説明

Fターム[4G066BA31]の内容

固体収着剤及び濾過助剤 (54,533) | 形態、物性 (8,610) | 結晶構造 (282)

Fターム[4G066BA31]の下位に属するFターム

Fターム[4G066BA31]に分類される特許

101 - 120 / 131


【課題】従来の吸着材を用いる気体分離方法は、目的の気体のみを選択的に吸着するか、分離すべき構成成分気体の吸着圧力が他の構成成分気体の吸着圧力と十分離れていることが必要であったが、これらを解決できる構成成分を選択的に吸着する吸着材を用いない気体分離方法を提供すること。
【解決手段】吸着材を用いて、混合気体から特定の成分気体を分離する気体分離方法であって、
(1)混合気体を、特定の成分気体に対する脱吸着特性がヒステリシスを示す吸着材を備えた気密容器内に導入し、第1の圧力で該吸着材に接触させる工程、
(2)該気密容器内の気体を、第1の圧力より低く、かつ該ヒステリシスの範囲内にある第2の圧力にする工程、
(3)該気密容器内の気体を、該ヒステリシスの範囲内にある第2の圧力より低くかつ該ヒステリシスの範囲外にある第3の圧力にして又は該吸着材を加熱して、吸着物を脱離させる工程、
を有する気体分離方法。 (もっと読む)


【課題】 各種有機系汚染物、悪臭成分、細菌類などの有害物質を含有する液の無害化処理、特にオゾンによる無害化効率を向上させた有害物質含有液の無害化処理。
【解決手段】 有害物質含有液にオゾンを添加、混合し、前記含有液を、オゾンを吸着し、かつ有害物質を吸着するペンタシル型ボロシリケート、メソポーラス型シリコアルミノホスフェート(SAPO)及び部分的にSAPO構造を有するペンタシル型ゼオライトの群から選ばれた少なくとも一種の吸着剤を充填した充填塔に流過させ、液中の有害物質をオゾンの作用により無害化する有害物質含有液の処理方法、並びに上記吸着剤充填塔と、上記吸着剤充填塔に有害物質を含有する液を供給する供給管と、上記供給管に接続され、液中にオゾンを添加するオゾン発生器と、前記吸着剤充填塔から処理済みの処理液を排出する排出管とを備えた有害物質含有液の処理装置であり、汚染成分を上記吸着剤に吸着させた後に、オゾン含有ガス又はオゾン含有水で処理しても良い。 (もっと読む)


【課題】
本発明は、廃水を処理する水処理装置および処理方法であって、廃水中のイオンを低濃度まで確実に除去可能な水処理装置及び方法を提供することを目的とする。
【解決手段】
多孔性成形体が充填された複数の直列に接続されたイオン吸着手段を含む水処理装置であって、
複数の直列に接続されたイオン吸着手段がメリーゴーランド方式である水処理装置であり、
該多孔性成形体が有機高分子樹脂及び無機イオン吸着体を含んでなる、外表面に開口する連通孔を有する多孔性成形体であり、連通孔を形成するフィブリルの内部に空隙を有し、かつ、該空隙の少なくとも一部はフィブリルの表面で開孔しており、該フィブリルの外表面及び内部の空隙表面に無機イオン吸着体が担持されていることを特徴とする水処理装置及び水処理方法。 (もっと読む)


【課題】 階層状に異なる有機官能基で修飾されているメソ細孔を有するコアシェル型球状シリカ系メソ多孔体の製造方法を提供する。
【解決手段】 界面活性剤として下記一般式(1):


で表されるアルキルアンモニウムハライドを用い、塩基性溶媒中において、前記界面活性剤と第一のシリカ原料とを、混合し、第一のシリカ中に界面活性剤が導入されたコア粒子を析出させる第1の工程と、前記溶媒中に第二のシリカ原料を混合し、第二のシリカ中に界面活性剤が導入されたシェル層を前記コア粒子の外側に積層させて、多孔体前駆体粒子を得る第2の工程と、多孔体前駆体粒子に含まれている界面活性剤を除去し、コアシェル型球状シリカ系メソ多孔体を得る第3の工程と、を含む製造方法。 (もっと読む)


【課題】揮発性有機化合物及び水素を容易に吸着、脱離し、持続的に使用することができる吸着剤及び水素吸蔵材を提供する。
【解決手段】下記一般式[I]で示される繰返し単位から構成された有機カルボン酸金属錯体から成る揮発性有機化合物吸着剤及び水素吸蔵材を提供した。


M1、M2は互いに独立して2価をとり得る金属、R1a、R1b、R1c、R1dは互いに独立して、共役系を含む有機基、R2、R3、R4、R5は互いに独立して水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルケニル基を示す。 (もっと読む)


【課題】 配向性ゼオライト結晶を製造する製造液、及び配向性ゼオライト結晶の製造方法、並びに単層の配向性ゼオライト結晶の製造方法を提供する。
【解決手段】 本液は、水とSiO成分を含むゼオライト原料と構造規定成分とを含有し、SiO成分が水に対して0.5〜5.5質量部である加熱保持前水溶液を110〜190℃の温度で15〜150時間加熱保持して得られる。本方法は、この液を温度110〜220℃に保持し、配向性ゼオライト結晶製造液内に、基体を浸漬する工程を備える。更に、本他の方法は、水と、SiO成分、Al成分及びNa成分を含むゼオライト原料と、構造規定成分とを含有し、SiO成分の配合量が水に対して0.05〜5質量部であり、且つ、温度が120℃以上且つ150℃未満である配向性ゼオライト結晶製造液内に、基体を浸漬する工程を備える。 (もっと読む)


【課題】水素放出開始温度と水素放出ピーク温度を低温化させた水素貯蔵材料とその製造方法を提供する。
【解決手段】水素貯蔵材料は、金属水素化物と金属アミド化合物との混合物および反応物を有し、金属種をリチウムとマグネシウムの2種類とした。例えば、金属水素化物として水素化リチウムを、金属アミド化合物としてマグネシウムアミドを用いる。製造方法は、全体としてリチウムとマグネシウムの金属を成分として含む、金属水素化物と金属アミド化合物とを、不活性ガス雰囲気下もしくは水素ガス雰囲気下または不活性ガスと水素ガスとの混合ガス雰囲気下において混合する工程を有する。 (もっと読む)


【課題】ガスの吸収性能が良好で、しかも、液体中で使用した場合に、ガス吸収剤に含まれる多価金属(A)成分が液体中に溶出することのないガス吸収剤を提供すること。
【解決手段】多価金属(A)と、分子量500未満の多価カルボン酸(B)と、分子量500以上のカルボキシル基を有する重合体(C)とからなる金属錯体(D)よりなるガス吸収剤を提供することによって解決される。2価の銅と、トリメシン酸と、ポリアクリル酸とからなる金属錯体よりなるガス吸収剤が特に好ましく、このガス吸収剤を用いて液体中に溶存するガスを吸収させることが好適な実施態様である。 (もっと読む)


【課題】再循環ループを有する水素化分解法において、触媒上に蓄積し、触媒能が失われるかあるいは触媒の全体的な失活につながる多芳香族化合物(PNA)の選択的、全体的または部分的な除去技術を提供する。
【解決手段】制御されたマクロ孔含有量を有するアルミナ−シリカをベースとする特定の吸着剤上での吸着によって、再循環させられるフラクションの少なくとも一部から多芳香族化合物を除去する工程を有する、再循環を伴う改良された水素化分解法に関する。 (もっと読む)


【課題】 強吸着成分(SAC)の充満したプロセス気体流の温度を約80゜Cと約500゜Cの間に調節して強吸着成分(SAC)と他の気体成分を有するプロセス気体流から1以上の強吸着成分(SAC)を除去する方法。
【解決手段】 温度の調節されたプロセス気体流は、吸着剤への熱の伝達のため熱交換面に接触せしめられ、これにより、吸着されたSACの収集のための脱離を生起し、プロセス気体流を冷却し、そして冷却されたプロセス気体流から各凝縮物を除去する。冷却されたプロセス気体流は、それからのSACの吸着のために吸着剤の冷却された部分に接触せしめられ、SACの抜けたプロセス気体流とSACの充満した吸着剤を生成する。脱離されたSACは、収集のため回収され、各吸着剤微粒子も収集のため回収される。 (もっと読む)


【課題】多孔性オルガノピラードクレイからなる大面積の無機中空自立薄膜を提供する。
【解決手段】分子を収容可能なミクロ細孔が集積、保持された自立膜構造体であって、層状無機化合物の層間空隙と、該空隙を保持するイオン性有機物から形成されていること、該無機膜の膜外表面の面積が1cm以上であることを特徴とする微空間集積無機膜、その製造方法、及び該微空間集積無機膜からなる分離又は吸着部材。
【効果】本発明の大面積で自立した微空間集積無機膜は、所望の形状への成形性、及び原子、分子等の吸着、分離性能に優れているため、各種分離材、消臭壁材、脱臭シート、メンブレンフィルター等として有用である。 (もっと読む)


【課題】 生体組織に対して良好な親和性を有し、吸着性能、分離性能が優れ、しかも使用後の固液分離工程において濾材として目詰りを生じることのない吸着材、あるいは生体組織との親和性を必要とする化粧料基材として好適な新規なシリカ多孔体材料を提供する。
【解決手段】 長さ0.3〜50μm、幅0.1〜20μm、厚さ0.05〜1.5μm、長さと厚さのアスペクト比5〜300、平均細孔径1〜30nm、全細孔体積0.1〜1.5ml/g、BET比表面積50〜800m2/gを有し、かつX線回折スペクトルにおいて、ヒドロキシアパタイト固有の26°付近及び32°付近に2θのピークが存在するヒドロキシアパタイト被覆シリカ多孔体とする。 (もっと読む)


【課題】
貴金属であり有用物である銀を含む廃水、人体に有害な鉛を含む廃水や水道水等から、銀または鉛を含む廃水等中に通常混在しているナトリウムやカルシウム等は吸着しないで銀および鉛を選択的に[、しかも効率よく]吸着することのできる吸着剤を提供する。
【解決手段】
有機第4アンモニウムイオンの存在下で2価のマンガン化合物が電気化学的に酸化され、前記有機第4アンモニウムイオンがインターカレートされた層状マンガン酸化物[薄膜]からなる吸着剤であって、
前記有機第4アンモニウムイオンがポリジアリルジメチルアンモニウムカチオンとして例示される高分子ポリカチオンであることを特徴とする。 (もっと読む)


【課題】 吸水速度が速く、吸水率も高く、更に簡便な手法で水分を放出し、再生が容易な除湿剤及びそれを用いた除湿ロータを提供すること。
【解決手段】 長繊維形状の酸化チタンが従来の除湿剤よりも優れた水分の吸放出特性を有している。このような長繊維形状の酸化チタンは、酸化チタンを主成分とする材料を、アルカリ性水溶液中で水熱処理することによって得られる。長繊維形状の酸化チタンは、直径が2〜80nmで、長さが100nm以上であった。その比表面積は200〜1000平方メートルであり、水分の吸収能力は乾燥重量の30%以上であった。 (もっと読む)


【課題】
より高効率なパラジウム金属多孔質粒子の製造方法を提供すること。
【解決手段】
ポリビニルアルコール又はポリビニルアルコール誘導体からなる乾燥フィルムにパラジウム化合物を分散吸着させる工程、加熱によりパラジウム化合物が分散吸着した乾燥フィルムを消失させる工程、を有するパラジウム金属多孔質粒子の製造方法とする。 (もっと読む)


【課題】層面間距離が通常のグラファイトよりも拡大されたナノポーラス炭素構造を有する吸蔵材料の製造方法を提供。
【解決手段】(1)グラファイトを酸化してグラファイト酸化物とする工程(2)グラファイト酸化物の層面間距離を固定化する工程(3)固定化された層面間距離を有する炭素の層を維持するために炭素の層と炭素の層の間にヒドロキシ炭化水素化合物を添加する工程(4)層面間距離を固定化している材料と前記(3)の工程で添加したヒドロキシ炭化水素化合物を反応させる工程(5)未反応のヒドロキシ炭化水素化合物を除去する工程(6)残存しているヒドロキシ炭化水素化合物を炭化処理して炭化処理物にする工程(7)残存する層面間距離を固定化している材料を除去する工程によりナノポーラス炭素構造材料を製造。 (もっと読む)


【課題】 カチオン捕捉性とアニオン捕捉性とを兼ね備え、ろ過により、カチオン及びアニオン成分を有効に取り除くことが可能な水処理剤を提供する。
【解決手段】 スメクタイト系粘土鉱物の熱処理物と、下記式(1):
RO・nM・mHO (1)
式中、Rは、アルカリ土類金属であり、
Mは、AlまたはFeであり、
nは、0.1 乃至1.2 の数であり、
mは、0 乃至 2 の数である、
で表される組成を有し、2θ=43°、62°付近に強いX線回折ピークを有する複合酸化物であるアニオン捕捉剤とからなることを特徴とする。 (もっと読む)


【課題】NOx酸化物の高い吸収特性を有する化合物を用いる窒素酸化物の除去方法を提供する。
【解決手段】窒素酸化物NOxを含有する気体混合物を、式CaCuO2および/またはCa0.83CuO2(X線回折粉末スペクトルがCaCuO2化合物についてJCPDSカード48−197に相当し、Ca0.83CuO2についてJCPDSカード48−212に相当する)を有する化合物または該化合物の混合物またはこれらの化合物を含有する組成物を含む吸収材と接触させることを含む、窒素酸化物NOxを含有する気体混合物から窒素酸化物NOxを除去する方法により、上記の課題を解決する。 (もっと読む)


【課題】50wt%までのニッケルまでを有するマグネシウム−ニッケル融解物を形成する工程;
2wt%までのリファイニング元素を無酸素雰囲気下で該融解物に添加する工程(該リファイニング元素はマグネシウムの原子半径の1−1.65倍の範囲内の原子半径を有し、Zr、Na、K、Ba、Ca、Sr、La、Y、Yb、Rb及びCsからなる群より選択される少なくとも1つの元素のようである);及び、該融解物を固化して、水素吸蔵材料を製造する工程を含む、水素吸蔵材料の製造方法。 (もっと読む)


ITQ−27(INSTITUTO DE TECNOLOGIA QUIMICA番号27)は、四面体原子を架橋可能な原子によって連結された四面体原子のフレームワークを有する新規結晶性微孔性材料である。ここでは四面体原子フレームワークは、フレームワーク中の四面体配位原子間の相互連結によって画定されている。ITQ−27は、有機構造指向剤によってシリケート組成物中で調製可能である。これは独自のX線回折パターンを有し、それによって新規材料として識別される。ITQ−27は空気中での焼成に安定であり、炭化水素を吸収し、そして炭化水素転化に関して触媒活性である。 (もっと読む)


101 - 120 / 131