説明

Fターム[3G301HA04]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 機関型式 (19,471) | 筒内直接噴射型 (2,550)

Fターム[3G301HA04]に分類される特許

41 - 60 / 2,550


【課題】エンジンに設けられた空燃比センサを簡素な構成で精度よく基準値補正する。
【解決手段】エンジン1の排気通路16と吸気通路12とを連通する還流通路19,22と、還流通路19,22を流通する還流ガスを制御する還流ガス制御手段35bと、吸気通路12と還流通路19,22との接続部よりも下流側の吸気通路12に配設された空燃比センサ25,26とを備えたエンジンの制御装置であって、エンジン1の停止条件が成立したか否かを判定し、成立したときにエンジン1を自動停止させる自動停止制御手段35aと、停止条件が成立したと判定されたら還流ガス制御手段35bに還流ガス量を減少させ、還流ガス量が減少してから所定時間自動停止制御手段35aにエンジン1の自動停止を待機させ、エンジン1が自動停止されたら空燃比センサ25,26の基準値補正を実施する補正制御手段35cと、を有する。 (もっと読む)


【課題】僅かな含水素ガス添加量で熱効率の向上やスート排出量の低減などの効果が得られるディーゼル内燃機関及びその制御装置を提供すること。
【解決手段】ディーゼルエンジン1は、気筒11に連通する複数の吸気ポート12,13と、吸気に含水素ガスを添加する水素インジェクタ33と、気筒11内に含軽油燃料を噴射する燃料インジェクタと、を備える。複数の吸気ポート12,13は、ヘリカルポートであるセカンダリ吸気ポート13とタンジェンシャルポートであるプライマリ吸気ポート12を含み、上記水素インジェクタ33は、これら吸気ポート12,13のうち、セカンダリ吸気ポート13を介して気筒11に導入される吸気にのみ含水素ガスを添加する。 (もっと読む)


【課題】停車中におけるエンジントルクの変動によって生じる振動を抑制する。
【解決手段】ECU200は、車両が停車中であるか否かを判定するステップ(S100)と、車両が停車中でない場合に(S100にてNO)、ガス当り補正を実行するステップ(S102)と、車両が停車中である場合に(S100にてYES)、ガス当り補正からばらつき抑制補正に切り換えるステップ(S104)とを含む、プログラムを実行する。 (もっと読む)


【課題】この発明は、内燃機関の制御装置に関し、内燃機関のドライバビリティの悪化を抑制しつつ、シリンダ壁面への燃料付着に起因する未燃HCの排出やオイル希釈を良好に抑制することを目的とする。
【解決手段】多気筒型の内燃機関の各気筒に対してそれぞれ備えられ、各気筒内に燃料を直接噴射可能な燃料噴射弁12を備える。シリンダ壁面温度Tbnを気筒毎に推定したうえで、各気筒に対してトルク発生のために噴射される燃料噴射量Qvnを、シリンダ壁面温度Tbnが低い気筒の方が、シリンダ壁面温度Tbnが高い気筒よりも少なくなるように設定する。そして、設定された各気筒の燃料噴射量Qvnのうちの最大値と最小値との差ΔQvnが所定値ΔQvreqよりも大きい場合に、前記差ΔQvが前記所定値ΔQvreq以内となるように、各気筒に噴射される燃料噴射量Qvnを補正する。 (もっと読む)


【課題】低圧燃料ポンプと高圧燃料ポンプを備えた内燃機関の燃料噴射システムにおいて、吸気通路内に噴射する燃料の圧力を変化させる。
【解決手段】低圧燃料ポンプ1と、高圧燃料ポンプ2と、高圧燃料噴射弁7と、燃料の圧力を設定圧力まで低下させる減圧装置9と、低圧燃料噴射弁12と、を直列に備え、低圧燃料ポンプ1と低圧燃料噴射弁12とを高圧燃料ポンプ2を迂回して連通する連通路17と、連通路17に設けられ低圧燃料ポンプ1側から低圧燃料噴射弁12側へのみ燃料を通過させる逆止弁18と、低圧燃料ポンプ1よりも下流側と上流側とを接続するリターン通路13と、リターン通路13に設けられ低圧燃料ポンプ1よりも下流側の燃料の圧力が設定圧力よりも高い所定圧力以上のときに開いて燃料を流通させ所定圧力未満のときに閉じて燃料の流通を遮断する安全弁14と、をさらに備える。 (もっと読む)


【課題】低負荷領域や高負荷領域に広げた大きな中負荷領域における効率のよい圧縮自着火式の燃焼を実現することができる内燃機関を提供すること。
【解決手段】ピストンと、シリンダヘッド部内面とピストン上面との間の燃焼室と、燃焼室内に燃料を噴射するインジェクタと、燃焼室内に連通する燃焼用空気の吸気用配管を開閉する吸気バルブと、燃焼室内に連通する燃焼ガスの排気流路を開閉する排気バルブと、を備えて、運転領域の少なくとも一部領域で燃焼室内の排気タイミングと吸気タイミングとの間に吸気バルブおよび排気バルブの双方を閉じる密閉期間を確保して燃焼室内に導入した噴射燃料の圧縮自着火燃焼を行なわせる内燃機関であって、燃焼室に対して吸気バルブを2組配置されており、当該吸気バルブ毎のバルブリフト量に差を付ける。 (もっと読む)


【課題】圧縮自己着火式エンジンを再始動させる際に、停止時圧縮行程気筒のピストンの停止位置が上死点寄りであったり、エンジン冷却水温が相対的に低い等、停止時圧縮行程気筒に噴射された燃料の着火に不利な要因があっても、圧縮自己着火式エンジンを、安定、確実に、1圧縮始動で迅速に再始動させる。
【解決手段】エンジンを再始動させる際に(ステップS21でYES)、エンジンの停止時に圧縮行程にある停止時圧縮行程気筒に燃料噴射を実行して1圧縮始動を行うときは(ステップS22でYES)、圧縮上死点前にプレ燃焼用のプレ噴射を行った後、主燃焼用の主噴射を行う(ステップS23)。 (もっと読む)


【課題】火花点火式直噴エンジンにおいて、冷却損失を低減することにある。
【解決手段】燃料噴射弁33は、気筒(シリンダ)11の軸心X位置に配置されかつ、径方向の外方に向かって拡がるように燃料噴霧を噴射し、ピストン15冠面のキャビティ15aは、キャビティ底部からキャビティ開口に向かって拡径するように、その側壁が気筒の軸線方向に対して傾斜している。制御器100は、エンジン本体(エンジン1)の運転状態が高負荷領域にあるときには、燃料噴射弁により燃料を噴射する期間を、圧縮行程終期から膨張行程初期の範囲内に設定すると共に、当該噴射期間における前半では燃料噴霧のペネトレーションを小さくしかつ、噴射期間における後半では燃料噴霧のペネトレーションを大きく設定する。 (もっと読む)


【課題】排気管上に微粒子フィルタを存在させる必要なしに、一方、エンジンの動作を修正することなく、微粒子の生成を大幅に制限することのできる方法を提供する。
【解決手段】本発明は、制御された点火および液体燃料の直接噴射を用いる内燃エンジンであって、燃料室14を含む少なくとも1つの気筒12と、少なくとも1つの吸気手段16と、少なくとも1つの排気手段22と、燃料室内で燃料/空気混合物を得るための液体燃料用のなくとも1つの直接噴射手段34と、を備えるエンジンの燃焼を制御する方法に関する。本発明によれば、この方法は、燃料/空気混合物の燃焼時に微粒子が放出されるエンジンの動作ゾーンを判定することと、この判定されたゾーン内のエンジンの動作のために、気体燃料を間接的に噴射することによって他の燃料/空気混合物を燃焼室に導入することとを含む。 (もっと読む)


【課題】安価で、且つインジェクタによる燃料の噴射量を高精度に制御することができるインジェクタ制御装置を提供すること。
【解決手段】水晶発振回路11を有し所定のパルス幅のパルス信号である噴射指令信号を出力するマイコン10と、RC発振回路21を有しインジェクタ50のアクチュエータに対する通電を行う制御IC20とを備えるインジェクタ制御装置であって、マイコン10は、制御IC20のRC発振回路21によって生成された内部クロックを用いて計時された到達時間を、水晶発振回路11によって生成された内部クロックを用いて計時された到達時間と同等になるように補正するための補正係数を学習するとともに、インジェクタの開弁時間が開弁時間狙い値となるように、補正係数によって補正された補正済到達時間に応じて噴射指令信号のパルス幅を補正する。 (もっと読む)


【課題】単純な制御で、内燃機関の停止後の振動を抑制すると共に、次回の始動時にかかる時間を短縮することができる内燃機関の停止方法、内燃機関、及びそれを搭載した車両を提供する。
【解決手段】エンジン1の停止要求後に、吸気スロットル30が、各気筒20a〜20dへ送る空気の供給量を減少させて、各気筒20a〜20dの筒内圧を低下させ、エンジン1の回転数が低下する過程で、エンジン1が停止する時に圧縮行程を行う最終圧縮気筒20aと、最終圧縮機筒20aの一つ前の着火順である最終膨張気筒20bを予測し、最終膨張気筒20bの吸気が完了した後に、吸気スロットル30が最終圧縮気筒20aへ送る空気の供給量を増加させて、最終圧縮気筒20aの筒内圧を上昇させることを特徴とする。 (もっと読む)


【課題】エンジンの自動停止時における再始動を、従来技術よりも燃料を無駄にすることなく行うことができる内燃機関のアイドリングストップの制御方法及びアイドリングストップシステムを提供する。
【解決手段】再始動要求が発生したときには、エンジン1の各気筒2があらかじめ指定されたクランク角度にあるときの気筒2の筒内温度を、各気筒2の筒内圧力の測定値を基にそれぞれ算出し、クランク回転センサ5及びカム回転センサ6の測定値からピストンが圧縮行程の上死点に最も近い位置にある気筒2を選択して、その気筒2の筒内温度と自着火温度とを比較する。その気筒2の筒内温度が自着火温度未満の場合には、筒内温度が自着火温度以上となる気筒2が見つかるまで、ピストンが圧縮行程の上死点に近い順に気筒2を選択する一方で、その気筒2の筒内温度が自着火温度以上の場合には気筒2内に噴射ノズル4から燃料を噴射する。 (もっと読む)


【課題】ノズルボディの旋回溝におけるデポジットの存在を検出することができる内燃機関の制御装置を提供する。
【解決手段】内燃機関の制御装置(60)は、ノズルボディ(23)の噴孔(27)に燃料を導く燃料通路(30)がノズルボディとニードル(24)とによって区画され、燃料通路の燃料をニードルの周りに旋回させる旋回溝(31)がノズルボディに設けられた燃料噴射装置(20)の旋回溝におけるデポジットの存在を検出する検出部を備え、ニードルの燃料通路に対向する部分には凸部(33)が設けられ、ニードルは旋回溝によって旋回させられた旋回燃料が凸部に当接した際に凸部が旋回燃料から受ける力によって回転できるように軸支され、燃料噴射装置はニードルの回転速度に応じて起電力を発生するソレノイド(21)を備え、検出部は、ソレノイドが発生した起電力に基づいてデポジットの存在を検出することを特徴とする。 (もっと読む)


【課題】脈動による燃圧ピーク値を抑えるとともに燃料噴射量も好適に確保することのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】エンジン11は、ポート噴射用インジェクタ22と筒内噴射用インジェクタ17とを備える。電子制御装置30は、筒内噴射用インジェクタ17に供給される燃料の圧力が機関運転状態に基づいて設定される目標圧力となるように制御する。また、電子制御装置30は、燃料の温度が低いときには、筒内噴射用インジェクタ17に供給される燃料の圧力が、機関運転状態に基づいて設定される目標圧力よりも低い圧力となるように制限する制限処理を実行する。 (もっと読む)


【課題】気筒内の外周部にガス層を形成しかつ中心部に混合気層を形成するべく、エンジンの運転状態に応じて、外開弁式のインジェクタにより気筒内に噴射される燃料噴霧のペネトレーションを所定の大きさに調整する場合に、燃費及びエミッションの悪化を出来る限り抑制する。
【解決手段】エンジン負荷が所定値以下である低負荷領域(リフト制御領域)にあるときにおいては、エンジンの運転状態に応じて、外開弁のリフト量を変更することによって、燃料噴霧のペネトレーションを上記所定の大きさに調整する一方、エンジン負荷が上記所定値よりも高い高負荷領域(燃圧制御領域)にあるときにおいては、エンジンの運転状態に応じて、燃圧調整手段により燃料圧力を変更することによって、燃料噴霧のペネトレーションを上記所定の大きさに調整する。 (もっと読む)


【課題】火花点火式エンジンにおいて、冷却損失を低減する。
【解決手段】制御器100は、エンジン本体(エンジン1)の運転状態が高負荷領域にあるときに、燃焼室17内において、その中央部分に、それを囲む外周部分よりもリッチな混合気層が形成されるように圧縮行程において燃料噴射を実行すると共に、燃焼開始時の燃焼室内全体の空気過剰率λが1以上になるようにする。制御器100はまた、空気過剰率λ≧1の高負荷領域において、燃焼室内に排気ガスを還流させる。 (もっと読む)


【課題】気筒内に噴射された燃料を自己着火燃焼させる場合に、燃焼時の気筒内圧力上昇率を小さくして、振動騒音(NVH)レベルを出来る限り低減する。
【解決手段】エンジンが自己着火燃焼運転領域にあるときに、インジェクタにより気筒内に噴射された燃料にエネルギーを付与して、燃料の自己着火燃焼をアシストする着火アシスト手段を設け、エンジンが上記自己着火燃焼運転領域にあるときに、燃料噴射開始時期を、圧縮行程終期から圧縮上死点にかけての期間内に設定し、上記着火アシスト手段を、エンジンのモータリング時におけるクランク角変化に対する気筒内の圧力変化である気筒内圧力上昇率が負の最大値となるクランク角時点が、燃料の燃焼質量割合が10%以上90%以下となる燃焼期間と重なるように、上記燃料噴射開始後から膨張行程初期にかけての期間内に、上記気筒内に噴射された燃料に上記エネルギーを付与するように構成する。 (もっと読む)


【課題】外開弁式のインジェクタにより気筒内に噴射される燃料噴霧のペネトレーションを小さくして、気筒内の外周部にガス層を形成しかつ中心部に混合気層を形成する場合に、その混合気層での燃料濃度を出来る限り均一にする。
【解決手段】エンジンの気筒内の外周部に新気を含むガス層が形成されかつ中心部に混合気層が形成されるように、圧縮行程においてインジェクタのノズル口から気筒内に燃料を噴射させるとともに、当該燃料噴射時において、初期及び末期における外開弁のリフト量を、その間におけるリフト量よりも大きくする。 (もっと読む)


【課題】エネルギ効率の低下の程度を抑制しつつギヤ機構における異音の発生を抑制する。
【解決手段】筒内用燃料噴射バルブとポート用燃料噴射バルブとの少なくとも一方による燃料噴射を伴ってエンジンが効率用運転ポイントで運転されて要求トルクTr*が駆動軸に出力されるようエンジンと2つのモータとを制御する効率用制御を行なうと、第2のモータから出力されるトルクが値0を含む異音発生範囲内になる異音発生条件が成立したときには(S170)、異音発生条件が成立していないときに比して筒内用燃料噴射バルブからの燃料噴射量が少なくなり且つポート用燃料噴射バルブからの燃料噴射量が多くなる傾向として(S190)、エンジンが効率用運転ポイントで運転されて要求トルクTr*が駆動軸に出力されるようエンジンと2つのモータとを制御する異音用制御を行なう。 (もっと読む)


【課題】幾何学的圧縮比εが18以上40以下に設定された高圧縮比リーンバーンエンジンにおける冷却損失を低減する。
【解決手段】制御器100は、エンジン本体(リーンバーンエンジン1)の運転状態が低負荷領域にあるときには、空気過剰率λを2以上に、又は、G/Fを30以上に設定する。制御器はまた、エンジン本体の運転状態が低負荷領域にあるときには、燃焼室17の区画壁周りに設けられた冷却水通路(ウォータジャケット121、131)内の冷却水を排して冷却水通路内をエア空間にする一方、エンジン本体の運転状態が高負荷領域にあるときには、冷却水の循環回路400内で冷却水を循環させることで冷却水通路内に冷却水を流通させる。 (もっと読む)


41 - 60 / 2,550