説明

Fターム[4D047BB03]の内容

深冷分離 (3,528) | 不純物の除去 (241) | 吸着 (93)

Fターム[4D047BB03]の下位に属するFターム

Fターム[4D047BB03]に分類される特許

1 - 20 / 63


【課題】 装置全体のエネルギー効率を向上する。
【解決手段】 精留塔7から抜き出した液体酸素と、原料空気圧縮機3で圧縮中の原料空気とに熱交換を行わせる構成とした。これにより、圧縮によって昇温された原料空気で液体酸素を加熱して蒸発させることができる。それゆえ、例えば、液体酸素を蒸気や電熱器によって加熱して蒸発させる方法に比べ、装置全体のエネルギー効率を向上できる。 (もっと読む)


【課題】供給先から二酸化炭素(CO2)を回収して精製し、油分などの有機物や水分が取り除かれた高純度の二酸化炭素を再供給できる方法及びシステムを提供する。
【解決手段】二酸化炭素回収精製システムは、供給先である二酸化炭素使用装置50から回収した流体に含まれる不純物とCO2とを分離するための気液分離器16と、気液分離器16の出口からのCO2から不純物を吸着除去する相互に直列に接続された吸着塔A1,A2と吸着塔A2からのCO2を凝縮して液体CO2を生成する凝縮器18と、凝縮器18内において液体状態であるCO2を必要に応じてさらに精製した後、二酸化炭素使用装置50に供給する。さらに、吸着塔A1,A2間を流れるCO2をサンプリングして不純物を測定する分析部30を備え、分析部30での分析結果に応じて吸着塔A1,A2への通気を停止し、吸着塔A1内の吸着材に対する再生処理を実行する。 (もっと読む)


【課題】二酸化炭素を収集するための方法と装置を提供する。
【解決手段】コンデンサ402及び除湿チャンバ404内のデシカント材を用いて大気から水分を除去し、乾燥空気を生成すること、次いで接触器チャンバ406内で乾燥空気から分子ふるい材料に二酸化炭素を吸収すること、吸収された二酸化炭素を真空チャンバ408に解放すること、並びに真空チャンバ内で、解放された二酸化炭素を気相から固相に転移させることを含む。 (もっと読む)


【課題】原料空気から少なくともキセノンおよびクリプトンのうち少なくとも1つを分離精製する方法において、不純物であるNOを除去する分離精製方法を提供する。
【解決手段】原料空気を窒素と液体酸素に分離し、前記原料空気に含まれるキセノンおよびクリプトンのうち少なくとも1つを前記液体酸素中に濃縮する工程と、前記液体酸素を気化して酸素を生成する工程と、前記酸素中に含まれている炭化水素を、パラジウム触媒を用いて酸化する工程と、前記酸素中に含まれているNOを、パラジウム触媒を用いて350℃以上の反応温度で熱分解する工程と、前記水蒸気および前記二酸化炭素を吸着により除去する工程と、前記酸素から、キセノンおよび/またはクリプトンを分離する工程と、を有することを特徴とする。 (もっと読む)


【課題】容量を低減して設備費および所要動力の低減を図ることが可能な空気分離手段およびこれを備えたガス化炉プラントを提供することを目的とする。
【解決手段】空気吹きのガス化炉3に供給される酸素と、石炭を空気吹きのガス化炉3に搬送する窒素とを空気から分離する分離部と、分離部に供給される空気中の不純物を吸着除去する吸着部と、を備え、分離部から導出された酸素の少なくとも一部を吸着部へと供給することを特徴とする。 (もっと読む)


【課題】保守に手間がかからず、かつ製品損失を招かないプラントを提供する。
【解決手段】装入ガス流Eを極低温技術により液化するためのプラント100の液化運転中に極低温の温度に保持された少なくとも1つの範囲10と、当該プラント100の液化運転中に、より高い温度に保持された少なくとも1つの範囲とが設けられており、両範囲が、流体連通されたプラントコンポーネントを有しており、当該プラント100の液化運転中に極低温の温度に保持された範囲10と、当該プラント100の液化運転中に、より高い温度に保持された範囲との間の流体連通を遮断するために調整されている遮断手段40が設けられている。 (もっと読む)


【課題】熱効率を向上させた天然ガス液化システム、熱回収システムを提供する。
【解決手段】(a)第1のガスタービン700を使用して第1のコンプレッサ268,256,234及び第2のコンプレッサ270,258,236を駆動し、これによって各コンプレッサ内の第1及び第2の冷媒をそれぞれ圧縮する段階と、(b)第2のガスタービン702を使用して第3のコンプレッサ及び第4のコンプレッサを駆動し、これによって各コンプレッサ内の前記第1及び第2の冷媒をそれぞれ圧縮する段階と、(c)前記第1及び第2のガスタービンの少なくとも1つから廃熱を回収する段階と、(d)前記回収された廃熱の少なくとも一部を使用して第1のスチームタービン704に動力を部分的に供給する段階と、(e)前記第1のスチームタービン704によって駆動される第5のコンプレッサ内の第3の冷媒を圧縮する段階とを含む。 (もっと読む)


【課題】吸着器の吸着筒の切り替えによる圧力変動等がなく、安全に運転が可能な空気液化分離装置の運転方法を提供する。
【解決手段】複式精留塔の二次側に設けられた圧送手段により、クリプトン及びキセノンが濃縮された液体酸素を臨界圧力以上に圧縮して導出する圧送工程と、液体酸素が含有する炭化水素類と酸素とを反応させて水及び二酸化炭素を生成する触媒反応工程と、生成した水及び二酸化炭素を吸着除去する吸着工程と、吸着器から導出後の気体を二分し、一方の気体をクリプトン及びキセノンを低温精留する後工程に導入するとともに、他方の気体を再生後の吸着筒に導入して充圧する工程と、後工程に導入する一方の気体の流量又は圧力が一定となるように、流量又は圧力を測定し、その測定値の変動量に応じて圧送手段から導出する液体酸素の流量を増加又は減少させて制御する工程と、を備えることを特徴とする空気液化分離装置の運転方法である。 (もっと読む)



【課題】ガス化発電プラントから排出される排熱を有効に利用して、プラント効率を改善することが可能なガス化発電プラントを提供することを目的とする。
【解決手段】燃料ガスを燃焼する燃焼器5と、燃焼器5から排出される排ガスによって回転駆動されるタービン7と、タービン7に接続される回転軸8と、回転軸8上に設けられて回転軸8が駆動されることによって空気を圧縮する圧縮機6と、を備えるガスタービン4と、石炭をガス化して燃料ガスにするガス化炉3と、ガスタービン4の回転軸8に接続されて回転軸8が駆動されることによって発電する発電機16と、を備えるガス化発電プラント1において、圧縮機6には、ガス化発電プラント1から排出される排熱を回収した排熱回収気体が導かれることを特徴とする。 (もっと読む)


【課題】水素分離型水素製造システムにおいて炭化水素系燃料由来の二酸化炭素を効率的に回収する。
【解決手段】炭化水素系燃料の水蒸気改質による水素分離型水蒸気改質器を有する水素分離型水素製造システムであって、水素分離型水蒸気改質器における改質ガスから水素を分離した後の残りのガスであるオフガス中の一酸化炭素を選択的に酸化する一酸化炭素選択酸化器と、一酸化炭素選択酸化器からのオフガスを冷却した後、当該オフガスから水を分離する水分離器と、水分離器で分離したオフガスの流れ方向でみて、水分吸着塔、メタン分離装置、圧縮機、冷却熱交換器及び気液分離槽を含む二酸化炭素液化回収装置を備えてなり、前記メタン分離装置において水分吸着塔を経たオフガス中のメタンを分離し、二酸化炭素濃度を高めた後、順次、圧縮機、冷却熱交換器及び気液分離槽に導入して液化炭酸を回収する水素分離型水素製造システム。 (もっと読む)


【課題】選択量の軽質炭化水素ガスを液化するための軽質炭化水素ガス液化プロセスを効率的且つ経済的に設計する方法、構築する方法又は運転する方法を提供する。
【解決手段】本方法は、初期量の軽質炭化水素ガス59を液化するための軽質炭化水素ガス液化開始列15及びプロセスに対する軽質炭化水素ガスの最大量まで選択された追加量の軽質炭化水素ガス159,259を液化するための該軽質炭化水素ガス液化開始列に対する1段以上の任意の後続モジュール式拡張段115,215を含む。開始列は、軽質炭化水素供給ガス前処理設備、冷媒圧縮設備、極低温熱交換設備、アクセス設備、他の液化設備、液化製品貯蔵及び搬送設備などの設備を含む。これらの設備の少なくとも一部は、共用設備として用いられ、このような共用設備の使用は、後続の拡張段又はモジュールをプラント全体の容量を増加させるように構築させ得る。 (もっと読む)


流体が気体状態から液体状態に液化され、液化流体は貯蔵される。1つの実施態様において、流体は酸素である。流体を液化するシステムの耐久性、寿命、信頼性、効率を増大する機構が利用される。
(もっと読む)


流体が、気体状態から液体状態へ液化され、その液化流体は保存される。一実施形態では、流体は酸素である。流体を液化するために使用されるシステムの耐久性、耐用寿命、信頼性、及び効率性を向上させる様々な機構が採用される。
(もっと読む)


流体が、気体状態から液体状態へ液化され、その液化流体は保存される。一実施形態では、流体は酸素である。流体を液化するために使用されるシステムの耐久性、耐用寿命、信頼性、及び効率性を向上させる様々な機構が採用される。
(もっと読む)


【課題】液体製品を採取する際の装置価格を低減できる空気液化分離方法及び装置を提供する。
【解決手段】原料空気の全量を中圧塔の運転圧力より高い第1設定圧力の昇圧原料空気とする原料空気圧縮工程と、昇圧原料空気から不純物を除去して昇圧精製空気とする吸着精製工程と、昇圧精製空気と昇圧帰還空気とを合流させて循環空気とする循環空気合流工程と、循環空気を2分流した第1分流空気を第1設定温度に冷却して中圧塔導入空気とし、第2分流空気を第1設定温度より高い第2設定温度に冷却して膨張用空気とする冷却工程と、膨張用空気を第1設定圧力より低い第2設定圧力に断熱膨張させて低温空気とする膨張工程と、低温空気の一部を中圧塔に導入する工程と、低温空気の残部を温度回復させて帰還空気とする昇温工程と、該帰還空気を昇圧して昇圧帰還空気とする循環圧縮工程と、中圧塔導入空気を中圧塔に導入する工程とを有している。 (もっと読む)


【課題】炭酸ガス洗浄手段から排気される使用済み炭酸ガスを、再使用可能な高純度の液化炭酸ガスとして効率的に再生することのできる使用済み炭酸ガスの再生方法を提供する。
【解決手段】炭酸ガス洗浄手段から排気された使用済み炭酸ガスを蒸留塔1に導入して精留し、この使用済み炭酸ガスに含まれる不純物を除去する蒸留工程と、上記蒸留塔1から抽気される高純度の気化炭酸ガスを、凝縮器3に導入して液化する再液化工程とを備え、この再液化後の再生炭酸ガスを、上記炭酸ガス洗浄手段での洗浄に再利用するという構成をとる。 (もっと読む)


【課題】省エネルギー化を図った二酸化炭素液化装置を提供すること。
【解決手段】二酸化炭素液化装置1は、二酸化炭素含有ガスGmを二酸化炭素の臨界圧力未満の第1の所定の圧力に昇圧すると昇圧装置10と、昇圧装置10から導出された二酸化炭素含有ガスGmを冷却媒体Fで冷却する冷却器21と、冷却器21通過後の二酸化炭素含有ガスGmを冷却凝縮して液化二酸化炭素Lnを生成する凝縮器42と、液化二酸化炭素Lnを二酸化炭素の臨界圧力を超えた第2の所定の圧力に昇圧するポンプ28と、熱交換器30とを備える。熱交換器30は、ポンプ28で昇圧された超臨界圧液化二酸化炭素Lpと、冷却器21から導出された二酸化炭素含有ガスGmとで熱交換を行わせる。これにより、二酸化炭素含有ガスGmを超臨界圧液化二酸化炭素Lpで予冷することができ、凝縮器42の冷凍負荷を軽減させることができる。 (もっと読む)


【課題】省エネルギー化を図った二酸化炭素液化装置を提供すること。
【解決手段】二酸化炭素液化装置1は、二酸化炭素を主成分として水蒸気を含む混合ガスGmを昇圧し水分を除去する昇圧脱水装置10と、混合ガスGmを冷却媒体Fで冷却する冷却器21と、水分凝縮器41と、混合ガスGm中の水分濃度が所定の濃度に低下した除湿二酸化炭素ガスGdhを生成する除湿装置50と、除湿二酸化炭素ガスGdhを冷却凝縮して液化二酸化炭素Lnを生成する二酸化炭素凝縮器42とを備える。水分凝縮器41は、混合ガスGmを二酸化炭素の凝縮温度よりも高い所定の温度に冷却して混合ガスGm中の水分を凝縮させる。混合ガスGmを除湿装置50に導入する前に水分凝縮器41で水分を除去することで、除湿装置50における除湿負荷を小さくすることができて省エネルギーを図ることができる。 (もっと読む)


【課題】 単独蒸留塔を備えた蒸留塔設備内で原料空気を事前に液化するための独立した設備を不要とする低温空気分離方法及び装置を提供する。
【解決手段】 主熱交換器(9)と向流過冷却装置(100)とを一体化した熱交換器(101)で構成し、単独蒸留塔(12)からの低温戻り流(16a)を一体化熱交換器の低温端から高温端まで貫流させることにより、酸素含有還流液留分(18a)とだけではなく原料空気流(8)とも間接熱交換させ、それによる冷却後の原料空気流(11)を完全な気体の状態で一体化熱交換器から取り出して、完全な気体の状態で単独蒸留塔(12)に送り込む。 (もっと読む)


1 - 20 / 63