説明

Fターム[4G048AB06]の内容

重金属無機化合物 (15,216) | 製造及び処理 (3,415) | 後処理方法 (887) | 加熱処理(アニール等) (521) | 金属成分共存下の加熱処理 (280)

Fターム[4G048AB06]に分類される特許

81 - 100 / 280


【課題】 鉛フリー抵抗ペースト用として好適であり、抵抗値のばらつきが小さく且つノイズの小さい抵抗体を形成することができる導電性粒子粉、及びその製法を提供する。
【解決手段】 酸化イリジウム粉をバリウム化合物と混合した後、大気雰囲気中にて650〜1000℃の温度で焼成し、得られたイリジウム酸バリウム粗粒粉を平均粒径が20〜100nmとなるように粉砕して導電性粒子粉とする。更に大気雰囲気中で焼成して、平均粒径を40〜100nmに調整することができる。このイリジウム酸バリウム粒子の導電性粒子粉は、鉛を含まないガラスフリット及び有機ビヒクルと混練して、鉛フリー抵抗ペ−ストとすることができる。 (もっと読む)


【課題】複数種の酸化物粒子の分布性、組成制御性に優れ、しかも三相界面が多く、電子伝導性に優れた複合セラミックス粉体及びその製造方法並びに固体酸化物形燃料電池を提供する。
【解決手段】複合セラミックス粉体は、酸化ニッケルと、イットリア安定化ジルコニアからなるジルコニア粒子と、を含有する粉体であり、イットリア安定化ジルコニアからなるジルコニア粒子と、ニッケルイオンと、を含有するジルコニア酸性分散液を、アルカリ溶液に添加して中和沈殿物を生成し、この中和沈殿物を200℃以上にて熱処理した。 (もっと読む)


【課題】従来よりも交流損失が低減され、臨界電流密度の低下が抑制された酸化物超電導線材の製造方法および酸化物超電導線材を提供する。
【解決手段】酸化物超電導材料を主成分とする粉末を熱処理した後、銀または銀合金製の第1のシースに充填し、伸線加工を施して得られる単芯線の複数本を銀または銀合金製の第2のシースに挿入した後、伸線加工を施して多芯線とし、前記多芯線にツイスト加工を施した後、圧延加工を施し、さらに熱処理する酸化物超電導線材の製造方法であって、前記ツイスト加工は、ツイストと軟化とを繰り返して行うツイスト加工であることを特徴とする酸化物超電導線材の製造方法。 (もっと読む)


【課題】 高い臨界電流値を有する長尺Bi2223酸化物超電導線材を製造ために、熱処理において有効なBi蒸気を発生する熱処理部材およびそれを用いたBi2223酸化物超電導線材の製造方法を提供する。
【解決手段】 熱処理によってガス化して消失する材料からなるバインダと、セラミック繊維と、Biを含む酸化物からなるBi2223酸化物超電導線材の熱処理用セラミックシートと、前駆体Bi2223酸化物超電導線材を共に巻回し、熱処理することを特徴とするBi2223酸化物超電導線材の製造方法である。 (もっと読む)


【課題】高温下においても長期間安定して電極性能を高く維持することができる空気極の製造方法、空気極及び固体酸化物形燃料電池を提供する。
【解決手段】酸化物イオン伝導体層を通過した酸化物イオンを用いて反応を行うセラミックリアクターに使用される空気極(3)の製造方法であって、骨格となる多孔質母材(31)の気孔内に金属イオン溶液(40)を含浸させた後、酸素を含む雰囲気下で含浸させた多孔質母材(31)を加熱する工程を含み、金属イオン溶液(40)は、Agイオンと、Ag以外の遷移金属及び希土類から選ばれる1種以上の金属のイオンとを含む空気極(3)の製造方法とする。 (もっと読む)


【課題】高温保存下でのサイクル特性に優れ、低コストで安全性が高く、さらにエネルギー密度にも優れた電池特性を有する正極活物質となるスピネル型のマンガン酸リチウムおよびその製造方法と、これを含む正極を有する非水電解質電池を提供する。
【解決手段】平均粒径が10nm〜500nmであり、BET比表面積値が1〜50m/gであり、表面近傍にマグネシウムアルミニウム複合酸化物を成長させることを特徴とするマグネシウムアルミニウム複合酸化物表面被覆スピネル型マンガン酸リチウムおよびその製造方法並びにそれを使用する正極活物質及び非水電解質電池。 (もっと読む)


【課題】熱安定性および安全性が高く、かつ、高い充放電容量をもつという2つの特性を両立させた非水系電解質二次電池を実現することが可能な正極活物質を提供する。
【解決手段】リチウムの原子数とリチウム以外の金属元素の合計の原子数との比が、1.02〜1.10であるリチウム金属複合酸化物からなる粉末を水と混合し、スラリーを得た後、pH9.0以上でスラリーを撹拌しつつ、コバルト塩を0.5〜1.0モル/dm含む水溶液を添加することにより、コバルト化合物からなる微粒子を付着させ、300〜700℃で熱処理をすることにより、コバルト化合物をリチウムコバルト系複合酸化物とする。微粒子のコバルトの原子数は、リチウム金属複合酸化物からなる粉末に含まれるLi以外の金属元素の原子数の合計に対して、0.7〜0.9原子%とする。 (もっと読む)


本発明は、酸化ジルコニウム、酸化セリウム、および酸化イットリウムを、3%から15%の酸化セリウム割合、および以下の条件に相当する酸化イットリウム割合、即ち酸化セリウム割合が12%超から15%以内の場合、最大で6%;酸化セリウム割合が7%超から12%以内の場合、最大で10%;酸化セリウムの割合が3から7%以内の場合、最大で30%:残りは酸化ジルコニウム、で含む組成物に関する。組成物は場合により、ランタン、ネオジム、およびプラセオジムから選択される希土類金属の酸化物を含むことができる。組成物は、乗物からの排ガスを処理するのに用いることができる。 (もっと読む)


【課題】 従来のアルミナ架橋フッ素雲母の製造に比し、製造作業が容易であり短時間に得られると共に、ガス吸着性、制菌性の優れた多孔粉体を提供する。
【解決手段】 膨潤性フッ素雲母と酢酸ジルコニなどのジルコニウム化合物水溶液とのインターカレーションにより、ジルコニウム化合物を侵入させて層間複合体を調製し、これを固液分離、固相洗浄を行った後、その乾燥物を加熱処理してジルコニア架橋フッ素雲母を製造すること、更には、これに銀イオン交換処理により銀イオン担持ジルコニア架橋フッ素雲母から成るガス吸着性、制菌性の多孔粉体を得ること。 (もっと読む)


【課題】高品質で光電極材料に適する結晶粒子径が小さいタンタル酸塩結晶粒子の製造方法及び該タンタル酸塩結晶粒子を半導体電極に用いた色素増感型太陽電池を提供する。
【解決手段】原料およびフラックスを混合して加熱して結晶を析出および成長させるフラックス法を用いて、該原料およびフラックスを加熱融解して所定時間保持した後、共晶点以下の温度まで50℃/時より大きい降温速度で冷却することで、下記一般式(1)または(2)で表される組成を有する層状ペロブスカイト型構造もしくは層状構造を有するタンタル酸塩結晶粒子を製造することを特徴とするタンタル酸塩結晶粒子の製造方法。
一般式(1):XαYβTaγOδ、一般式(2):YζTaηOθ (もっと読む)


【課題】 本発明は、150℃以上の比較的高い温度領域で処理しても高沸点有機化合物、特に重合性有機化合物の色調が変化して起こる黒色化などの問題が発生しないまたはこれを抑制できる、チタン系無機酸化物微粒子を含む液状組成物に関する。
【解決手段】 チタン酸化物微粒子または少なくともチタンおよびケイ素を含有するチタン系複合酸化物微粒子からなる核粒子の表面を、少なくともジルコニウムおよびケイ素を含有する複合酸化物で被覆してなる無機酸化物微粒子を重合性有機化合物に分散してなる液状組成物であって、前記無機酸化物微粒子の内部およびその表面に、該無機酸化物微粒子の全量に対してアルカリ金属元素を酸化物換算基準で2.0〜6.0重量%含む液状組成物および該液状組成物の製造方法。 (もっと読む)


【課題】均一な組織を有するアルカリニオブ酸ペロブスカイト結晶を安定して製造できるようにする。
【解決手段】五酸化ニオブをフッ化水素酸により溶解し、その溶液にアルカリ水溶液を加えるpH調整工程によって沈殿物を生成させ、その沈殿物をクエン酸水溶液に溶解させてニオブのキレート化合物を含むニオブ原料液を調整する。一方、アルカリ金属イオンを含むアルカリ原料液を調整し、これを前記ニオブ原料液と混合する。混合液にエタノールを添加する等して混合液から析出物を生成させ、その析出物を酸化雰囲気中で比較的低温で焼成する結晶化工程を行って、その後、結晶化工程の生成物を粉砕・成形して比較的焼成することで、アルカリニオブ酸ペロブスカイト結晶が得られる。 (もっと読む)


【課題】正極活物質に関わる電池特性の再現性の向上を図る。
【解決手段】本発明では、正極活物質に使用できる五酸化バナジウムの層状結晶性物質の製造に際し、硫黄含有有機導電性ポリマーを原料として用いない。そのため、層状結晶性物質への不確定な硫黄含有有機導電性ポリマーの結びつきを完全に排除した。また、硫化リチウム、水酸化リチウム等の複数のリチウム化合物を用いて、バナジウム化合物との懸濁液の液性を調整した。かかる調整により、バナジウムイオンの5価の価数を所望割合に制御した。結果、再現性のある活物質の製造が行えた。かかる活物質を用いたリチウムイオン二次電池の初回放電エネルギー密度の向上が図れた。 (もっと読む)


【課題】本発明の課題は、体積エネルギー密度に優れ、高容量が期待でき、急速な放電に対応可能で、かつ低価格のリチウム二次電池が可能とするために重要な柱状の単結晶粒子形状を有するリチウムマンガン酸化物粉体粒子及びその製造方法、並びにそれを正極活物質として用いたリチウム二次電池を提供することである。
【解決手段】一般式としてLi1+xMn2−x−yTi(組成範囲:0≦x≦1/3、0≦y≦10/9)で標記され、スピネル型関連の結晶構造をとり、粒子の形状がマイクロメーターサイズの柱状で結晶面が発達した単結晶的形状であることを特徴とするリチウムマンガン酸化物粉体粒子及びその製造方法、並びにそれを正極活物質として用いたリチウム二次電池。 (もっと読む)


【課題】 正極活物質に安価なリチウム含有遷移金属酸化物を用いた非水電解質二次電池において、正極活物質を改良し、広い充電深度の範囲での充放電特性、特に、充電深度が高い状態での充電特性を改善し、ハイブリッド型電気自動車等の電源として好適に利用できるようにする。
【解決手段】 正極活物質を含む正極11と、負極活物質を含む負極12と、非水系溶媒に溶質を溶解させた非水電解液14とを備えた非水電解質二次電池において、正極活物質に、一般式Li1+xNiMnCo2+d(式中、x,a,b,c,dは、x+a+b+c=1、0.7≦a+b、0<x≦0.1、0≦c/(a+b)<0.35、0.7≦a/b≦2.0、−0.1≦d≦0.1の条件を満たす。)で表される層状構造を有するリチウム含有遷移金属酸化物の表面にチタン含有酸化物が焼結されたものを用いた。 (もっと読む)


【課題】 Bi2223超電導線材の臨界電流値を向上するために、Bi2223超電導相組織の配向性を向上させ、非超電導相を微細にすることができる前駆体粉末を提供する。
【解決手段】 スプレードライ法、フリーズドライ法、噴霧熱分解法等の液相法によって作製されたBi、Sr、Ca、Cuを含む複合酸化物粉末と金属Pb粉末が混合された粉末を超電導線材用前駆体粉末として用いBi2223超電導線材を製造する。本発明の前駆体粉末は、従来技術の前駆体粉末にくらべ、部分溶融温度が低下する。そのため非超電導相であるアルカリ土類酸化物の粗大化を抑える。 (もっと読む)


【課題】本発明は、有害な元素を含有せず、しかも緑色顔料であって優れた赤外線反射性を有する赤外線反射性緑色顔料を提供する。
【解決手段】Co、Al、Mg及びFeを含有する複合酸化物からなる緑色顔料であって、該緑色顔料のMg含有量が全金属元素に対するモル比で11〜22%であってFe含有量が全金属元素に対するモル比で0.5〜20%であり、該緑色顔料の平均粒子径が0.02〜1.2μmである赤外線反射性緑色顔料であって、明度(L)が30を超えて40以下であり、日射反射率が35〜50%である。 (もっと読む)


【課題】 正極活物質に安価なリチウム含有遷移金属酸化物を用いた非水電解質二次電池において、優れた高率放電特性が得られるようにする。
【解決手段】 一般式Li1+xNiaMnbc2+d(式中、MはNa,K,B,F,Mg,Al,Ti,Cr,V,Fe,Cu,Zn,Nb,Mo,Zr,Sn,Wの群から選択される少なくとも一種の元素であり、x+a+b+c=1,0<x≦0.1,0.7≦a/b≦1.3,0≦c≦0.05,−0.1≦d≦0.1の条件を満たす。)で表されるリチウム含有遷移金属酸化物を正極活物質として含む正極と、金属リチウム以外の負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備えた非水電解質二次電池を、正極の電位が金属リチウム基準で4.4〜4.6V(vs.Li/Li+)の範囲になるように充電させて活性化させた。 (もっと読む)


【課題】本発明は、有害な元素を含有せず、しかも青色顔料であって優れた赤外線反射性を有する赤外線反射性青色顔料を提供する。
【解決手段】Co、Al及びMgを含有する複合酸化物からなる青色顔料であって、該青色顔料のMg含有量が全金属元素に対するモル比で11〜22%であり、該青色顔料のBET比表面積が10〜100m/gである赤外線反射性青色顔料であって、明度(L)が35〜50であり、日射反射率が45〜60%である。 (もっと読む)


【課題】一般式A1-xxMO3+δ(式中、Aは希土類元素、Bはカルシウム、ストロンチウム、バリウム、Mはマンガン、鉄、コバルト、ニッケル等でそれぞれ占められ、0<x≦1.0、-0.5≦δ≦0.5)で表される複合酸化物の製造方法、ならびに一般式A1-xxMO3+δ
のMサイトに貴金属を固溶した結晶性複合酸化物の製造方法を提供する。
【解決手段】Aサイトを占める元素の酸化物等と、Bサイトを占める元素の酸化物等と、Mサイトを占める元素の酸化物等とを成分とする原料を水系溶媒中で湿式混合粉砕処理することにより、上記複合酸化物の前駆体(複合水酸化物または複合酸化水酸化物)を調製し、これを加熱処理することにより、上記複合酸化物が得られる。また、上記複合酸化物の前駆体と貴金属塩とを溶媒中で混合撹拌し、生成物を500〜1300℃で熱処理することにより、上記貴金属固溶結晶性複合酸化物が得られる。 (もっと読む)


81 - 100 / 280