説明

Fターム[3G384FA79]の内容

内燃機関の複合的制御 (199,785) | 入力パラメータ、センサ (66,899) | 車速 (1,822)

Fターム[3G384FA79]に分類される特許

41 - 60 / 1,822


【課題】機関の回転変動に基づく失火判定における誤検出を減らす。特にEGR中の失火判定において正常燃焼したにもかかわらず失火したと誤判定することを予防することができる。
【解決手段】内燃機関の回転速度の変動から失火したか否かを判定する内燃機関の制御装置において、内燃機関に付帯するEGR装置を作動させてEGRを行っている場合において回転速度と比較する判定閾値を、EGR中に反復的に計測した回転速度及びその発生頻度の分布に基づいて学習し更新することとした。 (もっと読む)


【課題】ノック判定基準値を運転者或いは搭乗者の好みに応じて変更できるようにする。
【解決手段】運転者がノック判定基準値設定スイッチ28を操作すると、指示レベル演算部33bはスイッチ28からの出力値nを読込み、この出力値nに応じた指示レベルkを設定する。そしてノック判定基準値演算部33cにおいて統計値演算部33aで求めた平均値m、標準偏差σと指示レベルkとに基づき、ノック判定基準値KNLVを算出する(KNLV←m+k・σ)。その結果ノック判定基準値設定スイッチ28を操作することで、ノック判定基準値KNLVを運転者や搭乗者の好みに応じて変更することができる。 (もっと読む)


【課題】ノック判定基準値を車室内の暗騒音に応じて自動的に切換えるようにする。
【解決手段】運転者がノック判定基準値自動設定スイッチ28をONすると、暗騒音レベル推定部33bは車室内の暗騒音の発生源を検出し、検出した各暗騒音発生源に付されているポイントを加算して暗騒音レベルLVを算出する。暗騒音レベル判定部33cは暗騒音レベルLVと暗騒音レベル判定基準値LVsとを比較し、暗騒音レベルLVが暗騒音レベル判定基準値LVsを越えているか否かを判定する。ノック判定部基準値演算部33dは暗騒音レベル判定部33cで暗騒音レベルLVが暗騒音レベル判定基準値LVsを越えていると判定した場合、統計値演算部33aで求めた平均値m、標準偏差σと、この標準偏差σの増加補正値kとに基づき、ノック判定基準値KNLVを算出する(KNLV←m+(u+k)・σ)。 (もっと読む)


【課題】運転者や搭乗者に対してノック音による聴感上の不快感を与えるとなく、エンジン出力や燃費の向上を図ることができるようにする。
【解決手段】騒音レベル推定部33bは、車速センサ、ワイパスイッチ、オーディオボリュームスイッチ等、車室内の暗騒音の発生源となる因子を含む各種スイッチ・センサ類等の各種暗騒音発生源29からのパラメータに基づき、暗騒音レベルLVを算出する。暗騒音レベル調整部33cは、暗騒音レベルLVと、ノック音が聴感不能となる暗騒音レベルLVの最大値である最大暗騒音レベルLVmaxとの比から自動暗騒音レベルLVnを算出し、この自動暗騒音レベルLVnに応じた増加補正値kを求める。ノック判定部基準値演算部33dは、統計値演算部33aで求めた平均値m、標準偏差σと、増加補正値kとに基づき、ノック判定基準値KNLVを算出する(KNLV←m+(u+k)・σ)。 (もっと読む)


【課題】運転者の所望のタイミングで省エネ運転に対する評価を出力させることができる省エネ評価装置及び省エネ評価方法を提供すること。
【解決手段】車両の走行状況を検出して、省エネルギーに有効な運転操作に誘導するアドバイスを出力する省エネ評価装置100において、運転者が操作する操作スイッチ15と、前記操作スイッチの操作が検出されたことを契機に、前記走行状況に基づき省エネ運転の評価値を算出する評価値算出手段33と、算出された前記評価値に対応したアドバイスを表示装置16に表示するか又はスピーカ17から出力するアドバイス出力手段と、を有し、所定の周期毎に検出された前記走行状況のうち、前記評価値算出手段は、前記操作スイッチの操作が検出された時から所定時間前までの、複数の前記走行状況に基づき省エネ運転の前記評価値を算出する、ことを特徴とする。 (もっと読む)


【課題】 他車両への載せ換えが容易であると共に、簡易な構造のエコドライブ車載機器を用い、車種や走行条件の相違に応じて、省燃費運転の実施状況を定量的かつ統一的に評価する。
【解決手段】 少なくとも車両速度及びエンジン回転数と、車両諸元とに基づいて運転状況及び積荷状況を分析し、運転状況及び積荷状況の分析結果を用いて、最適なシフトアップ方法、最適な加速方法、最適な減速方法、最適な経済速度からなる理想的な省燃費運転モデルを、発進から停車に至るまでの1区間の移動距離毎に生成し、エンジン燃費マップと分析された運転状況及び積荷状況に基づいて評価対象燃費を算出する共に、理想的な省燃費運転モデルと分析された運転状況及び積荷状況に基づいて理想燃費を算出し、評価対象燃費と理想燃費とを比較して、省燃費運転達成率を算出する。 (もっと読む)


【課題】気筒内に噴射された燃料を自己着火燃焼させる場合に、燃焼時の気筒内圧力上昇率を小さくして、振動騒音(NVH)レベルを出来る限り低減する。
【解決手段】エンジンが自己着火燃焼運転領域にあるときに、インジェクタにより気筒内に噴射された燃料にエネルギーを付与して、燃料の自己着火燃焼をアシストする着火アシスト手段を設け、エンジンが上記自己着火燃焼運転領域にあるときに、燃料噴射開始時期を、圧縮行程終期から圧縮上死点にかけての期間内に設定し、上記着火アシスト手段を、エンジンのモータリング時におけるクランク角変化に対する気筒内の圧力変化である気筒内圧力上昇率が負の最大値となるクランク角時点が、燃料の燃焼質量割合が10%以上90%以下となる燃焼期間と重なるように、上記燃料噴射開始後から膨張行程初期にかけての期間内に、上記気筒内に噴射された燃料に上記エネルギーを付与するように構成する。 (もっと読む)


【課題】ハイブリッド自動車において、システム全体の効率を低減することなく、エミッション性能を向上させる。
【解決手段】ハイブリッド自動車100は、車輪駆動軸63aにトルクを伝えるエンジン1と、車輪駆動軸63aにトルクを伝える及びモータ・ジェネレータ5と、エンジン1の排気通路65に設けられた三元触媒66aと、エンジン1及びモータ・ジェネレータ5を制御するコントローラ4とを備えている。コントローラ4は、三元触媒66aの活性化が必要なときには、車両要求トルクに余剰トルクを加えたトルクを出力する運転状態で且つ95%燃費率の運転領域A内に含まれる運転状態でエンジン1を運転し、余剰トルクでモータ・ジェネレータ5を駆動して発電を行う。 (もっと読む)


【課題】カム角信号が各気筒に対応した所定の角度位置で発生する構成において、クランク角信号が異常の場合にエンジンを始動できるエンジン制御装置を提供する。
【解決手段】エンジン始動時からクランク角信号が異常の場合(S410:Yes、S418:No)、エンジン制御装置は、前回気筒推定位置を+1して今回気筒推定位置とする(S420)。エンジン始動後に最初にカム角信号を検出する場合、エンジン停止時の気筒位置を前回気筒推定位置とする。エンジン制御装置は、2回目のカム角信号を検出してからは(S424:No)、カム角信号の時間間隔に基づいて生成される疑似クランク角信号と今回気筒推定位置とカム角信号とに基づいて燃料の噴射、点火処理を実行し(S436、S438)、3回目以降のカム角信号を検出し前回噴射燃料が正常燃焼していない場合(S422:No、S430:No)、今回気筒推定位置をずらす(S434)。 (もっと読む)


【課題】低地ストール発進と同等のエンジントルクを空気密度の低い高地ストール発進においても得られるようにする。
【解決手段】高地ストール発進条件を判定し(S2)、高地ストール発進と判定された場合、高地ストール発進時目標エンジン回転数STLEGをトルクコンバータ2のストールトルク比と自動変速機3内の油温とに基づいて設定し(S6)、目標エンジン回転数STLEGとエンジン回転数Neとの差分に応じたプレエンジントルク上限加算値TRQNEUPを設定し(S7,S9〜S12)、高地ストール発進時目標エンジン回転数STLEGに基づいてプレエンジントルク上限値PRETRQLIMを設定し(S13)、この上限値PRETRQLIMにプレエンジントルク上限加算値TRQNEUPを加算して、エンジントルク上限値TRQLIMを設定し(S15,S18)、このエンジントルク上限値TRQLIMを目標エンジントルクとしてエンジン1を制御する。 (もっと読む)


【課題】エンジン停止時のクランク位置を分散化して始動時のスタータピニオンとの噛合に起因するリングギヤの局所的な摩耗を抑制できるエンジンの停止制御装置を提供する。
【解決手段】アイドルストップによるエンジン停止指令またはキーのオフ操作があったとき(S22がYes)、パワータードの排気強制開弁機構17を作動させると共に吸気スロットル弁14を閉弁制御し(S28,30)、ディレイ時間Tdlyの経過により排気強制開弁機構17の作動遅れが解消されて実際に排気弁15が強制開弁され始めた後に(S32がYes)、燃料カットによりエンジン1を停止させる(S26)。 (もっと読む)


【課題】失火判定の学習機会をより確実に確保し、経年変化に拘わらずエンジンの失火の判定をより適正に行なう。
【解決手段】ユーザーによりレディオフが指示されたときには(S200)、エンジンを目標回転数Ne*で自立運転すると共に特定気筒への燃料カットを実施して擬似失火状態をつくり(S210〜S270)、擬似失火状態で検出されるエンジンの回転変動RFに基づいて失火判定用の閾値を学習する。そして、学習が完了したときに(S280)、エンジンを停止してレディオフとする(S310,S320)。これにより、失火判定の学習機会をより確実に確保することができ、経年変化に拘わらずエンジンの失火を適正に判定することができる。 (もっと読む)


【課題】燃費を迅速に算出して瞬間燃費を表示することができるようにするとともに、ノイズによる燃料噴射量情報FIの受信エラーを回避できるようにする。
【解決手段】噴射弁42は噴射パルスに応答して一定量の燃料をエンジン3に噴射する。ECU33は、算出された燃料噴射量に対応する噴射パルスを噴射弁42に入力する。ECU33は、噴射弁42に供給された噴射パルス数に対応する噴射量情報FIを、通信線48を介して表示制御部45に入力する。ECU33は、一定量の燃料に対応する噴射パルス数が入力される毎にデジタルデータIDからなる噴射量情報FIを作成する。表示制御部45は、デジタルデータIDが予定数正しく受信されたときに、一定の燃料が噴射弁42から噴射されたことを確定する。表示制御部45は確定した燃料噴射量と走行距離とによって瞬間燃費を算出し、メータ31に表示させる。 (もっと読む)


【課題】内燃機関の運転状態変化に対して最適化された制御目標値を設定可能とする内燃機関の制御目標値設定方法、及び、その制御目標値設定方法に従って設定された制御目標値を利用して内燃機関の制御を行う制御装置を提供する。
【解決手段】車両走行モードでのシミュレーションにおいて、総要求出力Pv(t)から定常要求出力Pc(t)を減算することで加減速要求出力Pt(t)を求め、この加減速要求出力Pt(t)を利用して走行加減速状態指標St(t)を算出し、それに従った加減速排気変化係数Ctdを求める。車両走行モードでの全走行期間を対象とした基本平均排気目標値Eet(t)に対して加減速排気変化係数Ctdによる補正を行ってNOx排出量目標値Eeti(t)を算出し、この値を、対象とする運転動作点での定常動作点排気目標値Eetmap(Ne,Tqe)として設定する。 (もっと読む)


【課題】エンジンの温度を所定の範囲内に保ちつつ燃費を向上することの可能なファン制御装置を提供する。
【解決手段】ファン制御装置20は、入力部21を介して入力されるエンジン冷却液の温度、燃料噴射量、車両の速度、アクセル開度、エンジン回転速度に基づいて車両の運転状態を通常状態、高負荷状態、発進・加速状態の中から推定する。そして、エンジン冷却液の温度に対するファン14の駆動量が規定された通常マップ24a、高負荷マップ24b、発進・加速マップ24cから推定した運転状態に対応するマップを選択する。そして、上記エンジン冷却液の温度に基づいて、推定された運転状態に対応するマップからファン14の駆動量を選択し、ファン14の回転速度の目標値を演算する。 (もっと読む)


【課題】内燃機関の制御装置が決定する運転パラメータの最適化を図る。
【解決手段】車両が所在している路面の傾斜を検出し、検出した路面の傾斜とアクセル開度の変化量とに基づいて、燃料噴射時または点火時におけるエンジン回転数及び気筒に充填される吸気量の推測を反復的に行う。これにより、燃料噴射量その他の運転パラメータの決定の基礎となるエンジン回転数及び吸気量が、実際に当該運転パラメータを用いて制御を行う時点でのエンジン回転数及び吸気量から大きく乖離しなくなり、最適な運転パラメータによる内燃機関の運転制御が可能となる。 (もっと読む)


【課題】 登り坂と下り坂とが波状的に繰り返す道路であっても、省燃費運転に適した運転であるか否かを適切に評価可能とする。
【解決手段】 車両を走行させるための駆動力をエンジンが発生している「駆動状態」において、車両の運動エネルギー変化率から重力による車両の運動エネルギー増加率を減じた値に応じて変化するパラメータΔEを検出し、このパラメータΔEと予めROMに記憶され得いる評価用パラメータとを比較して評価を決定する。 (もっと読む)


【課題】安価な構成で、エアクリーナの寿命を常時、精度良く推定でき、それにより、エアクリーナをその限界付近まで効率良く使用することができるエアクリーナの寿命推定装置を提供する。
【解決手段】 本発明によるエアクリーナの寿命推定装置は、内燃機関3の運転中、エアクリーナ6の寿命を表す寿命パラメータRCLを随時、算出し(ステップ10)、エアクリーナ6の目詰まりの度合と、吸入空気量GAIRと、吸気パラメータ(エアクリーナ6の下流側の吸気圧PBAおよび/またはスロットル弁開度θTH)との関係を記憶し(図3および図4)、検出された吸入空気量GAIRおよび吸気パラメータに応じ、記憶された上記の関係に基づいて、寿命パラメータRCLを算出する際の基準となる基準値RCL0を算出し、更新する(ステップ17)。 (もっと読む)


【課題】燃料補給直後における機関運転を好適に行うことのできる内燃機関の制御装置を提供する。
【解決手段】この装置では、内燃機関に供給される燃料のセタン価が属するセタン価領域を特定するとともに、その特定したセタン価領域に応じた第1実行態様で燃料噴射制御を実行する。燃料タンクへの燃料補給が行われたと判断されたときには(t11,t12,t13,t14)、直後の実行期間にわたり、特定したセタン価領域によることなく、低セタン価領域に応じた第2実行態様で燃料噴射制御を実行する。判定回数だけ燃料補給が繰り返される期間にわたって高セタン価領域が特定される状態が継続されたときには(t15)、実行期間における第2実行態様での燃料噴射制御の実行を禁止して第1実行態様での燃料噴射制御を実行する。 (もっと読む)


【課題】運転者の加速の意図に反したトルクの抑制を抑え、ドライバビリティーの悪化を抑制することのできる車両の制御装置を提供する。
【解決手段】電子制御ユニット2は、イグニッションスイッチ6がオンとされてからの経過時間が既定時間よりも短いことを実行条件として、強いアクセル操作時にエンジントルクを低減するトルク抑制制御を実行することで、上記経過時間が短く、車両が未だ駐車場内を走行していて、運転者が急な加速を意図したアクセル操作を行うことが余りないときに限り、トルク抑制制御を行う一方で、上記経過時間がある程度長くなり、車両が一般道を走行していることが考えられるときには、トルク抑制制御を行わず、運転者の意図に即した車両の加速が許容されるようにした。 (もっと読む)


41 - 60 / 1,822