説明

Fターム[4D003CA03]の内容

生物膜廃水処理 (9,448) | 組合せ処理操作 (1,067) | 沈降分離 (160)

Fターム[4D003CA03]の下位に属するFターム

Fターム[4D003CA03]に分類される特許

81 - 100 / 126


【課題】水素発酵菌源の必要量を少なくすることができる水素発酵装置、排水処理装置及び水素発酵方法を提供する。
【解決手段】排水処理装置1における水素発酵装置11は、導入した有機性排水を水素発酵させる装置である。この水素発酵装置11は、有機物を導入し水素発酵菌によって水素発酵処理を行う水素発酵槽12と、グラニュール汚泥を原料とし水素発酵菌を含む種菌汚泥を、水素発酵槽12に供給する汚泥供給部30と、を備えている。 (もっと読む)


【課題】高効率で省エネルギーを達成できる経済的かつ高性能な排水処理方法および排水処理装置を提供する。
【解決手段】この排水処理装置では、マイクロナノバブル発生槽5では、pH計35が測定した被処理水のpHに基づいて、調節計50がアルカリ剤タンク定量ポンプ36を制御する。これにより、アルカリ剤タンク37からマイクロナノバブル発生槽5に添加するアルカリ剤の量を制御して、被処理水の液性をアルカリ性にしている。また、混合槽11にはマイクロナノバブル発生槽5からの被処理水と沈澱槽18からの微生物汚泥を含有する返送汚泥とが導入される。 (もっと読む)


【課題】均一な微細粒子を用いて、栄養細胞数(コロニーカウント)や硝化細菌数を増加させ、酸素消費速度や硝化速度を上昇させて処理活性を向上させた有機性廃水の処理方法を提供すること。
【解決手段】本発明に係る有機性廃水の処理方法は、有機性廃水を好気性下で生物学的に処理する気液接触槽を備えた気液接触工程1と、該気液接触工程1から送られる汚泥懸濁液を汚泥と処理水に固液分離する固液分離手段を備えた固液分離工程2とを有する有機性廃水の処理方法において、前記有機性廃水又は気液接触工程1内の汚泥に、直接又は間接に、平均粒径(長径)10μm以下で、その分布が±5μm以内に70重量%以上ある無機固形物粉末を添加し共存することを特徴とする。 (もっと読む)


【課題】 粒状汚泥をより早く生成可能な粒状汚泥生成方法を提供する。
【解決手段】 粒状汚泥生成方法は、フロック状汚泥G1を集塊化させて複数のフロック状汚泥G1を有する集塊汚泥G2を生成する集塊汚泥生成工程と、集塊汚泥G2に含まれるフロック状汚泥G1内の微生物を増殖せしめて粒状汚泥G3を生成する粒状汚泥生成工程と、を備える。そして、上記集塊汚泥生成工程では、フロック状汚泥G1を粘性多糖類を利用して集塊化させる。このように、集塊汚泥生成工程において粘性多糖類を利用しているので、フロック状汚泥G1から集塊汚泥G2を形成するまでの時間が短縮される。その結果、粒状汚泥G3をより早く形成することが可能である。 (もっと読む)


廃水流中の有機物質の含有量及び体積を低減する工程であって、廃水流をナノ濾過装置に接触させ、濃縮液及び水流である通過液を得る段階を備える。通過液は、存在する非沈殿性の金属イオンを含有する。その後、濃縮液を、好適に逆流洗浄可能な限外濾過装置に接触させ、必要に応じて、活性炭素にも接触させる。この工程は、廃水流から他の成分を除去する様々な工程のうちの一部であってもよい。モジュールは、(a)ナノ濾過装置、(b)好適に逆流洗浄可能な限外濾過装置、(c)限外濾過装置にナノ濾過装置の濃縮液を搬送するための導管及び必要に応じて活性炭素を含む容器を備える。また、このモジュールを含む廃水流処理用のシステムも本発明の一部を構成する。 (もっと読む)


【課題】下水その他の有機性排水を被処理排水(原排水に同じ。)として、処理前の原排水と該原排水を好気性処理した硝化液との間に相互浸透可能な気液透過膜を介して接触(隔膜接触)させ、膜表面及び膜厚内で自然過程による脱窒反応をおこなわせる。
【解決手段】隔膜脱窒方法が少なくとも以下の処理工程を包含する。
(1)嫌気性の原排水と好気性の硝化液を多孔性又は透水性素材からなる気液透過膜を介して接触させる。
(2)隔膜内に原排水と硝化液を相互浸透導入し、脱窒菌の増殖環境を自然形成させる。(3)膜表面及び膜厚内で硝酸性窒素の還元による脱窒反応を生起させ、硝化液中の窒素除去と原排水中の有機物除去を同時的に進行させる。 (もっと読む)


【課題】発生汚泥を削減することにより、コストダウンの可能な汚水処理装置を提供する。
【解決手段】汚水処理装置の一例としての合併浄化槽10は、内部に微生物保持材12および発泡器13を有し、流入する汚水を処理する第1槽11と、第1槽11に隣接して設けられ、内部に微生物保持材12および発泡器17を有し、第1槽11で処理された処理水に対してさらに処理を行う第2槽15と、第2槽15に隣接して設けられ、第2槽15で処理された処理水に対して消毒を行って外部へ放流する第3槽19とを含む。 (もっと読む)


【課題】低いランニングコストで微生物処理槽の微生物濃度を調整して、適切な微生物処理能力を発揮できる液体処理方法および液体処理装置を提供する。
【解決手段】この液体処理装置としての排水処理装置では曝気槽22内部の処理水の微生物濃度を計測する微生物濃度計6からの微生物濃度を表す信号が微生物濃度調節計7に入力され、微生物濃度調節計7から循環ポンプ10,11に制御信号を送信することで、循環ポンプ10,11の回転数が制御される。これにより、曝気槽22内の処理水の微生物濃度に応じて、マイクロナノバブル発生機8,9によるマイクロナノバブル発生量を制御して、結果的に曝気槽22内の微生物濃度を制御する。これにより、曝気槽22に要求される微生物処理能力を適切にコントロールすることが可能となり、排水処理を効率良く実行できることとなる。 (もっと読む)


【課題】マイクロナノバブル含有水を低いランニングコストと低いイニシャルコストでもって効率よく利用できる排ガス排水処理方法および排ガス排水処理装置を提供する。
【解決手段】この排ガス排水処理装置は、マイクロナノバブルを含む洗浄水で排ガスを処理する排ガス処理装置3と、排ガス処理装置3からマイクロナノバブルを含む洗浄水が導入される排水処理装置29とを備える。よって、排ガス処理装置3で発生したマイクロナノバブルを含む洗浄水を排水処理装置29で有効に利用して、排水処理性能を高めることができる。 (もっと読む)


【課題】排水処理装置の曝気量を厳密に制御する必要がなく、染色排水のような好気性微生物の処理に不足する栄養分を被処理水中に添加せずに生物処理ができる。
【解決手段】被処理水はBODが1000〜2000ppm、T−Nが3〜10ppm、T−Pが1〜10ppmで、反応槽4と、沈澱槽11とを備え、反応槽4には発泡体を担体として投入するとともに底部に散気装置5を配設する。沈澱槽11は反応槽4からの排水を上澄み水と沈澱物とに分離し、沈殿槽11の汚泥を返送ポンプで反応槽4に返送する。担体7の平均粒径は10〜15mm、浸水時の比重が0.95〜1.00であり、反応槽4に対する充填率は20〜25%である。担体7は、表面から中心に向って略約1mmの範囲は好気性微生物が繁殖する好気ゾーンで、好気ゾーンよりも内部では嫌気性微生物が増殖する通性嫌気ゾーンとなり、中心から半径2.5mmの領域では嫌気性微生物のみの絶対嫌気ゾーンとなっている。 (もっと読む)


【課題】単一の処理槽で嫌気・好気生物処理が行えるようにすることによって、従来の活性汚泥法や紐状接触材による生物処理方法における諸問題を解決する。
【解決手段】立体的な厚肉板状のネット体にて第1の芯材を構成するとともにこの第1の芯材に沿わせて汚泥付着糸を配した構造のマット状の第1の接触材20の表面を垂直方向に向けた状態で、複数の第1の接触材20を、有機物含有排水19のための第1の生物処理槽11の内部において、互いの表面どうしの間隔37をあけて設置する。これにより、第1の接触材20の内部を嫌気性状態とするとともに、第1の接触材20の表面部を微好気性状態または好気性状態とする。有機物含有排水を、第1の接触材20の内部と表面部との両方に接触可能とする。 (もっと読む)


【課題】 建設コスト及びランニングコストの小さい排水処理装置を提供するとともに、運転管理が容易な排水処理装置を提供すること。
【解決手段】 微生物固定化ゲル担体を用いる排水処理装置において、浸漬膜濾過方式による汚泥分離設備と沈殿槽方式による汚泥分離設備の両者を併設した排水処理装置であって、原水供給ポンプ1および散気装置4を有するゲル槽3において脱窒及び/又は硝化処理後、分離筒5を介してゲル担体を有する全酸化槽8および散気装置10により酸化処理し、膜設備9によりゲル担体を分離後沈殿槽12により汚泥を分離する。 (もっと読む)


【課題】簡易で且つ二次汚染の心配のない袋詰め脱水を基本とした水質浄化施設での汚泥処理技術を提供する。
【解決手段】処理槽1を主体とする水質浄化施設は上流側から順に始端沈殿槽3、中間層4、接触濾材9を装填した複数の濾過槽5および終端沈殿槽を備えていて、汚濁水が下流側に向かって流れる過程で浄化される。始端沈殿槽3の上部に袋詰め脱水を基本とした脱水減容化施設10を設置する。始端沈殿槽3に堆積した汚泥Mをポンプ13にて脱水減容化施設10に圧送し、袋詰めにして脱水減容化を図る。発生した汚水は始端沈殿槽3に戻し、再浄化する。 (もっと読む)


【課題】都市河川のような限られた設置スペースの河川においても容易に設置でき、接触酸化槽および砕石層や汚泥貯留槽を通過させるだけの簡単な装置で高効率に浄化でき、処理コストも低廉で、かつ、部品交換も長期的に不要で維持管理の容易な河川水浄化方法およびその装置を得る。
【解決手段】河川から取水した汚濁水を接触酸化槽6内に導き、この接触酸化槽内6に設置した波板状接触濾材13で汚濁水中の有機物や浮遊物質を吸着して除去し、この河川水をさらに砕石層7を通貨させて砕石層7に形成される生物膜により有機物および浮遊物質を除去して浄化する。 (もっと読む)


【課題】連続的に流入する排水を生物学的に処理するにあたって、粒状の微生物汚泥を安定して生成・維持する。
【解決手段】SBAR型生成装置4に排水を間欠的に導入して粒状の微生物汚泥を確実に生成し、この生成した粒状の微生物汚泥を、反応装置2で、連続的に流入する排水に混合し好気性状態で処理することで、排水中の汚濁成分である有機物、窒素、りん等を効果的に処理すると共に、微生物汚泥の粒状化をさらに図り、この好気性処理した混合液から分離装置3で粒状の微生物汚泥を分離し、この分離した粒状の微生物汚泥を、排水と混合するように戻して粒状の微生物汚泥の流出を防止し、このような一連の処理を繰り返して粒状の微生物汚泥の大径化を図る。 (もっと読む)


【課題】連続流入排水の生物学的処理にあたり粒状微生物汚泥を生成・維持する。
【解決手段】連続流入排水を混合装置1で微生物汚泥と混合し高濃度の排水を汚泥に接触させて汚泥内へ有機物等を深く浸透させ且つ当該浸透により汚泥粒状化を図り、この粒状汚泥と排水の混合液を反応装置2にて好気性で処理し粒状汚泥全体を利用して有機物等を効果的に処理し且つ当該処理に従い汚泥粒状化を一層図り、この混合液中の大径化が図られた粒状汚泥の沈降速度の速さを利用して分離装置4で沈降速度の遅い浮遊性活性汚泥含有処理水と分離し、分離処理水を連続的に流出させ浮遊性活性汚泥を優先種とするのを防止する一方で、分離粒状汚泥を連続流入排水と混合するようにラインL1を介し戻して粒状汚泥の流出を防止し且つ優先種とする。 (もっと読む)


【課題】連続流入排水の生物学的処理にあたり粒状微生物汚泥を生成・維持する。
【解決手段】連続流入排水を混合装置2で微生物汚泥と混合し高濃度排水を汚泥に接触させて汚泥内へ有機物を深く浸透させ且つ該浸透により汚泥粒状化を図り、該粒状汚泥と排水の混合液を反応装置3で好気性で処理し粒状汚泥全体を利用して有機物を効果的に処理し且つ当該処理に従い汚泥粒状化を一層図り、この時、反応装置3内の混合液にエアリフト曝気撹拌装置3x等により剪断力を付与し粒状汚泥への酸素供給を容易として汚泥粒状化を一層図り且つ粒状汚泥表面の繊維状物を剥離し、この粒状汚泥の沈降速度の速さを利用し分離装置4で沈降速度の遅い浮遊性活性汚泥含有処理水と分離し、分離処理水を連続的に流出させ浮遊性活性汚泥を優先種とするのを防止する一方で、分離粒状汚泥を連続流入排水と混合するようにラインL1を介し戻して粒状汚泥の流出を防止し且つ優先種とする。 (もっと読む)


本発明の水処理方法および機構は、前記水に含有される汚染物質の少なくとも一部を固定バイオマスによって生物処理することに存する少なくとも1つのステップであって、次のステップへその進入の前に、前記ステップの終わりに得られた生物浄化フローが2g/l未満のSSを含有するステップと、生物処理されたフローを混合エリア(2)に優先的に10s−1〜1000s−1の速度勾配で移動させることに存する、バラスト化フロックによる凝集傾斜を実施するための少なくとも1つの段階であって、少なくとも1種類の水より高密度の不溶性粒状化材料が注入され、混合エリア(2)から生じたフローを傾斜エリアに移すときに懸濁した物質が前記粒状化材料粒子の周囲に凝集して、粒状化材料が傾斜汚泥から抽出されるときに、混合エリア(2)でその大部分を再循環するときに、そして粒状化材料から分離された傾斜汚泥を除去するときに、浄化フローおよび粒状化材料と混合された傾斜汚泥が分離される、段階とを続けて組み合せる。 (もっと読む)


【課題】 マイクロナノバブルの発生状態の最適化を図る。
【解決手段】 超純水製造装置5,希薄排水回収装置34,雑用水回収装置および排水処理装置の各前段に、第1処理槽1〜第4処理槽を設置している。そして、各処理槽1,2,…を、マイクロナノバブル発生槽6,23,…と嫌気測定槽7,24,…とで構成している。したがって、各マイクロナノバブル発生槽6,23,…で発生されたマイクロナノバブルによって、各嫌気測定槽7,24,…内の微生物が活性化されて低濃度有機物の処理効率が向上される。さらに、上記各嫌気測定槽7,24,…における各溶存酸素計13,30,…または各酸化還元電位計14,31,…の測定値が夫々に定められた一定の範囲を越えると循環ポンプ9,26,…の回転数が制御されて、マイクロナノバブルの発生が減少される。こうして、処理水中におけるマイクロナノバブルの含有量が適正に保たれる。 (もっと読む)


【課題】 牛、豚、鶏等の家畜から排泄される屎尿を、有機物濃度が非常に低く河川放流が可能な清浄な水へと変えることができる屎尿処理装置を提供すること。
【解決手段】 屎尿を水で希釈するための希釈槽と、該希釈槽にて屎尿を希釈して得られた原水中に含まれる所定大きさ以上の異物を分離除去するための分離装置と、該分離装置にて異物が除去されて得られた処理水を貯留する原水調整槽と、該原水調整槽から取り出された処理水中に含まれる有機物を揺動床式の微生物担持体に担持された微生物により分解する処理槽と、該処理槽から取り出された処理水中に含まれる固形分を沈殿させる沈殿槽とを順次備えている屎尿処理装置とする。 (もっと読む)


81 - 100 / 126