説明

Fターム[4G146AC16]の内容

炭素・炭素化合物 (72,636) | 炭素、炭素化合物−数値の特定 (6,666) | スペクトルに関する(ラマン、IR等) (808)

Fターム[4G146AC16]の下位に属するFターム

X線 (221)

Fターム[4G146AC16]に分類される特許

401 - 420 / 587


【課題】高温の酸性条件下においてもプロトン攻撃による親電子置換反応で脱イオン交換反応を起こさないプロトン伝導膜を製造するために、バインダーポリマーと均一に混合・分散させやすい有機溶媒可溶性のフラーレン誘導体電解質及びその製造方法を提供する。
【解決手段】ホスホン酸エステル基−PO(OR)(RはC〜Cのアルキル基又はフェニル基)が結合し、有機化合物が実質的に結合していないフラーレン誘導体であり、好ましくは、スルホン酸基−SOM(MはH又はアルカリ金属イオン)が同時に結合したフラーレン誘導体。 (もっと読む)


【課題】高導電性および高分散性を備えたカーボンナノチューブ集合体およびその製造方法を提供する。
【解決手段】電子顕微鏡において観察したときに、100本のカーボンナノチューブ中50本以上の層数が2層〜5層、内径が3nm〜6nm、100本のカーボンナノチューブ中50本以上の長さが0.2〜2μm、50本以上が1本の間に2個以上の屈曲点を持つことを特徴とするカーボンナノチューブを含有してなるカーボンナノチューブ集合体。その製造方法は2〜5層を主体とし、内径3nm〜6nmの範囲にあり、複数の屈曲点を有するカーボンナノチューブを合成し、得られたカーボンナノチューブを切断し分散させることを特徴とする。 (もっと読む)


【課題】少量の触媒金属(例えば、コバルトおよびモリブデン)を含む、単一壁のカーボンナノチューブ(SWNT)およびセラミック支持体(例えば、シリカ)の複合体を提供すること
【解決手段】本発明は、少量の触媒金属(例えば、コバルトおよびモリブデン)を含む、単一壁のカーボンナノチューブ(SWNT)およびセラミック支持体(例えば、シリカ)の複合体を提供する。上記金属およびセラミック支持体を含む粒子は、単一壁のカーボンナノチューブの生成のために触媒として使用される。沈降シリカおよびヒュームドシリカの使用は、上記セラミック(例えば、シリカ)および上記単一壁のカーボンナノチューブの両方の特性を相乗的に向上し得る、ナノチューブ−セラミック複合体をもたらした。ポリマーへのこれらの複合体の添加は、それらの特性を向上し得る。 (もっと読む)


【課題】低温域において高い出力特性を有する電気二重層キャパシタ用電極材及び電気二重層キャパシタを提供する。
【解決手段】ラマンスペクトルにおいて観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)の値が77以下であり、熱処理を施すことにより半値幅(Δν1)の値が1以上増加する電気二重層キャパシタ用電極材。 (もっと読む)


【課題】カーボンナノチューブ本来の構造及び特性を失うことなく、金属原子、特に金原子や銀原子などと良い親和性を示し、自己組織化、抗菌特性等の機能を有する、その表面上に特定な有機窒素官能基を導入された新規なカーボンナノチューブ、およびこのものを従来この種の方法に用いられてきた有毒ガスを使用することなく、安全、かつ簡便に製造する方法を提供する。
【解決手段】カーボンナノチューブと下記一般式(1)で表される脂肪族ニトリルを、紫外光照射下で反応させることによりカーボンナノチューブの表面にアミノアルキル基が結合した化合物を得る。
CH3(CH2)nCN (1)
(式中、nは0〜4の整数を示す。) (もっと読む)


【課題】不純物の少ない炭素繊維を効率的に製造できる炭素繊維製造用触媒、及び電気伝導性や熱伝導性が高く、樹脂等への充てん分散性に優れた炭素繊維を提供する。
【解決手段】Fe、Co、およびNiからなる群から選ばれる少なくとも1種の元素〔I〕;Sc、Ti、V、Cr、Mn、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、ランタノイド、Hf、Ta、Re、Os、Ir、Pt、およびAuからなる群から選ばれる少なくとも1種の元素〔II〕;およびW、およびMoからなる群から選ばれる少なくとも1種の元素〔III〕を含有し、元素〔I〕に対して元素〔II〕および元素〔III〕がそれぞれ1〜100モル%である、炭素繊維。 (もっと読む)


【課題】取り扱いが困難であったカーボンナノチューブをはじめとする微粒子を容易に必要な場所に堆積・配置することを可能とする。
【解決手段】光導波路を備え、該光導波路の露出部を一部に含む端面を有する光導波路構造体を用意し、微粒子を分散させた媒体中に端面を浸積した状態で、光導波路の露出部からレーザ光を出射し、光導波路の露出部および/または光導波路の露出部周縁に、微粒子を位置選択的に堆積する。 (もっと読む)


【課題】本発明の目的は、ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブを提供することであり、また、そのようなポリピロール層で被覆されたカーボンナノチューブの製造方法を提供することである。
【解決手段】本発明のナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブは、次の工程を経て製造される。
(i)カーボンナノチューブを濃硝酸中、高温条件下に処理して機能化する;
(ii)得られた機能化カーボンナノチューブ(CNTox)を所定濃度となるように精製水に分散する。
(iii)2−プロパノールに溶かしたピロールを、所定のピロール濃度に達するまで加え、続いて過硫酸塩を加え、これを混合する;
(iv)得られた個々のポリピロール被覆カーボンナノチューブ(固体)を分離し、乾燥する。 (もっと読む)


【課題】特定の形態の触媒を用い、得られる複数のカーボンナノチューブの密度を容易に制御することができ、量産可能なカーボンナノチューブの製造方法を提供する。
【解決手段】基板上に触媒としてコロイド状金属触媒を配置し、原料ガスを供給するとともに、反応雰囲気中に水分を存在させて化学気相成長(CVD)法によりカーボンナノチューブを成長形成させることを特徴とするカーボンナノチューブの製造方法。 (もっと読む)


【課題】複合材料を製造する際に炭素繊維に三次元的構造を付与するための工程を必要としない炭素繊維複合構造体を提供する。
【解決手段】炭素繊維複合構造体は、触媒および炭化水素の混合ガスを800℃〜1300℃の一定温度で加熱する際に、炭素源として分解温度の異なる少なくとも2つ以上の炭素化合物を用いることにより、炭素物質を、繊維状に成長させる一方で、使用される触媒粒子の周面方向に成長させて、三次元ネットワーク状の炭素繊維構造体の中間体を得る第1工程、得られた炭素繊維構造体の中間体を有機金属化合物の有機溶媒溶液または金属塩と界面活性剤の水溶液に浸漬させた後、使用した溶媒を乾燥させる第2工程、乾燥後に炭素繊維構造体の中間体を800℃〜1200℃に加熱し、次に1800℃〜3000℃でアニール処理する第3工程を付すことにより製造できる。 (もっと読む)


【課題】 使用される温度領域によらず高い出力特性を有する電気二重層キャパシタ用電極材、その製造方法及び電気二重層キャパシタを提供する。
【解決手段】 比表面積が1800〜2600m/g、細孔容量0.7〜1.5ml/g、平均細孔径が1.60〜2.00nm、表面官能基濃度が0.1〜1.0mmol/g、平均粒径が1〜20μmであり、ラマンスペクトルに観察される1580cm−1付近のピーク(G1)の半値幅(Δν1)が、65〜80cm−1である電気二重層キャパシタ用電極材。 (もっと読む)


本発明は、単層カーボンナノチューブおよび他の炭素の同素体を製造するための、新規かつ低コストの方法に関する。該方法は、材料がグラファイトからなる固体前駆体の昇華のために、大電流で127 VACまたは220 VACの電源を使用する。固体前駆体は金属電極に接続され、大電流が接点を流れ、高温下でグラファイトが粉砕される。炭素材料は、大気圧下で反応装置の壁および電極に堆積される。得られた材料は酸で精製され、その後、カーボンナノチューブが分離される。一般に、この新規な合成法は金属触媒が無いこと、炭素材料を製造するための媒介に短絡電流を使用すること、低圧で反応すること、および極めて低コストかつ低い動作電圧をう用いる装置のアセンブリであることを特徴とする。
(もっと読む)


【課題】下地金属との間の抵抗を低減可能な炭素被覆金属部材を提供する。
【解決手段】炭素被覆金属部材10は、基板1と、導電性炭素膜2とを備える。基板1は、SUS316Lからなる。導電性炭素膜2は、ECRスパッタリング法を用いて基板1上に形成される。この場合、導電性炭素膜2を形成する前のECRスパッタリング装置20の圧力は、1.33×10−2Pa以下に設定され、基板1の温度は、室温〜300℃以下の範囲に設定され、基板バイアスは、15V〜40Vの範囲に設定され、ターゲットバイアスは、−1000V〜−200Vの範囲に設定され、ターゲット27に印加されるパワー密度は、1.75W/cm〜8.75W/cmの範囲に設定される。 (もっと読む)


【課題】 カーボンナノチューブ、特に単層カーボンナノチューブをアーク放電法により実用的規模で安全に製造することのできる製造方法を提供すること。
【解決手段】 以下の工程1〜4を記載された順序で含むことを特徴とするカーボンナノチューブの製造方法により上記課題は解決される。
工程1:アーク放電法によって粗カーボンナノチューブを得る工程
工程2:粗カーボンナノチューブを、水を含む溶媒にて湿潤させる工程
工程3:粗カーボンナノチューブを、硝酸を含む水溶液にて酸処理する工程であって、反応温度が60℃以上90℃以下かつ反応時間が24時間以上72時間以下である工程
工程4:前工程で得られた反応液をろ過することによって精製カーボンナノチューブの分散液を得る工程 (もっと読む)


【課題】炭素材料を構成する、マルチグラフェンの末端にアロマティックリングプロトン(炭素骨格に直接結合した水素)を多く残し、カルボン酸残基を極力生成させないような水素化非多孔性炭の製造方法を提供することを目的とする。
【解決手段】本発明の水素化非多孔性炭の製造方法は、(a)多層グラフェン微結晶が発達した易黒鉛化炭を650〜900℃で乾留し、か焼炭を得る工程と、(b)得られた、か焼炭を苛性アルカリと共に800〜900℃でアルカリ賦活する工程と、(c)アルカリ賦活された、か焼炭を空気中の酸素に触れることなく、500℃以下で水蒸気処理する工程と、(d)次いで、残存するアルカリを除去して非多孔性炭を得る工程と、(e)得られた非多孔性炭を、水素を含む還元性雰囲気中で、650〜900℃で処理し、水素化非多孔性炭を得る工程と、を有することを特徴とする。 (もっと読む)


【課題】カーボンナノチューブを大規模に合成するための製造方法、製造プロセス、および製造装置を提供する。
【解決手段】単層カーボンナノチューブ(SWNT)を連続して大規模に合成する製造装置のコンテナにおいて、このコンテナの一方の端にピストンを設置し、もう一方の端には、コンテナの反対側の壁面から吹き込まれる気体によって接線渦流を発生させる。コンテナは、微粒子の凝集を減らすまたは防ぐために加熱され、ピストンは触媒を前記渦流に向けて噴射するために用いられる。触媒の噴射速度は、輸送気体としても働く前記渦流を起こすために、ピストン速度および気体流量によって制御される。こうして、1kg/hを超えるエアロゾル化され凝集していない乾燥触媒を、一定の流量にて反応容器に輸送することができる。 (もっと読む)


その上にフラーレンを堆積した金属触媒から単層カーボンナノチューブを製造する方法が提供された。フラーレンは金属触媒前駆体又は金属触媒上に堆積される。次いで、炭素含有ガスの存在下に、フラーレンを昇華し、そして単層カーボンナノチューブを成長させるために、金属触媒前駆体/フラーレン組成物は金属触媒前駆体を還元するのに適した条件に暴露される。このフラーレンは得られる単層カーボンナノチューブのエンドキャップを形成し、その直径は均一である。
(もっと読む)


【課題】界面活性剤がコーティングされた炭素ナノチューブが外部の環境変化にも安定的な分散状態を維持するとともに、乾燥後、水中に入れても安定的に分散する炭素ナノチューブの製造方法と、この炭素ナノチューブを提供すること。
【解決手段】(i)炭素ナノチューブと界面活性剤を1:2〜2:5(w/w)の比率で混合し、酸素を除去する工程と、(ii)前記工程から得られた混合物と酸素のない水を0.7:100〜0.8:100(v/v)の比率で混合し、超音波処理して炭素ナノチューブを分散させる工程と、(iii)前記工程から得られた分散溶液に界面活性剤の量に対して1〜5%(モル比)の開始剤を使用し、55〜65℃で12〜24時間の間、攪拌しながら炭素ナノチューブの表面に界面活性剤をコーティングする工程とを包含してなる、界面活性剤がコーティングされた炭素ナノチューブの製造方法を提供することによって上記課題を解決する。 (もっと読む)


【課題】切削工具、耐磨工具等の機械的用途、及び半導体材料、電子部品、光学部品等の機能品用途に適したダイヤモンド単結晶及びその製造方法を提供する。
【解決手段】結晶全体にわたり、波数1332cm−1(波長7.5μm)のピーク吸収係数が0.05cm−1以上10cm−1以下である化学気相合成法により得られたダイヤモンド単結晶であり、この単結晶は化学気相合成時の気相における元素の組成比率を、水素原子に対する炭素原子濃度が2%以上10%以下かつ、炭素原子に対する窒素原子濃度が0.1%以上6%以下かつ、炭素原子に対する酸素原子濃度が0.1%以上5%以下とすることによって得られる。 (もっと読む)


単層カーボンナノチューブを製造する方法が提供される。金属層の片側に接触した1以上のフラーレンの層及び金属層の反対側に接触した固体炭素源を含む装置が調製される。フラーレン/金属層/固体炭素源の装置は、次いでフラーレンが昇華する温度より低い温度に加熱される。その他には、固体炭素源の代わりに非固体炭素源を使用することができ、或いは金属層は単純に炭素原子で飽和することができる。単層カーボンナノチューブの集合体が金属層のフラーレン側に成長し、該集合体の中の単層カーボンナノチューブの少なくとも80%は該集合体中の単層カーボンナノチューブの直径Dの±5%以内の直径を持ち、該直径Dは0.6〜2.2nmの範囲内にある。
(もっと読む)


401 - 420 / 587