説明

Fターム[4G077SC11]の内容

結晶、結晶のための後処理 (61,211) | 分子線エピタキシャル法 (139) | 成長装置 (48)

Fターム[4G077SC11]の下位に属するFターム

Fターム[4G077SC11]に分類される特許

1 - 16 / 16


【課題】分子線エピタキシー(MBE)による成膜に先立って、原料蒸発源セルの周辺に存する不純物を、原料を浪費することなく除去して所期の高真空度を達成し、容易且つ確実に信頼性の高い成膜を実現する成膜装置、成膜方法、及び化合物半導体装置の製造方法を提供する。
【解決手段】MBE装置は、原料10が充填される坩堝11と、坩堝11を覆うように配置された第1のヒータ13と、第1のヒータ13を覆うように配置された熱反射板14と、熱反射板を覆うように配置された第2のヒータ15とを備えた原料蒸発源セル2と、原料蒸発源セル2の少なくとも一部を囲み、その壁面を液体窒素温度に冷却することができるシュラウド4とを含み構成される。 (もっと読む)


【課題】良好な結晶を安定して成長させることができる分子線結晶成長装置及び半導体装置の製造方法を提供する。
【解決手段】原料を放出する開口11aを有する坩堝11と、坩堝11の外周及び開口11aの縁を覆う遮蔽部材18と、遮蔽部材18を冷却する冷却部材21と、坩堝11に対向するように基板を保持する基板保持部材と、が設けられている。遮蔽部材18には、鉛直上方から坩堝11を覆う被覆部19が設けられている。 (もっと読む)


【課題】p型伝導性のNドープZnO系半導体膜の新規な製造方法を提供する。
【解決手段】ZnO系半導体膜製造方法は、Znソースガン、Oラジカルガン、Nラジカルガン、Mgソースガンを備え、Nラジカルガンが、ラジオ周波が印加されpBNまたは石英を用いた無電極放電管を含む結晶製造装置により、NドープMgZn1−xO膜を成長させる方法であって、基板法線方向から見て、膜の成長表面側上方に、Znソースガン、Oラジカルガン、Nラジカルガン、Mgソースガンが円周方向に並んで配置されており、NラジカルガンとZnソースガンのビーム照射方向の方位角同士のなす角θを90°≦θ≦270°とするとともに、ラジオ周波パワーを、無電極放電管からスパッタリングされたBまたはSiが膜中に取り込まれない程度に低くする。 (もっと読む)


【課題】MBE成膜装置において、フェイスアップ状態で被処理体の表面に化合物半導体よりなる薄膜を形成することができる原料供給装置を提供する。
【解決手段】化合物半導体の製造に用いる原料を供給する原料供給装置62において、鉛直方向に延びて外周面が液体を流下させることができるような表面である液体流下面90になされた原料保持体64と、原料保持体の高さ方向の途中に設けられて原料の液体である原料液体を貯留すると共に濡れ性によって原料液体を液体流下面90に沿って流下させる原料液体貯留部66と、原料保持体内に設けられて、原料液体貯留部を原料が濡れ性を発揮するように加熱すると共に原料保持体の先端部を原料液体の蒸発温度まで加熱する加熱手段68とを備える。 (もっと読む)


【課題】垂直配向型及び平行配向型以外の配向を有するウルツ鉱圧電体薄膜であって、その配向により従来にない特性が得られるウルツ鉱圧電体薄膜を提供する。
【解決手段】ウルツ鉱型の結晶構造を有する材料から成る薄膜であって、該薄膜に対する法線とc軸が成す角である傾斜角が、縦波に関する圧電定数e33がゼロになる臨界傾斜角よりも大きく、且つ90°未満であることを特徴とする。この薄膜は、垂直配向のウルツ鉱型結晶薄膜とは逆位相の縦波振動が生じるという、従来にない特性を有する薄膜共振子に用いることができる。この薄膜は、ウルツ鉱型の結晶構造を有する材料Mを基板Sの表面に堆積させつつ、基板Sの表面に対して10°を超え40°以下の角度αで入射するようにイオンビームIBを照射することにより製造することができる。 (もっと読む)


【課題】半導体デバイスとして問題なく動作させるために、少なくとも機能的な働きを行うZnO系半導体層にアルカリ金属が達するのを防止することができるZnO系基板及びZnO系半導体素子を提供する。
【解決手段】
ZnO系基板中に存在するアルカリ金属の濃度が1×1014cm−3以下に形成されているので、このZnO系基板上に結晶成長されるZnO系半導体に対してアルカリ金属の偏析を防止することができる。また、基板中のリチウム濃度が1×1014cm−3を越えるZnO系基板であっても、その上に形成するZnO膜の膜厚を50nm以上にすることで、このZnO膜よりも後に形成されるZnO系半導体層へのアルカリ金属の偏析を防止することができる。 (もっと読む)


本発明は、処理領域(2)を取り囲む成長室(1)、この成長室(1)の側壁(3)の内面を覆う側部部分(10)を少なくとも有する主低温パネル、サンプルホルダー(6)、材料を蒸発させる少なくとも1つのエフュージョンセル(8)、気体状プレカーサーを前記成長室(1)に注入することのできるガスインジェクター(9)、前記成長室(1)に連結され、高い真空能力を提供することのできる排気手段(11)を備えている、半導体材料のウエハを製造する分子線エピタキシー装置に関する。本発明によれば、本分子線エピタキシー装置は、少なくとも成長室壁(3,4,5)の内面を覆う断熱材囲い(14)を備え、この断熱材囲い(14)は、気体状プレカーサーの融点より低いか、これと同一である温度Tminを有する低温部と、高温部を備え、この高温部は、該高温部上の気体状プレカーサーの離脱速度が、気体状プレカーサーの吸着速度の少なくとも1000倍以上であるような温度より高いか、これと同一である温度Tmaxを有している。
(もっと読む)


【課題】分子線エピタキシ装置のための粒子線供給装置を提供する。
【解決手段】粒子線供給装置17では、粒子線生成器31は、分子線エピタキシ成長のための原料を提供する開口31aを有する。シャッタ装置33では、シャッタ35は粒子線生成器31の開口31aの前方に位置し、回転軸37は、シャッタ35を支持しており所定の軸Axに沿って延び、駆動機構39は、回転軸37を所定の軸Axの回りに回転駆動する。シャッタ35は、開口31aの位置に合わせて設けられた窓35aを有する。粒子線生成器31からの粒子線は、窓35aを通して進み、或いは、シャッタ35の遮蔽部35bによって遮断される。矢印Arrowの一方向のみにシャッタ35を等角速度で回転させたとき、シャッタ35の移動と停止を成長中に繰り返すことなく、一定の周期で、粒子線が窓35aを介して軸Bxに沿って供給される。 (もっと読む)


【課題】アルミニウム化合物半導体層及び窒素化合物半導体層の両方の形成に際してAlの混入を低減可能な、化合物半導体を成長する方法を提供する。
【解決手段】MBE用の原料供給装置51では、Nラジカルガン53は原料チャンバ55に保持されており、原料チャンバ55はNラジカルガン53のためのプラズマ生成用の空間を提供する。原料チャンバ55は排気システム59にゲートバルブ61を介して接続されている。原料チャンバ55は、ゲートバルブ57を介して成長用チャンバ13cに接続され、原料供給装置51はゲートバルブ57を通して窒素原料を成長用チャンバ13cに供給できる。ゲートバルブ65の開閉は、窒素以外の原料源の動作と独立している。化合物半導体を成長する方法において、窒素ラジカルビームを提供するための期間に、ゲートバルブ57を開きまた窒素ラジカルビームを提供しない期間に、ゲートバルブ57を閉じる。 (もっと読む)


【課題】量子ドット等に利用しうる微細なエピタキシャル層を成長させるのに適した基板表面を実現できるZnTe系化合物半導体基板の表面処理方法、および該基板を用いた半導体装置の製造方法を提供する。
【解決手段】ZnTe系化合物半導体の表面処理において、ZnTe系化合物半導体基板に、少なくとも、Zn分子線、および1×10−6Torr以上1×10−4Torr以下の原子状水素を照射しながら150℃から300℃の温度範囲でアニールする第1の表面処理工程(工程B)を少なくとも有するようにした。さらに、前記第1の表面処理工程の前に、前記ZnTe系化合物半導体基板に1×10−6Torr以上1×10−4Torr以下の原子状水素を照射しながら80℃から150℃の温度範囲でアニールする第2の表面処理工程(工程A)を有するようにした。 (もっと読む)


InGaN などの材料の成長面に、走査鏡などで所望の位置へと導いた小径レーザービームを当てて露光させる。露光点での物性を変更できる。或る実施形態においては、レーザーにあてた箇所で、選択した材料のモル分率を低減する。或る実施形態においては、材料を、MBE室内もしくはCVD室内で成長させる。 (もっと読む)


【課題】半導体結晶の元素の精製、複合化および成長、例えば、高温でシリコン等を溶解する分子線エピタキ法(MBE)において用いる一体もの、複数片のるつぼを提供する。
【解決手段】るつぼは、るつぼを作り上げる複数片を固定して接合する外側の被覆層を有する。本発明は、返り勾配を有する熱分解窒化ホウ素からなる構造を含む一体ものを製造する方法も提供し、前記方法により黒鉛マンドレルの複雑な張出し構造の必要がないようにする、または高温で焼成することにより黒鉛マンドレルの取り外しの必要がないようにする。 (もっと読む)


【課題】 半導体結晶成長処理されるべき基板を保持する基板ホルダが、大気に曝されることを防止し、基板ホルダに付着する堆積物を除去することによって、基板ホルダおよび堆積物が半導体結晶を成長させる際の酸素汚染源となることを防止し、特性に優れた半導体結晶を得る。
【解決手段】 半導体結晶の成長が完了した基板27の取外された基板ホルダ28が、基板導入室22の所定位置から取出されるとき、半導体結晶成長の過程において基板ホルダ28に付着した堆積物を基板ホルダ処理室26で除去するとき、および堆積物が除去された基板ホルダ28を基板導入室22の所定位置にセッティングするとき、のいずれのときにおいても、基板ホルダ28は、不活性ガス雰囲気または真空雰囲気中で取り扱われる。 (もっと読む)


【課題】 基板の表面に形成する薄膜に混入する還元作用を有するガスの量を抑制するとともに、基板の表面または基板の表面に形成する薄膜に与える損傷を抑制して基板の表面に結晶性の高い薄膜を形成することができる分子線エピタキシャル成長装置および分子線エピタキシャル成長方法を提供する。
【解決手段】 成長室13の収容空間12には、ウエハ18を保持するマニピュレータ21、分子線を発生する分子線源22および液体窒素によって冷却されるシュラウド23が設けられる。収容空間12には、ウエハ18が直接見込めない位置から、分子状態の水素ガスが導入される。収容空間12に導入された水素ガスの分子は、シュラウド23の表面に衝突しながら拡散する。収容空間12に拡散された水素ガスを含む雰囲気において、分子線エピタキシャル成長を行い、ウエハ18の表面に高品質な薄膜を形成する。 (もっと読む)


【課題】 InNは有害物質を含まず太陽電池、高速素子、センサ材料など将来に希望が持てる材料である。しかし良い結晶成長方法がなくよい試料ができないので物性の研究も進んでいない。分子線エピタキシャル成長法は唯一可能性ある方法であるが窒素抜けのため良質の結晶を成長させることができない。
【解決手段】 分子線エピタキシー装置のマニピュレータの基板加熱を抵抗加熱ではなく赤外光・石英ロッドを用いた光加熱機構とする。石英ロッドによって外部の赤外線ランプで発生した赤外光を成長室の内部へ導き基板を裏面から加熱する。基板と基板ホルダ−との熱容量は小さく赤外線ランプの出力パワーは迅速に変化させることができる。20℃/秒〜100℃/秒程度の基板温度変化を与え、低温(500℃〜600℃)と高温(800℃〜900℃)の間で基板温度を5秒〜20秒といった短時間で変化させる。 (もっと読む)


分子線エピタキシーシステム等の超高真空システムに用いられるフェイズセパレータである。真空チャンバ内には極低温パネルが配置されており、この極低温パネルには極低温シュラウド領域とフェイズセパレータ領域とが含まれている。液体窒素はインレットラインを介して極低温パネルに導入される。液体窒素の温度が上昇し、蒸発すると、窒素蒸気がシュラウド内の上部へ移動する。極低温パネルのフェイズセパレータ領域においては、略大気圧蒸気層が液体窒素の上にあり、その結果、窒素蒸気は、ガスバーストを形成することなくパネルからスムーズに排出される。また、液体窒素レベルの変化による極低温シュラウド表面の温度変化を防ぐため、フェイズセパレータ領域は真空ジャケットされ、これにより極低温シュラウドのポンプ安定性が高められる。分子線エピタキシーシステム(MBE)で用いられる一実施例では、極低温パネルを第一と第二の冷却室に分割している。第一の冷却室は液体窒素を含み、被膜される基板を取り囲む。第二の冷却室は水のような異なる流体を含み、エフュージョンセルを取り囲むことによって、エフュージョンセルの動作中に発生される熱を散逸させる。
(もっと読む)


1 - 16 / 16