固定し、フィッショントラック検出器のエッチングの際には専用治具を使用することによって核分裂性物質を含む粒子の検出が簡便で正確に出来ることを特徴とする方法。 (もっと読む)


【課題】
被検体に対する診断精度を向上させる。
【解決手段】
放射線検査装置1は、X線を放射するX線源9,γ線の検出信号を出力するγ線検出部でありX線の検出信号を出力するX線検出部である放射線検出部65を備える。X線源9はベッド16の周囲を移動する。放射線検出部65はベッド16の長手方向に複数の放射線検出器4が配置されてベッド16の周囲に位置している。X線検出部は、ベッドの長手方向においてγ線検出部の一端とγ線検出部の他端との間に形成される領域に位置している。X線源9もその領域内に位置する。X線検出部がその領域内に位置しているため、検査中に被検診者35が動いたとしても、γ線検出信号により得られる第1情報を用いて作成されるPET像と、X線検出信号により得られる第2情報を用いて作成されるX線CT像の合成を精度良く行うことができる。 (もっと読む)


【課題】
被検体に対する診断精度を向上させる。
【解決手段】
放射線検査装置1は、X線を放射するX線源9,γ線の検出信号を出力するγ線検出部でありX線の検出信号を出力するX線検出部である放射線検出部65を備える。X線源9はベッド16の周囲を移動する。放射線検出部65はベッド16の長手方向に複数の放射線検出器4が配置されてベッド16の周囲に位置している。X線検出部は、ベッドの長手方向においてγ線検出部の一端とγ線検出部の他端との間に形成される領域に位置している。X線源9もその領域内に位置する。X線検出部がその領域内に位置しているため、検査中に被検診者35が動いたとしても、γ線検出信号により得られる第1情報を用いて作成されるPET像と、X線検出信号により得られる第2情報を用いて作成されるX線CT像の合成を精度良く行うことができる。 (もっと読む)


【解決手段】 デジタル画像、または感光性半導体ベースの撮像装置に含まれる画素からの電荷を使用すると、放射性材料により放出されるガンマ線およびエネルギー粒子を検出することができる。高エネルギーガンマ線によりデジタル画像およびビデオ画像にもたらされる画素スケールのアーチファクトを識別するには、いくつかの方法を使用できる。前記画像または画素における前記アーチファクトについて統計的検定および他の比較を行うことにより、ガンマ線の偽陽性検出が防止可能になる。当該システムの感度を使用すると、50メートルを超えた距離にある放射線物質を検出することができる。高度な処理技術を使用すると、勾配法で線源の位置をより正確に決定できるようになり、他の工程を使用すると、同位元素を具体的に識別できるようになる。異なる撮像装置警報およびネットワーク警報を調整することにより、当該システムでは、非放射性の対象を放射性の対象から別けることができる。 (もっと読む)


【課題】医用解剖学的画像から、より一貫性があり、統一された形式を有し、信頼性の高い医学的状態及び疾患の診断を提供する。
【解決手段】本システム100は正常画像データベース102を含んでいる。正常画像データベース102は無疾患の解剖学的構造の画像を含んでいる。正常な解剖学的画像を標準化して解剖学的特徴を抽出する構成要素104と、抽出された解剖学的特徴画像を平均するもう一つの構成要素106とによって生成される。抽出された解剖学的特徴の画像(1又は複数)と正常画像データベース102内の画像との間の比較を行なう構成要素110を含んでいる。比較は静的比較作業フロー112を生ずる。比較は、特定の解剖学的特徴に特異的なZスコアのデータベース114を生ずる。比較は、縦断的比較作業フロー116を生ずる。縦断方向は時間方向としても知られる。縦断的比較は、一定の時間区間にわたって画像を比較する。 (もっと読む)


【課題】監視対象の誤検知を未然にかつ確実に防止し、原子力発電所の運転効率や点検時等の作業効率を向上させ得る放射線モニタリング装置を提供する。
【解決手段】本発明に放射線モニタリング装置10は、高線量作業の線源となる核種からのγ線のみを検出する特定γ線検出手段11と、監視対象とする事象に伴なう放出核種、および高線量作業の線源となる核種からのγ線量のグロスを検出するグロスγ線検出手段12と、特定γ線検出手段11からのγ線測定値によってグロスγ線検出手段12からのグロスγ線測定値による放射線監視を除外する判定装置15とを有し、この判定装置15により監視対象の事象を検知するものである。 (もっと読む)


【課題】機器等に内包されているガンマ線源の放射性核種の識別、放射性核種別のガンマ線濃度及び空間分布を非破壊で計測し、画像化する。
【解決手段】ガンマ線源2を内包する容器1と、その周囲に配置されてガンマ線源から放出されるガンマ線をコリメータ6を通して検出するガンマ線検出器7と、検出したガンマ線検出信号を処理してエネルギーと計数値を計測するガンマ線検出信号処理装置9と、単位時間あるいは単位位置毎に計測したガンマ線エネルギーとガンマ線強度とのスペクトル分析により放射性核種の識別と放射性核種の強度とを解析するエネルギー弁別処理装置10と、識別された放射性核種毎にガンマ線源の濃度及び空間分布を画像化する画像化計算処理装置11と、その計算処理の結果に基づき可視化表示する画像化表示装置12とを有する可視化装置である。 (もっと読む)


1 - 20 / 30