説明

Fターム[3C269AB05]の内容

数値制御 (19,287) | 作業内容、対象機器、対象製品 (2,914) | 機械加工 (1,369) | フライス加工 (195)

Fターム[3C269AB05]に分類される特許

1 - 20 / 195


【課題】複数の工具を用いて加工を行う場合に、工具への負荷を軽減できる工具経路生成装置及び方法を得ること。
【解決手段】複数の工具の各々に関して加工を行うことが可能な凸部の最小曲率半径を決定する最小曲率半径決定部4と、複数の工具の中から加工に使用する選択工具を選択する工具選択部3と、現在までに工具経路生成の対象となっていない工具経路未生成領域から、凸部の曲率半径が工具選択部が選択した選択工具に関しての最小曲率半径以上となる工具経路生成対象領域を除去した部分を、新しく工具経路未生成領域として記憶する加工領域抽出部5と、選択工具の情報とポケット加工における加工条件とから、選択工具が工具経路生成対象領域の凸部に内接するように、工具経路生成対象領域に対する工具経路を生成する工具経路生成部7とを備える。 (もっと読む)


【課題】高精度に切削抵抗をシミュレーションにより算出することができる加工シミュレーション装置を提供する。
【解決手段】加工条件から取得される切削長さbおよび切込量hと切削乗数Kとに基づいて、シミュレーションにより切削抵抗Fの推定値を算出するシミュレーション部32と、実加工中の実切削抵抗Fを検出する抵抗検出センサ33と、シミュレーション部32にて予め設定された暫定切削乗数Kを用いて算出された切削抵抗Fの推定値と抵抗検出センサ33により検出された実切削抵抗Fとを比較して、実切削乗数Kを算出する実切削乗数算出部34とを備える。そして、シミュレーション部32は、実切削乗数算出部34にて実切削乗数Kが算出された後に、実切削乗数算出部34により算出された実切削乗数Kを用いて切削抵抗Fの推定値を算出する。 (もっと読む)


【課題】より高精度に加工誤差を解析により算出することができる加工誤差算出装置を提供する。
【解決手段】断続的な切削加工に伴って回転工具5に生じる切削抵抗Fyが変動する場合に、回転工具5の切削抵抗Fyを算出する切削抵抗算出部32と、切削抵抗Fyに基づいて回転工具5の回転中心Cの変位量Yaを算出する工具中心変位量算出部42と、回転工具5の回転中心Cの変位量Yaに基づいて、被加工物Wの加工後形状を算出する加工後形状算出部24と、被加工物Wの加工後形状と被加工物Wの目標形状との差に基づいて、被加工物Wの加工誤差を算出する加工誤差算出部61とを備える。そして、切削抵抗算出部32は、工具中心変位量算出部42により算出された回転工具5の回転中心Cの変位量Yaをフィードバックして、過去の回転工具5の回転中心Cの変位量Yaに基づいて次の切削抵抗Fyを算出する。 (もっと読む)


【課題】より高精度に加工誤差を解析により算出することができる加工誤差算出装置を提供する。
【解決手段】断続的な切削加工に伴って回転工具5に生じる切削抵抗Fyが変動する場合に、回転工具5の切削抵抗Fyと回転工具5の動特性とに基づいて回転工具5の回転中心Cの変位量Yaを算出する工具中心変位量算出部42と、回転工具5の回転中心Cの変位量Yaに基づいて被加工物Wの加工後形状を算出する加工後形状算出部24と、被加工物Wの加工後形状と被加工物Wの目標形状との差に基づいて、被加工物Wの加工誤差を算出する加工誤差算出部61とを備える。 (もっと読む)


【課題】大型の被削物であっても実切削距離を高精度に算出することができるようにする。
【解決手段】被削物を切削する回転工具の実切削距離を算出する回転工具の実切削距離算出方法であって、工具による加工前の被削物の形状、工具の切れ刃形状、及び工具の送りによる移動経路の情報を含む所定データを入力するデータ入力ステップと、データ入力ステップの後、工具の切れ刃を仮想的に複数の微小な刃に分割して仮想の微小切れ刃を生成する微小切れ刃生成ステップC1と、仮想の微小切れ刃が所定の微小角度回転する毎に、被削物を切削しているか否か判定し、切削していると判定されたときには、微小角度の回転によって移動する上記微小切れ刃の移動距離を求め、この移動距離を切削加工開始時点から順次積算して実切削距離を得る実切削距離算出ステップC4〜C8とを含むことを特徴とするものである。 (もっと読む)


【課題】ワークの加工精度を向上した加工装置を提供する。
【解決手段】ワーク5と工具10との相対運動によって、ワーク5に対して曲線を含む加工を施す加工装置1であって、ワーク5と工具10とが接触するまでの相対運動をクロソイド曲線に沿った運動に制御する制御手段4を備える。 (もっと読む)


【課題】工具通過領域の形状の定義不能状態を極力回避可能とし、円弧部を含む工具通過領域のモデリング時間の短縮を可能とする。
【解決手段】工具通過領域モデリング方法において、工具経路を直線部と円弧部に分割する(301)。円弧部については、工具経路の内側と外側とに分割し、各々工具経路に沿って工具断面形状をスイープして工具通過領域を作成(303〜305)した後、各工具通過領域を連結して円弧部の工具通過領域を作成する(307)。円弧部について工具経路の内側と外側とに分割して円弧部の工具通過領域を作成する(303〜305)ことで、円弧部における工具通過領域の形状の定義不能状態を極力回避する。 (もっと読む)


【課題】びびり振動を効果的に低減することができ、しかも加振装置を必要とせず、実施化を容易に図り得る工作機械の制御装置などを提供する。
【解決手段】工作機械は、主軸に取り付けた切削工具により切削加工を行うものである。この工作機械の制御装置は、加工時に発生するびびり振動の周波数を検出する検出手段と、この検出手段で検出したびびり振動の周波数及び主軸回転数を基に工作機械の主軸が回転している状態の固有振動数を推定する推定手段17と、この推定手段で推定した固有振動数を用いて無次元安定限界切込みを算出し、この無次元安定限界切込みが最大となるように主軸回転数を変更する主軸回転数制御手段18とを備える。 (もっと読む)


【課題】刃具が斜めであっても位置検出ができ、刃具を回転させながらでも位置検出ができ、ヘッドを有する工作機械での位置ずれ補正が可能な技術を提供することを課題とする。
【解決手段】図(a)に示すように、Y軸用投光部56とY軸用受光部57とでレーザ光のY軸幕58が形成される。刃具30を矢印(1)のように移動し、Y軸幕58に接触させる。接触した位置での刃具30の先端作用面59のY座標が(Yn)と定まる。同様に、(b)に示すように、Z軸用投光部54とZ軸用受光部55とでレーザ光のZ軸幕61が形成される。刃具30を矢印(2)のように移動し、Z軸幕61に接触させる。接触した位置での刃具30の先端作用面59のZ座標が(Zn)と定まる。 (もっと読む)


【課題】うねり高さにおける加工精度を高精度に行うことができる工作機器の制御装置を提供する。
【解決手段】複数の刃を有する切削工具203を回転させるとともに移動することにより被加工物1を加工する工作機器の制御装置100であって、切削工具203の工具径および刃数の工具形状情報と、被加工物1の加工における切削工具203の回転軸Zの回転数および移動速度の加工条件情報と、切削工具203を工作機器200に設置した状態での回転振れ量情報とを用いて、被加工物1の加工におけるうねり高さを予測するうねり高さ演算部103を備える。 (もっと読む)


【課題】3次元形状切削において、加工実施前に工具摩耗を高精度に予測し、工具交換等を考慮したNCプログラムを生成することができるNCプログラム生成方法を提供する。
【解決手段】NCプログラム生成方法において、NCシミュレータ5により、NCプログラムを予め設定された処理間隔ごとのNCシミュレーションを実行し、加工条件取得部6および加工状態取得部7により、加工条件および加工状態を取得し、工具摩耗量算出部8により、工具摩耗データベース10から加工状態に応じた工具摩耗量を参照し、処理間隔ごとの工具摩耗量に関する情報を算出し、NCプログラム最適化処理部9により、工具摩耗量算出部8で算出された処理間隔ごとの工具摩耗量に関する情報に基づいて、工具を無駄なく利用できるように、NCプログラムの加工条件を変更し、NCプログラムを最適化する。 (もっと読む)


【課題】高精度な位置決めが要求される工作機械等において、比較的単純な構造を保ちつつ、迅速かつ高精度な位置決めを実現する直進型及び回転型ロボットの制御装置を提供する。
【解決手段】H無限大制御理論に基づく制御系であって、制御器は数式的に以下の3つの部分に分かれる。1)モータの速度が定常誤差なく追従できるように設計された速度制御器。2)速度制御ループを含めたモータに対して設計されたH∞角度制御器。3)ゲイン可変のフィードフォーワード制御器。制御対象の伝達関数に積分要素が含まれた場合における適切な制御が可能となる。 (もっと読む)


【課題】加工形状の位置入力の手間が省け、さらに素材形状や加工形状間の関連した寸法・位置調整を容易にするための素材形状と加工形状又は加工形状間への依存関係を与える手間も省ける自動プログラミング装置を提供する。
【解決手段】加工形状入力手段が、素材形状から定義済みの加工形状を除去した加工素材形状を生成・記憶する加工素材形状生成手段と、加工形状の寸法・位置情報を入力する加工形状入力手段と、加工形状の種類に応じたその特定方向の位置を寸法・位置情報と加工素材形状から決定し位置を決定するための基準となった加工素材形状上の部位に対応する素材形状または定義済みの加工形状の部位と加工形状とに依存関係を設定する加工形状配置決定手段と、寸法・位置情報を修正した際に修正した加工形状に依存する加工形状も配置修正しさらに配置修正した加工形状に依存する加工形状も同様に配置修正することを繰り返す加工形状連動修正手段を含む。 (もっと読む)


【課題】さまざまな指令回転速度において、記録された最適回転速度への置換えを可能とする。
【解決手段】数値制御装置は、加工プログラムから回転軸の指令回転速度を抽出するプログラム解析部19と、びびり振動を抑制可能な複数個の最適回転速度が記録され
る最適回転速度記録部16と、抽出された指令回転速度に応じて、前記複数個の最適回転速度の中から一つの最適回転速度を選択して、実際の加工で用いる指令回転速度
とする指令回転速度置換え判定部17と、を備える。指令回転速度置換え判定部は、抽出された指令回転速度に基づいて、置換え可能な最適回転速度の範囲である置換回
転速度範囲を求め、前記複数個の最適回転速度のうち当該置換回転速度範囲内にある最適回転速度を、実際の加工で用いる指令回転速度として選択する。 (もっと読む)


【課題】5軸制御加工機の回転軸の傾きや軸振れによる加工誤差を低減する。
【解決手段】5軸制御加工機1は、チルトテーブル6及び回転テーブル7の回転軸であるA、C軸の傾きや振れを示す回転軸データを、NCデータによる回転角度に対応させて記憶し、工具4の姿勢誤差を補正するための各回転軸の補正回転角度を算出する。A、C軸のまわりに、それぞれ補正回転角度だけチルトテーブル6及び回転テーブル7を回転させてNCデータによる5軸制御を行うことで、工具4の姿勢誤差のない状態でワーク2を加工する。 (もっと読む)


【課題】衝突監視装置を備えた、工作物を機械加工する数値制御工作機械。
【解決手段】衝突監視装置200は、工作機械の機械部品に搭載される衝突センサ210、衝突センサ210に検出される計測値が衝突制限値を超えると工作機械の機械部品の衝突を検知する衝突検知手段220、および衝突検知手段220が衝突を検知すると工作機械の少なくとも1つの加工スピンドルおよび送り軸X,Y,Zを停止する停止信号を出力する信号出力手段230を備える。発明に係る工作機械は工作機械における衝突制限値を決定する装置240を備える。 (もっと読む)


【課題】断面非円形状のワークと工具との相対移動により、少なくともワークの断面を含む一平面内においてワークと工具との相対的位置及び相対的角度を変化させつつ、加工を行い、ワークに対する工具の傾きの角速度を一定にし、切削送り速度を一定に保つ。
【解決手段】ワーク50上の所定の経路に沿って加工する際、所定の経路上にて工具8による加工が開始される点Psから加工が終了する点Peまでの、ワーク50と工具8との相対的角度変化の総和θseを算出すると共に、所定の経路に沿った加工に要する時間を、工具経路へ等分に配分し、工具8が工具径路上の各時間的等分点を通過する際に、工具8とワーク50との相対角度が、相対的角度変化の総和θseを加工に要する時間と同等に等分した角度分ずつ連続的に変化するように加工を行う。 (もっと読む)


【課題】NCプログラムの作成において高いスキルの習得を必要とすることなくNC工作機械に最適化されたNCプログラムを容易に作成することが可能なNCプログラム作成装置を提供する。
【解決手段】CAD装置により作成される形状データからNC工作機械に出力するNCプログラムを作成するNCプログラム作成装置であって、形状データに対応する加工手順、加工方法、使用工具、工具形状、加工条件を含む加工情報を記憶する加工情報記憶手段と、NC工作機械の加工機軸数に対応して形状データから工具の加工経路を作成する動作及び被加工物に対する工具のアプローチ動作以外のNCプログラムの書式を形式化した形式ファイルを記憶する形式ファイル記憶手段と、形状データと加工情報とに基づいて加工経路を作成する加工経路作成手段と、加工経路の所定の形式ファイルを読み出してNCプログラムを作成する形式ファイル読込手段とを備えるようにした。 (もっと読む)


【課題】工具交換サイクルを短縮できる数値制御工作機械、制御プログラム及び記憶媒体を提供する。
【解決手段】制御装置のCPUは、加工ブロックの1ブロックを読み込んで解釈する(S1)。このS1の処理では、CPUは、タイミングテーブルを参照して、各指令の内容と、実行タイミングを読み取り、タイミング順に指令の内容を並び替えて、制御装置のRAMに記憶する。CPUは、指令が工具交換指令と判断した場合(S3:YES)、工具交換動作を開始する(S4)。ここで、CPUは、Z軸上昇処理を実行する。Z軸上昇処理は、主軸ヘッドが現在位置から工具交換位置(ATC原点)まで上昇する処理である。主軸ヘッド7がR点まで上昇した場合に(S5:YES)、S1の1ブロック読み取り処理でRAM73に記憶した指令の内容にタイミングAで実行する指令がある場合には(S6:YES)、当該タイミングAで実行する指令の内容を実行する(S7)。 (もっと読む)


【課題】仕様の数が多くても設定や運用を正確且つ簡易に行うことができる工作機械の熱変位補正装置あるいは方法を提供する。
【解決手段】スケール2の有無やベッド1・テーブル5の長さの割り出し方式が相違することによって互いに異なる2つの仕様が存在する工作機械にあって、各仕様における当該工作機械の熱変位補正量を推定する補正量推定装置13・パラメータ自動選択装置14を備えており、補正量推定装置13・パラメータ自動選択装置14は、ベッド1・スケール2・テーブル5・ワーク6にそれぞれ対応する推定熱変位演算用のパラメータの集合をデータベースとして記憶すると共に、各仕様に応じた機械情報に基づいて前記データベースから前記仕様に属する前記パラメータを選択し、選択された前記パラメータによりベッド1・テーブル5・ワーク6あるいは更にスケール2における推定熱変位を演算し、当該推定熱変位を合算する。 (もっと読む)


1 - 20 / 195