説明

Fターム[3G093EC02]の内容

車両用機関又は特定用途機関の制御 (95,902) | 制御対象の駆動手段 (3,105) | 電気式 (2,690) | 電動機(モータ) (1,947)

Fターム[3G093EC02]に分類される特許

1 - 20 / 1,947



【課題】筒内環境に応じた適切な燃料噴射制御を実行することにより、1圧縮始動による迅速な再始動の機会を増やす。
【解決手段】本発明では、エンジンの自動停止後の再始動時に、停止時圧縮行程気筒のピストンが基準停止位置よりも下死点側の特定範囲にあるか否かを判定し、特定範囲にある場合には、燃料噴射弁から停止時圧縮行程気筒に最初の燃料を噴射することで、エンジンを再始動させる。この停止時圧縮行程気筒への最初の燃料噴射では、圧縮上死点を過ぎてから熱発生率のピークを迎えるようなメイン燃焼を起こさせるメイン噴射と、それよりも前のプレ燃焼を起こさせるプレ噴射とが実行される。プレ噴射は、噴射した燃料がピストンのキャビティ内に収まるようなタイミングで少なくとも1回以上実行されるものであり、その回数および噴射量は、停止時圧縮行程気筒のピストンが圧縮上死点に到達する1圧縮TDC時の筒内圧力の推定値に基づいて決定される。 (もっと読む)


【課題】車両停止条件成立時に内燃機関の吸気弁の開閉タイミングを変更することに伴う消費電力をカバーすることが可能な車両の制御システムを提供する。
【解決手段】制御システム1は、吸気弁の開閉タイミングを変更可能な可変バルブタイミング機構を有する内燃機関10と、内燃機関10に連結される第2モータジェネレータ102と、第2のモータジェネレータ102と電気的に接続されるバッテリ103と、内燃機関10及び第2のモータジェネレータ102を制御するECU80と、を備え、ECU80は、内燃機関10の停止条件成立時に、第2モータジェレータの第1の回生制御を実行した後に、内燃機関10における燃料噴射を停止し、続いて、第2モータジェネレータ102をモータとして駆動しつつ可変バルブタイミング機構を制御することによって、吸気弁の開閉タイミングを所定タイミングに変更する。 (もっと読む)


【課題】モータを用いてエンジンのクランク角度を適切に推定することができるハイブリッド電気自動車におけるエンジンのクランク角度推定装置、及び始動性に優れたエンジン自動停止始動制御を行うことのできるエンジン停止制御装置を提供すること。
【解決手段】モータECUは、エンジン自動停止フラグがONになったt1時点を0°としてエンジン回転数に応じた相対クランク角度を算出し始め、これを推定クランランク角度に設定し、モータトルクが判定閾値より大となっているピーク値が検出されたt2時点で、相対クランク角度からピーク値クランク角度にオフセットして、当該ピーク値クランク角度を推定クランク角度とする。そして、当該推定クランク角度が所定の停止クランク角度に達したときに、モータの回転を0としてエンジンの回転を停止させる。 (もっと読む)


【課題】燃料の微粒化を図りながら適切な燃料噴射制御を実行することにより、1圧縮始動による迅速な再始動の機会を増やす。
【解決手段】エンジンの自動停止条件が成立してから、燃料噴射弁からの燃料噴射を停止する燃料カットが実行されるまでの間(t0〜t2)に、燃料噴射弁の燃圧を上昇させる制御を実行する。再始動時には、停止時圧縮行程気筒2Cのピストンが基準停止位置よりも下死点側の特定範囲にあるか否かを判定し、特定範囲にある場合には、燃料噴射弁から停止時圧縮行程気筒2Cに最初の燃料を噴射することで、エンジンを再始動させる。この停止時圧縮行程気筒2Cへの最初の燃料噴射では、圧縮上死点を過ぎてから熱発生率のピークを迎えるようなメイン燃焼を起こさせるメイン噴射と、それよりも前のプレ燃焼を起こさせるプレ噴射とを実行する。 (もっと読む)


【課題】エンジン制御系からクランク角情報を入力することなくモータ制御系でエンジンのクランク角を判別可能として、エンジン自動停止の際に走行用モータにより適切なタイミングで制動を加えてエンジンを最適クランク位置で停止でき、もって、その後の自動始動時のエンジン始動性を向上できるハイブリッド車両のエンジン停止制御装置を提供する。
【解決手段】エンジン2を自動停止する際に、クラッチ4を接続して、エンジン2の燃料供給を中止した後にモータ6を駆動し、回生制御としてモータ6の回転速度を所定の目標値に維持する回転制御を実行する。このときエンジン2のトルク変動に同期して変動するモータ6の回生率を指標として変動波形のピークを特定し、そのピークを起点として、予め最適クランク位置までのクランク角として設定された停止クランク角Δθstopに基づき最適クランク位置を判別する。エンジン2が最適クランク位置に到達した時点でモータトルクを増加させてエンジン2に制動を加えて停止させる。 (もっと読む)


【課題】燃費向上と排気エミッションの向上との両立を図ることができる車両用制御装置を提供する。
【解決手段】加速走行と惰性走行とを車速範囲Rで繰り返す断続走行が可能なハイブリッド車両に用いられる車両用制御装置であって、エンジンを自立運転させて暖機を行うとともにモータMG2の駆動力またはエンジンおよびモータMG2の駆動力を用いて断続走行を実行する暖機断続走行モードと、エンジンおよびモータMG2の駆動力を用いて断続走行を実行する通常断続走行モードとを有し、冷却水温Twが目標暖機温度Toに達したことを条件に暖機が完了したものと判断し、暖機断続走行モードから通常断続走行モードに切り替えるHVECUを備え、HVECUは、暖機断続走行モードの実行中、冷却水温Twに基づき、加速走行時のエンジン出力Peを可変させる。 (もっと読む)


【課題】駆動モータを走行駆動源とする電気自動車走行モードでの走行可能領域の拡大を図ることができるハイブリッド車両の制御装置を提供する。
【解決機構】本発明のハイブリッド車両の制御装置では、エンジン始動モータを兼用するモータ/ジェネレータ3を駆動源とするEVモードを選択中、スターターモータ6を用いて走行中のエンジン始動を行うスターターモータ再始動モード時のEVモードでの走行可能領域を、モータ/ジェネレータ3を用いて走行中のエンジン始動を行う通常モータ再始動モード時のEVモードでの走行可能領域よりも拡大する。 (もっと読む)


【課題】CAN通信によりクランキング中のみ送信されるイベントフレームの受信状態に基づいたダイアグコード記憶処理の精度(異常診断精度)を高める。
【解決手段】クランキング中にイベントフレームの受信が途絶したときに、イベントフレームの途絶時間を積算し、その積算値が所定の判定閾値を越えた場合にダイアグコードを記憶する異常診断を行う。これにより、イベントフレームの途絶が頻繁に発生したり、イベントフレームの途絶が長く継続したりして、イベントフレームの途絶時間の積算値が判定閾値を越えた場合に、異常が発生したと判断して、ダイアグコードを記憶するようにできるため、実際には異常が発生していないにも拘らず、クランキング終了直前の僅かな時間だけイベントフレームの受信が途絶したと1回だけ判定された場合に、不必要にダイアグコードが記憶されてしまうことを防止することができる。 (もっと読む)


【課題】従来と比較して内燃機関の停止前や再始動時の排気エミッションを向上させることができる車両用制御装置を提供する。
【解決手段】動力源としてエンジンおよびモータジェネレータと、エンジンの排気通路上に設けられた三元触媒と、エンジンを間欠停止する際に、エンジンを予め定められた回転数で自立運転させた後に間欠停止させるよう制御するエンジンECUとを備えたハイブリッド車両に用いられる車両用制御装置であって、エンジンECUが、エンジンを間欠停止する際、エンジンの吸気通路壁面に付着した付着燃料がなくなるまで自立運転を継続させるようにした。 (もっと読む)


【課題】車両発進時の負荷が大きい場合にも不要な電力消費を排除し、バッテリのSOCの低下を抑制することのできるハイブリッド電気自動車の制御装置を提供すること。
【解決手段】駆動源としてエンジン及びモータを選択可能なハイブリッド電気自動車において、統合ECU22はアクセルオフ時にモータ4による回生積算量を算出し(S1、S2)、アクセルの踏み込みが検出されたときには(S3)、当該回生積算量が判定閾値より大であり且つバッテリ18のSOCが所定SOC以上であるか否かを判別し(S4)、真(Yes)である場合はモータ4での加速を選択し(S6)、偽(No)である場合にはエンジン2による加速を選択する。 (もっと読む)


【課題】車両の状態に応じて生じる動力性能の向上や振動及び騒音の低減等の課題を適切に解決することが可能なハイブリッド車両を提供する。
【解決手段】キャリアCに内燃機関10が、サンギアSに第1MG11が、リングギアRに出力部14がそれぞれ接続された遊星歯車機構15を含む動力分割機構13と、出力部14に動力を出力できる第2MG12とを備えたハイブリッド車両1において、内燃機関10の回転を変速してキャリアCに伝達できる変速機15をさらに備え、車両1の状態が特定状態のときにキャリアCの目標回転数範囲と内燃機関10の目標回転数とが設定され、目標回転数が目標回転数範囲外の場合には内燃機関10の回転数が目標回転数になり、かつキャリアCの回転数が目標回転数範囲内の回転数になるように変速機15が制御される。 (もっと読む)


【課題】
車両のクリープトルク制御システム及び方法を提供する。
【解決手段】
車両のクリープトルク制御方法は、車両の始動がかかった状態で、ブレーキの作動により車両を停止させるステップと、前記車両が停止した状態で、クリープトルクを0に制御するステップと、前記ブレーキが解除されたか否かを判断するステップと、前記ブレーキが解除された場合、クリープトルクを発生するステップとを含み、クリープトルク制御システムは、前記車両のブレーキペダルの入力を感知し、その信号を伝送するセンサと、前記車両のクリープトルクを発生するための電気モータと、前記センサから前記ブレーキペダルの入力信号を受信し、これに基づいて前記電気モータを制御する制御部とを含み、前記制御部は、前記車両のクリープトルク制御を行うことを特徴とする。 (もっと読む)


【課題】電力変換器の故障が発生した場合でも、高電圧回路から低電圧回路へ電力を供給することができ、車両の補機類を停止させることがなく、安定的に走行を継続する。
【解決手段】第1の蓄電器1と、第2の蓄電器2と、第1の蓄電器1の電力を変換して第2の蓄電器2や車両の補機類5に供給する電力変換器4と、第1の蓄電器1に接続されたモータジェネレータ3とを備えた車両に設けられた電源管理装置であって通常時は第1の蓄電器1と第2の蓄電器2との間を非導通状態とし、電力変換器4の故障が検出された時に導通状態に切り替えるスイッチ6と、スイッチ6を非導通状態から導通状態へ切替える前に、第1の蓄電器1の電圧と第2の蓄電器2の電圧との差が所定電圧差以内となるようにモータジェネレータ3を制御する電源管理部7とを備えている。 (もっと読む)


【課題】従来よりも効率良く発電を行うことが可能なハイブリッド車両の制御装置を提供する。
【解決手段】内燃機関2と接続された入力軸11と、駆動輪7と動力伝達可能に接続された出力軸12とを有し、入力軸11と出力軸12との間の変速比を変更可能な変速機10と、モータ・ジェネレータ3と入力軸11とが動力伝達可能に接続される入力軸接続状態とモータ・ジェネレータ3と出力軸12とが動力伝達可能に接続される出力軸接続状態とに切り替え可能な第2クラッチ25と、モータ・ジェネレータ3と電気的に接続されたバッテリ4とを備えたハイブリッド車両1に適用され、車両1の速度が所定の判定速度以上の場合に第2クラッチ25を出力軸接続状態から入力軸接続状態に切り替える制御装置において、バッテリ4の蓄電率が所定の判定蓄電率未満の場合には、バッテリ4の蓄電率が判定蓄電率以上の場合よりも判定速度を小さくする。 (もっと読む)


【課題】エンジンによってジェネレータを駆動して発電を行う車両搭載用発電装置におけるエネルギー損失を抑制することを目的とする。
【解決手段】シリーズハイブリッド車両駆動システムは、発電の際のエネルギー損失を抑制するという観点から求められた第1電圧目標値、およびユーザの運転操作に応じた走行制御を確保するという観点から求められた第2電圧目標値のうち、値が大きい方に昇圧電圧Vhを一致させる制御を実行する。昇圧電圧Vhを第2電圧目標値とする制御を実行した場合には、発電の際のエネルギー損失が増大することがある。そこで、シリーズハイブリッド車両駆動システムにおいては間欠発電制御が行われる。間欠発電制御は、エンジン12の始動および停止の繰り返しにより、間欠的にモータジェネレータMG1を駆動する制御である。 (もっと読む)


【課題】車両の負荷量が増加した場合に、車両を停止するために十分な制動力を得るとともに、より効率的に電力を確保すること。
【解決手段】電動車100は、車両重量の変化を検知すると(ステップS1001)、重量の変化量に基づいてバッテリーの目標充電率を設定し(ステップS1002)、目標充電率を達成するために必要な必要発電量を算出する(ステップS1003)。電動車100は、車両の重量変化量、必要発電量、重量変化前における操作量と回生トルクとの対応関係などに基づいて、電動モーター133の回生トルクを変更する(ステップS1004)。 (もっと読む)


【課題】再起動しなくても、故障の発生と解消に対応することができる電子制御装置を提供すること。
【解決手段】電子制御装置は、アシストモータへの給電と動作とを制御する制御部と、制御部の起動時と動作中とに故障を診断する故障診断部と、CAN通信部とを備える。制御部は、故障診断部により故障を診断して、故障を検出すると、アシストモータへの給電を停止し、その後、CAN通信部により他の装置から、アイドルストップ状態の解除を示す信号を受信すると、故障診断部により再度故障を診断する。当該診断の結果、故障が検出された場合は、アシストモータへの給電の停止が継続され、故障が検出されなかった場合は、アシストモータへ給電が行われる。 (もっと読む)


【課題】エンジンおよび/またはモータジェネレータからの駆動力を用いて走行が可能な車両において、勾配のある道路で車両走行時のエネルギ効率を向上させる。
【解決手段】車両100の走行駆動力を発生するモータジェネレータ130、エンジン160と、制御するためのECU300と、道路情報を取得するためのカーナビゲーション装置200とを備える。ECU300は、モータジェネレータ130、エンジン160について、駆動力を発生させる第1の状態と、第1の状態よりも駆動力を小さくした第2の状態とを切換えながら車両100を走行させる駆動力変更運転を実行する。ECU300は、カーナビゲーション装置200からの情報に基づいて進路に勾配のある道路が存在する場合には、進路に平坦路が続く場合に比べて駆動力変更運転におけるモータジェネレータ130、エンジン160の駆動状態を変更する。 (もっと読む)


【課題】LC共振を抑制しつつ走行に必要なトルクを出力して走行する。
【解決手段】モータMG2の回転数Nm2がLC共振が生じる共振領域内(N1〜N2の領域内)であるときには、モータMG2のトルク指令Tm2*が所定トルクΔTだけ小さくなる補正を行ない(S160)、この補正に伴ってモータMG1のトルク指令Tm1*が所定トルクΔTにギヤ比ρを乗じたものだけ小さくなる補正とエンジン22の目標トルクTe*が所定トルクΔTにギヤ比ρと値1との和(1+ρ)を乗じたものだけ大きくなる補正を行ない(S170,S180)、補正後の目標トルクTe*やトルク指令Tm1*,Tm2*を用いてエンジン22とモータMG1,MG2,昇圧コンバータ55を制御する。これにより、LC共振を抑制しつつ駆動軸に要求トルクTr*を出力して走行することができる。 (もっと読む)


1 - 20 / 1,947