説明

Fターム[3G093CA08]の内容

車両用機関又は特定用途機関の制御 (95,902) | 制御・作動条件(機関) (4,923) | 補機の駆動に基づく負荷時 (249)

Fターム[3G093CA08]に分類される特許

81 - 100 / 249


【課題】内燃機関のクランク軸に連結される発電機の発電を制御して回転変動抑制に利用する発電制御装置を含む通電制御システムにおいて、バッテリ電圧の変動を簡易な構成により補正し、さらなる回転変動抑制を図る。
【解決手段】発電制御方法決定時期判定手段S101と制御用回転速度算出手段S102と発電山数決定手段S103と優先順位判定手段S104と発電許可手段S105と発電停止手段S106とからなる発電制御方法決定手段S100によって発電制御S107を実施し、噴射通電開始時期決定手段S111と噴射終了通電時期決定手段S112と噴射通電終了時期補正手段S113とからなる噴射通電時間決定手段S110によって、噴射通電制御S130を実施し、点火通電終了時期決定手段S121と点火開始時期決定手段S122と点火開始時期補正手段S123とからなる点火通電時期決定手段S120によって点火通電制御S131を実施する。 (もっと読む)


【課題】オートデセル目標回転数を低下させて燃費および騒音の低減を図れるとともに、このときに発生する作業の立ち上がりが遅くなり作業効率が低下する問題を、エンジン回転数の制御のみで解決できるエンジン回転数制御方法を提供する。
【解決手段】設定モード26では、アクセルスロットル13のアクセルスロットル値がフルスロットルの場合のみ、オートデセル目標回転数を従来通り中間アクセル(例えば1200rpm程度)に設定し、若しくは、立ち上がり速度が許容可能なエンジン回転数に設定する。アクセルスロットル13のアクセルスロットル値がフルスロットル以外の場合、すなわちフルスロットル以下のエコモード等のスロットルでは、燃料消費および騒音の低減を優先し、オートデセル目標回転数をローアクセル(例えば800rpm程度)に設定する。 (もっと読む)


【課題】補機負荷が生じている場合であってもフューエルカット制御を、補機負荷がない場合と同様に長期に亘って継続する。
【解決手段】補機が連結されている内燃機関の出力側に変速機が連結され、その内燃機関に対する駆動要求がない状態でその内燃機関に対する燃料の供給の再開を判断するための復帰判断用回転数が予め定めた復帰回転数以上の場合にフューエルカット制御を行う制御装置であって、前記復帰判断用回転数の所定時間後の回転数を予測する回転数予測手段(ステップS5)と、その予測された前記復帰判断用回転数が燃料の供給を再開するべき回転数として予め定めた復帰回転数以下となることが判断された場合に前記補機による負荷を停止した状態で前記変速機の変速比を増大させるダウンシフトを実行するダウンシフト指示手段(ステップS6,S8)とを備えている。 (もっと読む)


【課題】吸気弁に可変動弁機構を適用した場合のコースト運転中における適切な制御を提供する。
【解決手段】吸気弁の開閉時期を変化させる可変動弁機構と、機関出力により発電可能なオルタネータと、を備える。コースト運転中での非燃料カット時には、非燃料カット用設定とし、マイナスオーバーラップを付与することで、燃焼安定性を確保する。一方、コースト運転中での燃料カット時には、非燃料カット時と同等の機関減速トルクが得られるように、オルタネータによる発電負荷を制御する。具体的には、バッテリの空き容量が十分ある場合、ポンピングロスが最小となる燃費重視の設定とし、発電量を最大限に確保して燃費向上を図る。バッテリの空き容量が少なくなると、応答性重視の設定として、吸気弁のリフト特性を非コースト運転時の設定に近づけて、加速時におけるリフト特性の切換を速やかに行えるようにする。 (もっと読む)


【課題】バッテリと共にエンジンを搭載した作業機械において、小型のエンジンを用いて、稼働時における環境汚染および騒音を最小限に抑制し、かつ燃費の低減を図る。
【解決手段】下部走行体1の走行モータ11,12と、ブームシリンダ13,アームシリンダ14及びバケットシリンダ15からなるアクチュエータを駆動するために油圧ポンプ21を設け、この油圧ポンプ21を電動モータ22で駆動するようになし、この電動モータ22と旋回用電動モータ10とをバッテリ24で駆動するが、さらにエンジン27及び発電機29,電力蓄電制御手段30からなる給電装置26を搭載して、エンジン27を回転速度及び出力トルクが一定となるように駆動して発電を行い、制御されたエンジン27と、このエンジンにより駆動される発電機29とを備え、発電機29で発生した電力は電力蓄電制御手段30を介してバッテリ24に蓄電される。 (もっと読む)


【課題】エンジンの始動装置の作動要否を好適に判定し、必要でないのに始動装置が駆動されることによる不都合を抑制する。
【解決手段】ECU40は、エンジン10の再始動要求タイミングでのエンジン回転速度を始動要求時回転速度として検出するとともに、エンジン10の再始動要求後エンジン回転速度が上昇に転じたタイミングでのエンジン回転速度を上昇時回転速度として検出する。また、ECU40は、始動要求時回転速度と、予め定めた許容下限値よりも高回転側に設定されスタータ37の作動要否を判定するためのしきい値である始動判定値との比較結果に基づいて、エンジン10をスタータ37により始動するか、又はエンジン10の燃焼制御の再開によりエンジン10を始動する。そして、ECU40は、始動判定値を、過去のエンジン再始動における上昇時回転速度と許容下限値とに基づいて変更する。 (もっと読む)


【課題】車両の減速運転時における走行距離を延ばし、従来よりも燃料消費量を低減できるエンジン制御装置を提供する。
【解決手段】エンジン制御装置3において燃料調整手段の燃料停止信号と、発電状態検出手段により検出された発電状態とに基づいて、減速運転時において発電負荷の増加に応じてスロットルバルブ5の開度を適宜変化させることにより、スロットルバルブ5により生じるエンジンフリクションを小さくして、発電負荷の増加時にその分だけ減速運転時の走行距離を延ばすことができ、かくして走行時における全体的な燃料消費量を低減させることができる。 (もっと読む)


【課題】畦越えなどしようとして、苗植付装置を上昇させるときにエンストを起こさないようにすることができる苗移植機を提供すること。
【解決手段】車体の後側に昇降リンク装置2を介して昇降可能に装着された苗植付装置3を接地する作業位置まで下降させる操作と対地浮上する所定の非作業位置まで上昇させる操作が行える昇降操作装置110bと苗植付装置を任意の高さに上昇させることができる任意上昇操作装置110cを設け、任意上昇操作装置110cを操作すると、その上昇操作量に応じてエンストさせないようにエンジン12のアイドリング回転数を上昇させ、昇降操作装置110bを操作するとエンジンのアイドリング回転数を上昇させる作動状態であると、それを解除してアイドリング回転から元の通常回転に戻るようにしたので、畦越えしながらの植付時、エンジン12のアイドリング回転数が上昇するので、走行負荷に対処でき、エンストを防止できる。 (もっと読む)


【課題】車両駆動制御システムにおいて、エンジンのエネルギ利用効率をできるだけ維持しながら、システム再循環損失を抑制することを可能とすることである。
【解決手段】車両の駆動系12を構成する各要素の動作を全体として制御する車両駆動制御装置40は、エンジン14の駆動力の一部が発電用に用いられ、その発電電力で第1回転電機18または第2回転電機20の他方が駆動力を発生することでシステム再循環損失を生じている状態にあるか否かを判断するシステム再循環判断処理部44と、システム再循環状態にあると判断されるときに、システム再循環損失をゼロとすることができるエンジン気筒数を算出するエンジン気筒数算出処理部46と、算出されたエンジン気筒数にエンジン14の稼動気筒数を変更する気筒数変更処理部48とを含んで構成される。 (もっと読む)


【課題】 電動パワーステアリング用モータを含む、発電機の電気負荷全体を監視して電気負荷の急変時に機関出力トルクの制御を適切に行い、アイドル時の機関回転を安定化することができる内燃機関の制御装置を提供する。
【解決手段】 モータ22に供給されるトルク生成電流の変化量であるトルク生成電流変化量DELEPSN、及び補助トルク生成部20以外の電気負荷に供給される負荷電流の変化量である負荷電流変化量DELBNを算出し、トルク生成電流変化量DELEPSNに応じて、補助トルク生成部20に供給される駆動制御電流IEPSの変化量である駆動制御電流変化量DELBNEPSNを算出する。駆動制御電流変化量DELBNEPSNと負荷電流変化量DELBINとを加算することにより、全負荷電流変化量DELNを算出し、該全負荷電流変化量DELNに応じてスロットル弁3の目標開度THCMDの補正を行う。 (もっと読む)


【課題】内燃機関のトルクを吸気量調整弁の弁開度と点火時期とによって制御することができる内燃機関の制御装置に関し、トルクの制御性の向上と燃費の向上とを高い次元で両立する。
【解決手段】いわゆるトルクリザーブ制御を行う内燃機関の制御装置において、要求トルクの変化量を取得し、当該変化量が大きいほどリザーブトルクを大きな値に補正する。また、目標回転数の変化、補機負荷の変化、或いはシフトチェンジによって、要求トルクが大きく変化する場合には、リザーブトルクの補正を禁止する。また、好ましくは、リザーブトルクの履歴を学習し、リザーブトルクの次回の補正値に反映させる。好ましくは、内燃機関の水温別、目標回転数別、補機類の可動状態別、或いはシフト状態別にモードを設定し、各モード毎に学習を行う。 (もっと読む)


【課題】内燃機関停止時のクランク角を制御するに際して、補機の不必要な作動を防止することができる内燃機関の制御装置を提供する
【解決手段】ECU41は、内燃機関11を停止させる際に、機関回転速度NEを目標機関回転速度に一致させるようにオルタネータ34の負荷トルクを制御することで、機関停止時のクランク角θが目標クランク角範囲内にて停止するように内燃機関11を停止させる停止位置制御を実行するようにした。この停止制御実行中に、ECU41は、機関回転速度NEを目標機関回転速度に一致させるために必要な要求負荷トルクを算出し、同要求負荷トルクと、その時点の機関回転速度NEにおけるオルタネータ34の最大負荷トルクとを比較する。そして、要求負荷が最大負荷トルクよりも大きい場合には、停止位置制御を終了するようにした。 (もっと読む)


【課題】エンジントルクの制御を安定化を図りつつ、エンジンの過回転を抑制する。
【解決手段】ジェネレータ回転数指令値Rmtとジェネレータ実回転数Rmaとの偏差に基づいて、ジェネレータ2のトルク指令値候補u1を演算し、このトルク指令値候補u1がトルク制限値に対して飽和する場合、トルク指令値候補u1に代えてトルク制限値をジェネレータトルク指令値u2として設定する。また、トルク制限値に対するトルク指令値候補u1の飽和量である飽和トルクu3に基づいて、エンジントルク指令値Tetを補正する。 (もっと読む)


【課題】エンジンの応答性を向上させることが可能な車両の再始動制御装置及び再始動制御方法を提供する。
【解決手段】停止しているエンジンを再始動させる再始動条件が成立する場合、停止しているエンジンをモータが出力する駆動力により再始動させるとともに、クリープ駆動力に相当する駆動力をモータから出力する再始動制御において、バッテリーの蓄電量が所定の蓄電量未満であり、且つ再始動条件が、運転者の意図に因らず成立している場合に、モータに電力を供給可能なバッテリーの蓄電量が所定の蓄電量以上である場合よりも、エンジンの回転数の上昇率を増加させるとともに、動力伝達機構がエンジンの駆動により発生するクリープ駆動力に相当する駆動力が減少するように、モータが出力するモータトルクを制御する。 (もっと読む)


【課題】車両の目標駆動トルクが比較的高い周波数にて変動する場合にも、車両の駆動トルクが車両の目標駆動トルクになるようエンジンの出力トルク及び複数の補機の消費トルクを最適に制御する。
【解決手段】車両の目標駆動トルクが演算され(ブロック100〜120)、カットオフ周波数が低いローパスフィルタの処理により目標駆動トルクの低周波成分がエンジン14の目標制御トルクに分配され、カットオフ周波数が高いローパスフィルタの処理により目標駆動トルクの中間周波数の成分がコンプレッサ34の目標制御トルクに分配され、目標駆動トルクの残余の成分がオルタネータ36の目標制御トルクに分配される(ブロック130)。そしてエンジンの出力トルク及びコンプレッサ34、オルタネータ36の必要消費トルクが対応する目標制御トルクに基づいて制御される(ブロック150〜180)。 (もっと読む)


【課題】エンジンにより駆動される補機の機能への影響をできるだけ抑えつつ車両の駆動トルクが所要の値になるようエンジンの出力トルク及び補機の消費トルクを制御する。
【解決手段】車両の目標駆動トルクTvtが演算され(ブロック100〜120)、目標駆動トルクの低周波成分がエンジン14の目標制御トルクに分配されると共に、低周波成分以外の目標駆動トルクの成分が補機としてのコンプレッサ34及びオルタネータ36の目標制御トルクに分配される(ブロック130)。そしてエンジンの目標制御トルクTetと補機の必要消費トルクTcreq、Tareqとの和に基づいてエンジンの出力トルクが制御され、補機の必要消費トルクより補機の目標制御トルクを減算した値に基づいて補機の消費トルクが制御される(ブロック150〜180)。 (もっと読む)


【課題】冷凍車のキャビンと冷蔵室とのそれぞれを冷却するために要求される冷凍能力の差が大きい状況下において、冷凍装置34のA/Cバルブ42、FIRバルブ44及び冷凍バルブ46の開閉操作による冷媒循環経路の切り替えに起因してエンジン回転速度の変動が生じること。
【解決手段】エンジン回転速度の低下速度が所定値以上となる時点のエンジン回転速度を基準として、エンジン回転速度が所定量α低下したことを複数回確認することに基づき、冷媒循環経路が切り替えられている状況であることを判断する。その後、エンジン回転速度の変動態様に基づき冷媒循環経路の切り替え周期を学習する。この学習された周期に基づき切替判定フラグを切り替え、この切り替えに応じてA/C用ISC補正量を庫内用ISC補正量だけ強制的に減少させる。 (もっと読む)


【課題】本発明は、同一経路上で内燃機関とEGRクーラと通って冷却熱媒体が循環する構成において、ノッキングの発生を抑制することを目的とする。
【解決手段】本発明は、内燃機関とEGRクーラとを通って冷却熱媒体が循環する循環通路を備えている。そして、循環通路を循環する冷却熱媒体の量が所定量以下のとき又は循環通路における冷却熱媒体の循環が停止されたときは(S102)、内燃機関の吸気系に導入されるEGRガスの量を減少させる又は該EGRガスの供給を停止させる(S108)。 (もっと読む)


【課題】主駆動輪のスリップ時に従駆動輪を最適に制御することである。
【解決手段】車両の駆動力制御装置は、主駆動輪がスリップしたらモータの駆動によって従駆動輪を駆動するものであり、主駆動輪の駆動力とモータ4の駆動によって駆動される従駆動輪の駆動力との加算値として車両総駆動力を算出し(ステップS690)、車両総駆動力の増加方向に主駆動輪のスリップ状態を制御する(ステップS700、ステップS710、ステップS720)。 (もっと読む)


【課題】
本発明が解決しようとする課題は、オーディオやテレビなど大電流を消費する電気負荷を作動状態検出手段を介さずに搭載した車両では、アイドルストップ後の電力消費が予想外に多く、電池充電のために短時間で再始動するような運転性が悪いアイドルストップをしないシステムを実現することにある。
【解決手段】
発電手段の停止中には、電気負荷電流を蓄電手段の放電電流で計測できることを利用して、この発明による内燃機関の運転制御装置は、発電手段の停止中に作動状態検出手段が推定する蓄電手段の放電電流より検出放電電流が多い場合に、運転停止条件の判定閾値を停止させない側に補正する手段を有する。 (もっと読む)


81 - 100 / 249