説明

Fターム[3G384FA56]の内容

内燃機関の複合的制御 (199,785) | 入力パラメータ、センサ (66,899) | 出力 (7,666) | 回転数 (6,789)

Fターム[3G384FA56]の下位に属するFターム

Fターム[3G384FA56]に分類される特許

61 - 80 / 6,154


【課題】酸素センサの出力特性と酸素濃度との関係を精度良く較正可能な酸素センサ制御装置を提供する。
【解決手段】酸素センサ制御装置10のCPU2は、内燃機関100の燃料断一回あたり、Air掃気量(大気の総供給量)が所定量以上となった場合に、酸素センサ20の複数個の出力対応値(濃度対応値)Iprのうち、所定の第1範囲R1を逸脱した値を除外した残りの値をもとに平均化した平均出力値Ipavを算出しつつ、平均出力値Ipavのピーク値を求めてRAM4に記憶する。次いで、CPU2は、複数の燃料断毎に得られる平均出力値Ipavのピーク値を、F/Cが16回以上の場合に加重平均し、F/Cが16回未満の場合に相加平均して複数平均出力値Ipavfを算出する。複数平均出力値と予め設定した基準出力値に基づいて酸素センサ20の実出力値Ipを補正するための補正係数を求める。 (もっと読む)


【課題】設定燃料圧の切替え後における燃料圧を推定し、燃料圧が切替わった場合においても実際の燃料噴射量が所望の燃料噴射量から乖離することを抑制することにより、燃費向上を図ることができる燃料供給装置を提供できる。
【解決手段】ECUは、算出した最リーン電圧Vafおよび初期電圧Viniなどに基づいて低圧時リターン流量Qを推定し(ステップS21)、基準となる低圧時のリターン流量との差から、燃料ポンプユニットの吐出特性ばらつきおよび劣化度合いを算出する(ステップS22)。次に、ECUは、低圧時のリターン流量Qの変化量に基づいて、高圧時のリターン流量Qの変化量を算出し、高圧時のリターン流量Qを推定する(ステップS23)。そして、ECUは、高圧時のリターン流量Qおよび高圧側燃料圧推定マップに基づいて、高圧時の燃料圧を推定する(ステップS24)。 (もっと読む)


【課題】誤判定回避を図りつつもバッテリの異常発生を迅速に検出できるようにする。
【解決手段】バッテリ電圧VBを検出するバッテリ電圧検出回路22(検出手段)と、内燃機関が始動可能な状態(IGオン)に操作されてから車両が走行を開始するまでの所定期間内に、バッテリ電圧検出回路22により検出されたバッテリ電圧VBを取得し、その取得した電圧に基づき異常判定値TH1を設定する異常判定値作成手段23(設定手段)と、車両の走行中時に検出されたバッテリ電圧VBが異常判定値TH1よりも低い場合に、異常が発生していると判定する走行時異常判定手段24(異常判定手段)異常判定手段と、を備える。そして、走行開始に伴いバッテリへの充電が開始されるとバッテリ電圧は上昇してIGオン時よりも高くなる筈である。よって、走行時にVB<TH1であれば異常と判定できる。 (もっと読む)


【課題】 実際の吸入空気流量の変化をより高精度に推定することにより、吸入空気流量制御と点火時期制御の協調制御をより適切に実行し、機関出力トルクの制御精度を向上させることができる内燃機関の制御装置を提供する。
【解決手段】 要求トルクに余裕トルクを加算することにより吸気制御目標トルクTRQGAが算出され、吸気制御目標トルクTRQGAに応じて目標弁作動位相VTCCMD及び目標スロットル弁開度THCMDが算出される。弁作動位相VTC及びスロットル弁開度THが、目標弁作動位相VTCCMD及び目標スロットル弁開度THCMDと一致するように制御され、推定弁作動位相HVTC及び推定スロットル弁開度HTHに応じて推定吸気制御トルクHTRQGAが算出され、要求トルクTRQEと推定吸気制御トルクHTRQGAとの比率を用いて点火時期IGLOGの算出が行われる。 (もっと読む)


【課題】高圧燃料系内の燃料圧力が高い状態で筒内用噴射弁から燃料を噴射するに際して、トルクショックの発生を抑えることのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】内燃機関1は、低圧燃料系から供給される燃料を吸気通路に噴射するポート噴射用インジェクタ22と、高圧燃料系170から供給される燃料を燃焼室内に直接噴射する筒内噴射用インジェクタ17とを備える。電子制御装置30は、ポート噴射用インジェクタ22のみによる燃料噴射が行われている状態から筒内噴射用インジェクタ17による燃料噴射が開始されるときに、高圧燃料系170内の燃料圧力が所定の判定値以上となっているときには、吸入吸気量を増量する吸気増量処理を行うとともに、この吸気増量処理による機関出力の増大を抑える出力抑制処理を行う。 (もっと読む)


【課題】本発明は、内燃機関が正常であるにもかかわらず、センサ類の応答が間に合わないために生じる誤診断を防止できる内燃機関の故障診断装置を提供することを目的としている。
【解決手段】このため、内燃機関の運転状態を検出する複数のセンサに基づいて故障を診断するための故障診断値を求め、故障診断値によって故障を診断する内燃機関の故障診断装置であって、故障診断装置は、故障診断処理を実行するか否かを判定する故障診断実行判定部と、故障診断実行判定部により実行判定が成された場合に、故障診断処理を実行する故障診断部とを備えた内燃機関の故障診断装置において、故障診断処理は、故障診断値を複数回分求め、複数回分の故障診断値の平均値である平均故障診断値によって故障を診断している。 (もっと読む)


【課題】所望の時期に精度良く燃料噴射を行うことができる内燃機関の燃料噴射装置を提供する。
【解決手段】内燃機関の燃料噴射装置は、作動液体の圧力によって開閉が制御される燃料噴射弁と、燃料噴射弁に加圧した燃料を供給する燃料供給装置と、燃料噴射弁に加圧した作動液体を供給する作動液体供給装置とを備える。燃料噴射弁に供給する燃料の圧力および作動液体の圧力を検出し、燃料の圧力および作動液体の圧力に基づいて燃料噴射弁から燃料を噴射する時期を制御する。 (もっと読む)


【課題】点火の失敗を抑制して好適な始動を実現する車両用内燃機関の始動制御装置を提供する。
【解決手段】直噴エンジン12の停止過程で膨張行程にある気筒100に対応する排気弁108が開弁された場合には、直噴エンジン12の再始動時にその膨張行程にある気筒100に対する燃料噴射を禁止するものであることから、直噴エンジン12の停止後再始動時において、酸素量不足等により点火の失敗が予想される状態においては膨張行程にある気筒100に対する燃料噴射を行わないことで、再始動時の失火によるエミッション悪化を好適に防止できる。 (もっと読む)


【課題】この発明は、複雑な構成を要さず低コストで安定した成層燃焼を実現することのできる内燃機関の制御装置を提供することを目的とする。
【解決手段】1つの燃焼室に対して2つの吸気ポートが並設され、両方の吸気ポートから導入される空気により筒内にタンブル流が形成される内燃機関の制御装置であって、中央点火プラグと、前記2つの吸気ポートにそれぞれ設けられ、吸気ポート内に燃料を噴射可能なポート噴射弁とを備える。前記2つの吸気ポートから筒内に空気を吸入し、かつ、前記ポート噴射弁のうち一方のポート噴射弁から燃料を噴射させ、前記2つの吸気ポートのうち一方の吸気ポートからは空気と噴射燃料との混合気を、他方の吸気ポートからは空気を筒内に吸入する成層燃焼モードにおいて、所定点火時期に前記中央点火プラグ周辺の混合気を成層燃焼可能な燃料密度とするように、前記一方のポート噴射弁の燃料噴射時期を制御する。 (もっと読む)


【課題】エンジンの制御装置に関し、環境条件に沿った適切なアイドル制御領域を規定する。
【解決手段】エンジン10の無負荷損失に基づき無負荷運転目標トルクを演算する無負荷運転目標トルク演算手段2aと、エンジン10に対して要求される要求トルクを演算する要求トルク演算手段2cとを設ける。また、要求トルクがエンジン10の負荷として作用する度合いに相当する要求負荷率を、無負荷運転目標トルクを基準にして演算する要求負荷率演算手段3を設ける。さらに、要求負荷率に基づきエンジン10の運転領域がアイドル制御領域であることを判定する判定手段4を設ける。 (もっと読む)


【課題】この発明は、内燃機関の燃料噴射制御装置に関し、車両システムの起動中に内燃機関を自動的に停止させる機能を有する車両に適用した場合に、内燃機関の停止中に燃料噴射弁の噴孔部を腐食から保護することと、そのような保護のための燃料噴射弁の動作によって排気エミッションや燃費が悪化しないようにすることをバランス良く両立することを目的とする。
【解決手段】アイドルストップ機能を有する車両に搭載される内燃機関10に燃料を噴射する燃料噴射弁12を備える。エンジン停止時においてトルク発生のための燃料噴射の停止後に、燃料噴射弁12の噴孔部(噴孔12eの内壁面やサック12dの壁面)に燃料が付着するように、少量の燃料噴射を実行する。アイドルストップによる停止時には、アイドルストップによるエンジン停止後にIGスイッチ44がOFFとされる動作が実行される確率が所定値以上である場合に限って、上記少量の燃料噴射を実行する。 (もっと読む)


【課題】低温時に内燃機関の点火時期が誤って遅くされるのを抑制すると共に内燃機関からより効率よく動力を出力する。
【解決手段】エンジンの冷却水温Twが予め定められた温度閾値Twref未満である低温時には、冷却水温Twが温度閾値Twref以上である通常時の通常時用学習値Tfl1よりエンジンの点火時期を遅角させる(遅くする)側の値とはならない範囲内でノック補正量Tfcに基づいて低温時用の低温時用学習値Tfl2を更新し、基準点火時期Tfbに対しノック補正量Tfcと低温時用学習値Tfl2とによる補正を行なって目標点火時期Tf*を設定する。これにより、低温時にエンジンの点火時期が誤って遅くされるのを抑制すると共にエンジンからより効率よくトルクを出力することができる。 (もっと読む)


【課題】クランク角センサにより検出される被検出部の正規位置からのずれ量に関し、そのずれ量を表した数値を高精度で学習可能にする。
【解決手段】パルサ誤差が無いと仮定した場合におけるNE波形を理想波形Wa,Wbと呼び、計測された瞬時回転速度の変化を表した波形を計測波形Va,Vbと呼ぶ場合において、理想波形Wa,Wbから導き出される数式のパラメータを理想パラメータAmot,θmotと呼び、前記計測波形から導き出される数式のパラメータを計測パラメータArow,θrowと呼ぶ場合において、複数の異なる平均NEを基準値として設定し、複数の基準値ごとに対応する理想パラメータを予め記憶しておく。そして、現時点での平均NEに対応する理想パラメータと、現時点で計測した計測パラメータとの誤差Δeを学習する。 (もっと読む)


【課題】内燃機関の低温低負荷運転時に吸気バルブの開弁期間初期と排気バルブの開弁期間終期とが重ならない状態になることに起因してPNが増加することを抑制できるようにする。
【解決手段】内燃機関1の低温低負荷運転時であって吸気バルブ26の開弁期間初期と排気バルブの開弁期間終期とが重ならない状態(マイナスバルブオーバーラップ状態)にあるときには、直噴インジェクタ7のみからの燃料噴射が行われる。この燃料噴射では、ポート噴射インジェクタ6からの燃料噴射と比較して、噴射される燃料の粒の径が大きくなるとともに同燃料の粒の数が少なくなる。このため、マイナスバルブオーバーラップ状態での吸気バルブ26の開弁時に筒内の負圧により吸気ポート2aから同筒内に勢いよくガスが流入し、それによって直噴インジェクタ7から噴射された燃料の粒がシリンダ内壁3aやピストン頂部13aに付着したとしても同燃料の粒が多くはならない。 (もっと読む)


【課題】エンジンの制御装置に関し、吸入空気量制御の制御応答性及び制御安定性を向上させ、トルクベース制御においてエンジンの運転点が変化する際に、目標とするエンジン運転点への収束性を向上させる。
【解決手段】エンジン10の筒内19に導入すべき空気量を算出するための目標点火時期を演算する目標点火時期演算手段6Aと、目標点火時期に基づき、エンジン10の熱効率を演算する熱効率演算手段7と、熱効率に基づき、筒内19に導入すべき空気量の目標値である目標空気量を演算する目標空気量演算手段4とを備える。
また、目標点火時期演算手段6Aが、目標空気量演算手段4において過去の演算周期で演算された目標空気量に基づき、現在の演算周期の時点における目標点火時期を演算する。 (もっと読む)


【課題】吸気マニフォールド内の燃焼気体質量分率の予測値から燃焼エンジンの燃焼を制御する方法を提供する。
【解決手段】新鮮な空気の流量または燃焼気体の流量の計測が、新鮮な空気と燃焼気体とが混合する混合空間から上流で行われる。混合空間の燃焼気体質量分率が、計測値またはこの空間内の混合動力学のモデルから予測される。空間と吸気マニフォールドとの間の搬送遅延が予測される。吸気マニフォールドにおける燃焼気体の質量分率が実時間で減少する。最後に、吸気マニフォールドにおいて、燃焼気体質量分率から燃焼が制御される。 (もっと読む)


【課題】エンジンの始動制御装置に関し、エンジン始動時における吹け上がりを抑制しつつ始動性を向上させる。
【解決手段】運転者の発進意思の大きさを検出する発進意思検出手段31,33を設ける。
また、発進意思検出手段31,33で検出された発進意思が小さいほど、エンジン回転速度の上限値としての上限回転速度を小さく設定する第一設定手段4aを設ける。
さらに、第一設定手段4aで設定された上限回転速度を超えないように、エンジンの実回転速度を制御する上限値制御を実施する上限値制御手段5を設ける。 (もっと読む)


【課題】エンジンに設けられた空燃比センサを簡素な構成で精度よく基準値補正する。
【解決手段】少なくとも燃焼を伴うことなくエンジンを機械的に駆動するための駆動力を付与可能な電動機を有するエンジン1と、エンジン1の吸排気系に配設され空燃比センサ25,26及び27とを備えたエンジンの制御装置であって、エンジン1を電動アシストする電動機34を制御する電動機制御手段35cと、エンジン1の停止時に電動機制御手段35cに電動機34を作動させ、所定時間経過後に電動機34を停止させて空燃比センサ25,26及び27の基準値補正を実施する補正制御手段35dとを備える。 (もっと読む)


【課題】エンジンの負荷、エンジン回転数に対してエンジン性能(燃料消費率)が最適となる最適掃気圧力になるようにパワータービン側へ抽出される排気ガス量を調整して、エンジンの最適運転状態を常に確保できる排気エネルギー回収方法を提供することを目的とする。
【解決手段】エンジンの負荷、エンジンの回転数、およびエンジンの掃気圧力を検出する工程S1と、前記検出したエンジンの負荷、およびエンジンの回転数からエンジンの燃料消費率が最も少なくなるエンジンの最適掃気圧力を算出する工程S2と、前記検出したエンジンの掃気圧力と前記算出したエンジンの最適掃気圧力との差を求めた後に、該差に基づいて前記排気ガスバイパス制御弁の開度修正量を算出する工程S3と、前記算出された排気ガスバイパス制御弁の開度修正量から前記排気ガスバイパス制御弁の開度指令値を決定する工程S4と、を備えたことを特徴とする。 (もっと読む)


【課題】 圧力差検出器を備えているエンジンの吸気部分で気体の組成の実時間での制御を可能にする代替の方法を提供する
【解決手段】 少なくとも1つのシリンダ2と吸気マニフォールド3とを有している燃焼エンジン1を制御する方法であって、エンジンにはEGR弁6を有する燃焼気体再循環回路が備わっており、EGR弁の位置で圧力差ΔPを計測するステップと、b)吸気マニフォールド3内の燃焼気体分率設定値BGRspを選択するステップと、c)EGR弁6の位置で適用されるバレー−サン・ヴナンの関係などの正確な圧力低下の関係からEGR弁の開口度設定値Ospを計算するステップであって、正確な圧力低下によりEGR弁の開口度をEGR弁の位置の圧力差ΔPと吸気マニフォールド3内の気体分率設定値BGRspとに関係付けるステップと、d)EGR弁6をEGR弁6の開口度設定値Ospの関数として制御するステップとを有する。 (もっと読む)


61 - 80 / 6,154