説明

Fターム[3G093BA14]の内容

車両用機関又は特定用途機関の制御 (95,902) | 目的 (12,965) | 制御精度の向上 (1,337)

Fターム[3G093BA14]の下位に属するFターム

Fターム[3G093BA14]に分類される特許

1 - 20 / 664



【課題】故障等に起因して失火が発生した場合と同様の現象が発生した際に、その原因の解明を迅速に行うことができるようにする。
【解決手段】燃料の残量が所定値以下であることを検出する燃料残量検出要素たる液位センサと、車体の姿勢を検出する車体姿勢検出要素たる加速度センサと、前記液位センサにより燃料の残量が所定値以下であることを検出された際に燃料の噴射量に基づき燃料の残量を演算し、前記車体姿勢検出要素が検出した車体の姿勢に対応する燃料残量閾値を演算し、燃料系の異常を検知すべく演算された燃料の残量が前記燃料残量閾値を下回るか否かの判定を行う制御装置とを備えていることを特徴とする燃料残量判定装置を備える。 (もっと読む)


【課題】内燃機関のクランキングに伴うトルクショックを抑制する。
【解決手段】ハイブリッドECU70は、エンジン22の運転が停止されている状態から始動する際に、モータMG1によるエンジン22のクランキングに伴って駆動軸に作用する反力トルクがキャンセルされるようにモータMG2を制御する。クランキング時のクランク位置が上死点ないしその近傍であり、かつ、エンジン回転数が共振周波数帯ないしその近傍となる時点におけるエンジン回転数とその時点からの経過時間を用いてモータMG2を制御する。 (もっと読む)


【課題】吸気弁の外部ロータと内部ロータとの相対回転角を最遅角に設定してエンジンを始動する際の相対回転角を安定させる。
【解決手段】エンジンの自動停止を行う際には、外部ロータ11と内部ロータ12との相対回転角を最遅角に設定することで最遅角ロック機構L1をロック状態に設定する。この後にエンジンの自動始動を行う際には、クランキング開始から設定タイミングに達するまで相対回転角を最遅角に拘束し、設定タイミングに達した後にアキュムレータ27の作動油の供給により最遅角ロック機構L1のロック状態を解除すると共に、アキュムレータ27の作動油を進角室Caに供給して相対回転角を進角方向に移行させ中間ロック機構L2によるロック状態に移行する。 (もっと読む)


【課題】アイドリングストップをより適切に行うことができる車両の制御装置を提供する。
【解決手段】オフセット補正装置30は、バッテリ11の充放電電流値を示す電流センサ信号を電流センサ12から入力する電流センサ信号入力部31と、電流センサ信号に基づいてバッテリ11が充電中か放電中かを判定して判定結果信号を補正指示部34に出力する充放電判定部32と、車両状態情報に基づいてバッテリ11が充電中か放電中かを判定して判定結果信号を補正指示部34に出力する充放電判定部33と、充放電判定部32および33から受信する各判定結果信号に基づいてオフセット誤差補正部35にオフセット補正を指示する補正指示部34と、補正指示部34からオフセット補正指示信号を受信した場合に電流センサ信号のオフセットを補正するオフセット誤差補正部35と、を備える。 (もっと読む)


【課題】エンジンによってジェネレータを駆動して発電を行う車両搭載用発電装置において、エンジンおよびジェネレータを適切に制御すると共に、その制御を容易化することを目的とする。
【解決手段】発電コントロールユニット34は、エンジン12が停止している状態において二次電池18の充電電荷量が減少し、電力経路電圧値Vpが第1閾値としての始動閾値VLに達したときに、エンジン12に対する始動制御を実行する。エンジン12の始動によってモータジェネレータMG1は発電を行い、その発電電力によって二次電池18が充電される。モータジェネレータMG1の発電電力によって二次電池18が充電されることにより電力経路電圧値Vpは増加する。これによって、電力経路電圧値Vpが第2閾値としての停止閾値VHに達すると、発電コントロールユニット34は、エンジン12に対する停止制御を行う。 (もっと読む)


【課題】路面が勾配を有している場合であっても車両の後退を的確に抑制しつつ車両の減速中における内燃機関の自動停止の頻度を確保する上で有利な車両制御装置を提供する。
【解決手段】自動停止制御手段22Cは、車両の停車状態で停車中停止条件が成立した場合、または、車両の減速状態で減速中停止条件が成立した場合に、エンジン10の自動停止処理を実施する。自動再始動制御手段22Dは、停止中自動停止制御手段22Bによるエンジン10の自動停止中に再始動条件が成立するとエンジン10の自動再始動処理を実施する。傾斜センサ38は、車両の前後方向における傾きを示す傾斜値θを検出する。強制再始動手段22Eは、車両の減速状態において、自動停止処理の実施に続いて車両が停車状態あるいは停車直前の低速状態になった時点で傾斜値θが減速時判定傾斜値θcより大きい場合、強制的にエンジン10の自動再始動処理を実施する。 (もっと読む)


【課題】クラッチ操作系での遊び量の大きさに関係なく、クラッチの断状態が検出できるアイドルストップ車両を提供することを課題とする。
【解決手段】ケーブル47に、チューブ73、99を介し、ケーブル張力を検出する張力検出機構60を設けた。車両に、張力検出機構60で検出する張力が所定値に達しクラッチの断条件を満したと判断してエンジンを停止させるように制御する制御部を設けた。
【効果】クラッチ断状態でのケーブル張力(所定値)を決めておき、検出した張力が所定値に達することによってクラッチが断状態であると判断する。そのため、クラッチ操作系での遊び量の大きさに関係なく、クラッチの断状態が検出できる。 (もっと読む)


【課題】クラッチレバー遊び量の調整の必要性を明確に意識させることができるアイドルストップ車両を提供することを課題とする。
【解決手段】(b)に示すように、クラッチレバー45の揺動支点側端部50に、ハンドルから車両前方に延びるカバー部材54で覆われると共にレバー45を操作することにより露出する露出面60が備えられ、露出面60に、レバー45の遊び調整が必要であることを示すインジケータ70が設けられる。
【効果】レバー45の遊び量点検時に、クラッチ操作系での遊び量が大きいと、レバー45の操作量が増加するため、インジケータ70が露出する。インジケータ70を見ることができるので、レバー遊び量の調整の必要性を明確に意識させることができる。 (もっと読む)


【課題】機械的機構の歯打ちなどによる異音の発生を抑制するために電動機からトルクを出力しているときでも、より適正な内燃機関のアイドリング運転時の制御量を学習する。
【解決手段】アイドリング学習条件が成立してアイドリング制御量を学習する際には、モータMG2から押し当てトルクTadを出力しているときには、押し当てトルクTadが大きいほど大きくなる傾向に補正空気量Qadを設定し(S130)、この補正空気量Qadをアイドリング運転時における吸入空気量Qaに加算することによる補正を施してアイドリング空気量Qidlを計算し(S150)、アイドリング空気量Qidlを含むアイドリング制御量を学習する(S160)。これにより、プラネタリギヤの歯打ちなどによる異音の発生を抑制するための押し当てトルクTadをモータMG2から出力しているときでも、より適正なアイドリング制御量を学習することができる。 (もっと読む)


【課題】運転者の意図に沿った空走状態で走行を行い得る車両の駆動制御装置を提供する。
【解決手段】エンジン2およびモータ・ジェネレータ3と、エンジン2およびモータ・ジェネレータ3の操作に供されるアクセルペダル装置22と、アクセルペダル装置22の操作量をアクセル操作量θaとして検出するアクセルペダルセンサ52と、アクセル操作量θaに基づいてエンジン2およびモータ・ジェネレータ3の出力および回転抵抗を制御する電子制御ユニット9とを備えた自動車1の駆動制御装置であって、電子制御ユニット9は、アクセル操作量θaが所定値θath以下の領域において、エンジン2およびモータ・ジェネレータ3の出力を0にするとともに、エンジン2およびモータ・ジェネレータ3の回転抵抗(要求)を、アクセル操作量θaが所定値θath付近にあるときに最も小さく、所定値θathから0に向かうにつれて増加させる。 (もっと読む)


【課題】冷間始動時におけるエンジンの始動性を良好にすること。
【解決手段】始動開始時冷却水温Twstが閾値Twref未満のときにエンジンを始動する冷間始動時に、始動開始時バッテリ温度Tbstが閾値Tbref以上のときには、所定回転数Nsetに値200の補正回転数Najを加えたものを閾値回転数Nrefとして設定し(S160,S170)、エンジン回転数Neが閾値回転数Nref未満のときに始動時噴射量T0を補正量Taだけ増量補正して燃料噴射量Tを設定する(S190)。これにより、始動開始時バッテリ温度Tbstが高いために最初の燃料噴射時にエンジン回転数Neが閾値回転数Nref以上となるのを回避し、最初の燃料噴射時における燃料噴射量の増量補正を確保し、最初の燃料噴射に対して爆発を生じさせることができる。この結果、エンジンの始動性を良好なものとすることができる。 (もっと読む)


【課題】エンジンの出力軸をロックするための係合要素に引き摺りが発生した場合に、出力トルクの制御性低下を抑制するハイブリッド車両の制御装置を提供する。
【解決手段】エンジン12の駆動が行われている走行中において、クラッチBcrの引き摺りが発生した場合には第1電動機MG1の反力が変化させられることから、そのクラッチBcrの引き摺りトルクTdrに起因して第1電動機MG1の反力が必要以上に大きくなるのを抑制することができ、出力トルクの制御性が悪化するのを好適に防止できる。すなわち、エンジン12の出力軸をロックするためのクラッチBcrに引き摺りが発生した場合に、出力トルクの制御性低下を抑制するハイブリッド車両の電子制御装置50を提供することができる。 (もっと読む)


【課題】再始動時に内燃機関の制御精度の悪化を抑制する。
【解決手段】ECUは、自動停止制御による停止期間Tsが第1期間Ts(0)以上であって(S100にてYES)、バッテリのSOCがしきい値SOC(1)以上である場合に(S102にてYES)、クランキング制御を実行するステップ(S104)と、第2期間Tcが経過した場合にクランキング制御を終了するステップ(S108)と、エンジンを再始動させる場合に(S110にてYES)、第1始動制御を実行するステップ(S112)と、SOCがしきい値SOC(1)よりも小さい場合であって(S102にてNO)、かつ、エンジンを再始動させる場合に(S114にてYES)、第2始動制御を実行するステップ(S116)と、異常診断を無効化するステップ(S118)とを含む、プログラムを実行する。 (もっと読む)


【課題】燃料ポンプの作動を停止する制御装置の誤動作の可能性を低減し、信頼性を向上させることができる車両の制御装置を提供する。
【解決手段】車両1の制御装置は、車両1の加速度を検出する加速度センサ30,32と、加速度センサ30,32により検出された加速度に基づいてエアバッグ装置26,28を作動させるエアバッグ制御手段34と、燃料ポンプ4の作動を制御する燃料ポンプ制御手段36と、を備え、燃料ポンプ制御手段36は、エアバッグ装置26,28の作動に対して遅らせた時点での加速度に基づいて、燃料ポンプ4の作動を停止するように構成される。 (もっと読む)


【課題】摩擦式トルクリミッタに潤滑油が行き渡った状態でエンジンを始動できるハイブリッド車両用動力伝達装置の制御装置を提供する。
【解決手段】エンジン始動前に、オイルポンプ24が駆動されてトルクリミッタ22が潤滑されるので、エンジン始動時におけるトルクリミッタ22のリミットトルクTlimの増大を抑制することができる。従って、エンジン始動時において過大なトルクが伝達されても、トルクリミッタ22が所望のリミットトルクTlimで滑るため、回転軸や軸受に係る負荷の増大も抑制される。これより、回転軸や軸受の強度を過度に上げる必要もなくなり、結果として回転軸および軸受の重量増大および大型化を抑制することができる。 (もっと読む)


【課題】エンジンとMG(モータジェネレータ)との間にクラッチを設けたハイブリッド車において、MGの要求トルクの低減と燃費向上を実現しながら、減速からの再加速時に車両をスムーズに加速させることができるようにする。
【解決手段】車両の走行中にブレーキが作動状態になったときに始動クラッチ18を解放すると共にエンジン11の燃焼を停止させる減速要求時制御を実行し、この減速要求時制御の実行中にブレーキの作動が解除されたときに始動クラッチ18を締結させてエンジン回転速度を引き上げるエンジン回転引上制御を実行して、車輪17の動力とMG12の動力の両方でエンジン回転速度を引き上げる。そして、エンジン回転引上制御が完了し且つ再加速要求が発生した状態になったときにエンジン11を再始動させて、再加速要求が発生した直後からエンジン11の動力とMG12の動力の両方で車両を加速させる。 (もっと読む)


【課題】燃費の悪化を最小限に抑えつつスロットル開度と吸入空気量との関係(開度-空気量特性)の変化を適正に学習することができ、エンスト防止、トルク制御精度等の向上を図ることのできるエンジンの制御装置を提供する。
【解決手段】開度-空気量特性の特性変化分を学習する学習手段と、前記学習の要否を判定する学習要否判定手段と、前記学習が必要であると判定されたとき、安定運転状態において、前記学習手段に前記学習を実行させる学習移行手段と、を備え、前記学習要否判定手段は、安定運転状態において、特性記憶手段に記憶されているそのときのスロットル弁の開度に対応する吸入空気量とエアフローセンサにより検出される実吸入空気量との乖離量を求め、該乖離量とそれについて設定された閾値とを用いて前記学習の要否を判定するようにされる。 (もっと読む)


【課題】エンジンを停止する際、インテークバルブの位相を最遅角の位相まで遅角するとともに、モータジェネレータにより発電する。
【解決手段】エンジンでの燃料供給が停止されてからエンジンの出力軸が停止するまでの間に、インテークバルブの位相が最遅角の位相まで遅角される。エンジンでの燃料供給が停止された後、第1モータジェネレータにより、エンジンの出力軸の回転方向とは逆方向にトルクが付加される。第1モータジェネレータからエンジンに付加されるトルクは、インテークバルブの位相の遅角を開始してからの変化量が大きいほど、増大される。 (もっと読む)


【課題】過給機を搭載した内燃機関において冷態始動時に圧縮S/Lモードを実行した際に、過給機の作動を抑制しつつ、内燃機関のアイドル回転数の安定化が可能な内燃機関の制御装置及び制御方法を提供する。
【解決手段】本発明に係る制御装置(34)は、過給機(18)を有する内燃機関(12)を搭載した車両(10)の冷態始動時に、圧縮スライトリーン制御を行った際のエンジン回転数を制御することを特徴とし、特に、吸気管(14)の吸気圧を検出する吸気圧検出手段(62)と、内燃機関をトルクアシスト可能なモータジェネレータ(28)と、吸気圧に基づいてエンジン回転数が所定の目標値になるように、モータジェネレータのアシストトルク値を制御する。 (もっと読む)


1 - 20 / 664