説明

Fターム[4D006PC69]の内容

半透膜を用いた分離 (123,001) | 利用分野、用途 (6,199) | メンブレンリアクタ (148)

Fターム[4D006PC69]に分類される特許

141 - 148 / 148


本発明は、消化された汚泥の廃棄に必要なコストおよび資源を低減することによって、汚泥消化を大幅に改良する先進的生物学的汚泥消化プロセスと組み合わせた、メンブレンバイオリアクタのプロセスに関するものである。オフライン処理槽を利用して、極めて低酸素の環境で処理することによって、有機物質が可溶化される。消化されたプロセス液は、メンブレンバイオリアクタに送り返される。このプロセスおよび装置によって廃棄汚泥の産出が大幅に減少する。
(もっと読む)


固体層の形成ための合成溶液を用いて、基板の被覆側を処理することによって少なくとも1層の固体層を多孔性基板の一方の側に含む膜を製造する方法であって、多孔性基板への固体層の製造において、基板それ自体に不活性な流体を部分的に又は完全に満たし、多孔性基板の非被覆側と接触する場所を不活性な流体で満たし、且つ流体の圧力及び温度は、合成溶液と多孔性基板の非被覆側との接触が実質的に防止されるように選択されることを特徴とする膜の製造方法が記載されている。 (もっと読む)


【目的】多孔膜を含むマイクロデバイスと関連して、例えば、膜マイクロ構造体内において実質的な漏洩なく触媒処理及び非触媒化学処理の如きを可能にする。
【構成】膜マイクロ構造デバイス(10)は、第1の凹部(32)を画定する第1のガラス、セラミック又はガラスセラミックからなる板(12)と、第2の凹部(34)を画定する第2のガラス、セラミック又はガラスセラミックからなる板(20)と、第1及び第2の板(12、20)の間に挟持される非金属多孔膜(30)とを含む。第1の板(12)、第2の板(20)及び多孔膜(30)が互いに組み合わせられて、多孔膜(30)が第1の凹部(32)及び第2の凹部(34)をカバーするように配置される。第1の凹部(32)は、第1の板及び多孔膜の間に第1のマイクロチャネルを画定する。第2の凹部(34)は、第2の板及び多孔膜の間で、第1のマイクロチャネルと流体連通する第2のマイクロチャネルを画定する。 (もっと読む)


本発明は、中空導管およびまたは中空有孔メンブレンを含むポッティングされた交換装置に関し、筐体は、凹型のチャネルまたは溝を含む。凹型のチャネルまたは溝は、ポッティングプロセスの間にポッティング材で充填され、ポッティング材とともに単体端部構造を形成する。筐体の内側に形成される溝またはチャネルは、幅広い範囲の機械的および熱的条件下で筐体とのポッティングの完全性を維持する。
(もっと読む)


使用温度において酸化物イオン空孔を有する結晶格子の形態、より具体的には、立方相、ホタル石相、オーリビリウスタイプのペロブスカイト相、褐色針ニッケル鉱相またはパイロクロア相の形態にある、ドープされたセラミック酸化物から選ばれる複合電子/酸素O2−アニオン伝導性化合物(C)少なくとも75vol%、および
酸化物タイプのセラミック、非酸化物タイプのセラミック、金属、金属合金またはこれらタイプの物質の混合物から選ばれる、化合物(C)とは異なる化合物(C)0.01〜25vol%、および式:xFc1+yFc2→zFc3(式中、Fc1、Fc2およびFc3は、化合物C、CおよびCそれぞれの実験式を表し、x、yおよびzは、0以上の比の数値を表す)により表される少なくとも1の化学反応から生成する化合物(C)0vol%〜2.5vol%を含む複合物(M)。本発明は、複合物の製造方法、並びにメタンまたは天然ガスの接触酸化により合成ガスの合成のために使用することが意図された触媒膜反応器用の複合伝導性複合物としての、および/または空気から酸素を分離するために使用することが意図されたセラミック膜のための複合伝導性複合物としてのその使用にも関する。 (もっと読む)


本発明は、クメンの改良された製造方法に関する。より詳しくは、本発明は、触媒型メンブランリアクターを用いるクメンの製造方法に関する。前記方法に用いられるメンブランは、前進する方向に反応を促進するので、副生成物の形成が低減されるか、排除される。 (もっと読む)


本発明は、水素ガス、特に合成ガスを生成するための方法、装置、および装置の製造方法を開示する。本発明によれば、片面にTiO薄膜で処理されているアルファアルミナ膜を含み、反対面に活性ガンマアルミナ層を有する。金属触媒、好ましくは、ロジウムが、アルミナの細孔中に沈着される。酸素はこの膜を通って進行し、活性化され、その後この膜の他方の面上でメタンと接触し、メタンの部分酸化を通して合成ガスを形成する。本発明の実施形態は種々の利点を有する。すなわち、酸素の高い転化率(100%)、爆発の危険をともなわずに最適比を用いることを可能にする、メタンと酸素との別々の供給原料ストリーム、および形成された生成物を交換することなく供給率を変える機会等である。 (もっと読む)


炭化水素燃料を改質するための燃料処理システムが提供される。この燃料処理システムは、膜セパレータを利用して改質油の流れから水素を分離している。CO還元および浄化システムは、膜セパレータと協同して、生成する水素の量を増加させている。 (もっと読む)


141 - 148 / 148