説明

Fターム[4G146BA01]の内容

炭素・炭素化合物 (72,636) | 製造−炭素原料、炭素前駆体 (7,083) | 炭素 (996)

Fターム[4G146BA01]の下位に属するFターム

Fターム[4G146BA01]に分類される特許

81 - 100 / 225


【課題】低抵抗であり、かつ電力輸送用途にも使用可能な長尺の高導電性炭素繊維を提供する。
【解決手段】高温の液体Ga中にグラファイトを含有する炭素繊維を浸漬すると、炭素繊維の表面で分断していたグラファイト結晶に対するグラファイト化反応が進行し、グラフェン同士の接合が実現する。この場合、炭素繊維の表面ですべてのグラフェンが多層カーボンナノチューブのように規則正しく配列することはないが、C面同士の接合が増えることで繊維自体の電気伝導性は格段に改善する。 (もっと読む)


【課題】
金属内包CNTの製造方法において、簡便かつ安価な方法で、充填率の高い金属内包CNTの製造方法を提供すること。又、その製造方法で得られた金属内包CNTを提供すること。
【解決手段】
金属を含有させた炭素電極を用いて、水素を含む気体(0.09〜0.2MPaの気圧)中でアークプラズマを発生させ、電極の炭素材料と金属を同時に蒸発させる製造方法において、概鉛直方向に放電することを特徴とする、金属内包CNTの製造方法。及び、該製造方法によって得られた金属充填率90%以上の金属内包CNTによって、上記課題を解決する。 (もっと読む)


【課題】過酷な条件なしに経済的にダイヤモンドを合成することを課題とする。
【解決手段】本発明は、ナノダイヤモンド(n-ダイヤモンド、p−ダイヤモンド
、i-カーボン)の製造方法であって、ナノダイヤモンドを含む活性炭から取り出す
方法に関する。前記活性炭は、炭素中に埋め込まれたナノダイヤモンドを形成させる
のに十分な酸素量の制限条件下での炭素質原料の炭化および/または活性化で合成さ
れる。前記ナノダイヤモンドは活性炭から分離および精製され、酸化剤での処理によ
って濃縮されうる。さらに、炭素源と金属および酸をナノダイヤモンドの生成に至る
条件下で混合することによるナノダイヤモンド、特には、ナノダイヤモンド繊維の製
造方法も提供される。ナノダイヤモンド繊維は、2000ナノメートル以上に製造可
能である。前記ナノダイヤモンド繊維は織り込むことが可能で、または、種々の材料
の構造強化に供するために使用可能である。 (もっと読む)


【課題】 ボールミル(ball mill)法を用いて炭素材料の結晶性を損傷させずに、アルミニウムの中にカプセル化する方法を提供する。
【解決手段】 本発明は、(i)炭素材料に欠陥及び機能化を誘導する段階;(ii)上記機能化された炭素材料をアルミニウムと混合する段階;及び(iii)不活性気体雰囲気の下で上記混合物をボールミリングする段階;を含む、炭素材料をアルミニウムの中にカプセル化する方法を提供する。また、本発明は、(i)炭素材料に欠陥及び機能化を誘導する段階;(ii)上記機能化された炭素材料をアルミニウムと混合する段階;及び(iii)不活性気体雰囲気の下で上記混合物をボールミリングする段階;を含む、アルミニウム−炭素材料複合体を製造する方法を提供する。尚、本発明は、上記方法により製造されたアルミニウム−炭素材料複合体を提供する。 (もっと読む)


【課題】半導体材料、電子部品、光学部品、切削・耐磨工具などに用いられる大面積で高品質なダイヤモンド単結晶基板を高速に製造する方法を提供する。
【解決手段】種基板1として、主面の面方位が略<100>方向に揃った複数個のダイヤモンド単結晶基板を並べて配置し、気相合成法により種基板1上にダイヤモンド単結晶を成長させるダイヤモンド単結晶基板の製造方法であって、種基板1の主面の面方位が{100}面に対する傾きが5度以下であり、第一の段階における成長パラメータαが2.0以上3.0未満であり、第二の段階におけるαが3.0以上である。 (もっと読む)


【課題】所望のバンドギャップエネルギーを容易に実現できるアモルファスカーボン製造装置及びアモルファスカーボン製造方法を提供する。
【解決手段】アモルファスカーボンCを成長させるための基材Bをチャンバ11内に収容し、そのチャンバ11内に原料ガスGを供給し、供給した原料ガスGのプラズマPを生成し、生成されたプラズマPの基材Bに到達する際の速度を制御してアモルファスカーボンCの製造を行う。これにより、プラズマPの到達速度に対応させてカーボンの結晶化及び選択的エッチング効果を生じさせることができる。このため、カーボンのsp2/sp3結合比を調整することができ、所望のバンドギャップを有するアモルファスカーボンCを容易に製造することができる。 (もっと読む)


【課題】従来、ダイヤモンドの研磨は、輝きを増幅させる為カット数が多い立体的な研磨が多かったが、平面的なカットでダイヤモンド持つ透明性の美しさを幅広く表現させる。
【解決手段】平面的板状にカットしたダイヤモンドを様々な、平面的なデザインにカットしダイヤモンド自体の透明性や輝きを、斬新的で様々なデザインで顕現する。 (もっと読む)


【課題】粒子の伝導率に従ってナノ粒子を分別し、それにより、均一な伝導率を有する多数の粒子の生産を可能にする方法が述べられる。
【解決手段】方法は、修正熱泳動プロセスに基づき、修正熱泳動プロセスにおいて、粒子の混合物内に温度勾配が生成され、最も伝導性が高い粒子が、暖かい表面上に選択的に堆積する。従来の熱泳動法と対照的に、分別プロセスを駆動する温度勾配は、光源を使用して生成される。 (もっと読む)


【課題】 高い耐熱性を有する表面修飾カーボン材料を提供する。
【解決手段】 純度99.99%以上の窒素ガス雰囲気下、150℃から250℃まで10℃/分で昇温したときの重量減少量(質量%)をカーボン材料の比表面積(m2/g)で割った値が1.5×10-3以下となる表面修飾カーボン材料を提供する。 (もっと読む)


【課題】アーク放電を行なわずに均一な粒子径を有し、その表面に炭素被膜が形成された炭素被覆金属微粒子を提供すること。
【解決手段】金属微粒子を構成する金属材料を保持したカーボンロッドをチャンバー内で懸架し、該チャンバー内を10−5〜10−3Paに減圧し、該チャンバー内の圧力が100〜50000Paとなるように不活性ガスを導入した後、カーボンロッドに電圧を印加して通電加熱をする炭素被覆金属微粒子の製造方法、外部空間と遮断して設けられたチャンバー内で金属材料保持用カーボンロッドの一端を懸架するための導電性懸架材Aおよびカーボンロッドの他端を懸架するための導電性懸架材Bが懸架されて外部電源と接続され、減圧管および不活性ガス導入管がチャンバーの内部空間と接続されている炭素被覆金属微粒子の製造装置。 (もっと読む)


【課題】本発明は、安価かつ簡便なグラフェンシートの製造方法を提供することを目的とする。
【解決手段】炭素微粉末が分散されたVIII族の遷移金属のイオンを含む水溶液を準備し、前記水溶液内で還元反応を誘起させ、前記遷移金属からなる粒子を形成し、前記粒子表面にグラフェンシートを形成し成長させる。これにより、簡便にかつ低いコストでグラフェンシートを製造することができ、安価なグラフェンシートを提供することができる。 (もっと読む)


【課題】大気中かつ無潤滑環境下でも耐摩耗性・低摩擦性能に優れた硬質炭素被膜を提供する。
【解決手段】Fe、Co、Ni等の高融点金属を含む基材12上に、各層間の密着性を高めるためCr中間層41、および組成傾斜層42を形成し、その上に2.7at%以上7.7at%以下のMo元素、及び1.3at%以上4.6at%以下のS元素、及び7.0at%以上9.5at%以下のO元素を含む硬質炭素被膜43を0.2μm以上0.3μm以下の厚さに形成する。 (もっと読む)


【解決課題】リチウム鉄リン系複合酸化物炭素複合体中のリチウム鉄リン系複合酸化物のLi、Fe及びPの組成調整が容易であり、X線回折分析において単相のLiFePOが得られ、リチウム二次電池に優れた電池性能を付与できるリチウム鉄リン系複合酸化物炭素複合体の製造方法を提供することにある。
【解決手段】pHを5.5〜9.5に制御しつつ、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、アルカリを含む溶液(B液)と、を接触させて、リチウム、鉄及びリンを含む共沈体を得る第1工程と、該共沈体と導電性炭素材料とを混合し、焼成原料混合物を得る第2工程と、該焼成原料混合物を不活性ガス雰囲気中で焼成し、リチウム鉄リン系複合酸化物炭素複合体を得る第3工程と、を有することを特徴とするリチウム鉄リン系複合酸化物炭素複合体の製造方法。 (もっと読む)


【課題】シリカ被覆炭素生成物の製造方法の提供。
【解決手段】1つの方法において、水性媒体もしくは溶液および炭素生成物が、金属イオンを実質的に含有しないケイ酸塩を含む溶液と、シリカ被覆炭素生成物を形成するのに十分な時間および温度で接触される。水性媒体および炭素生成物をモノケイ酸を含有する溶液と接触することによりシリカ被覆生成物を製造する方法も、金属ケイ酸塩を含有する溶液中の金属イオンを水素イオンと交換し、シリカ被覆炭素生成物を形成するために水性媒体および炭素生成物を、その溶液と接触させることと同様に記載されている。これらの方法から得られるシリカ被覆炭素生成物も記載され、多くのシリカ被覆生成物を含み、各シリカ被覆生成物は、シリカで実質的に均一に被覆され、遊離シリカが実質的にない。さらに、シリカ被覆炭素生成物を含有するエラストマー組成物等も記載されている。 (もっと読む)


【課題】無給油ベアリングなどのカーボン摺動材、搬送装置のエア噴出し用部材などとして好適な気孔性状を備えた多孔質炭素材料の製造方法を提供すること。
【解決手段】平均粒子径70〜300μmの炭素質粉末Aが40〜70重量部、平均粒子径10〜45μmの炭素質粉末Bが20〜50重量部、平均粒子径1〜30μmのピッチ粉末が10〜30重量部の組成比に混合した混合原料粉末100重量部を、分散剤0.5〜5重量部と熱硬化性樹脂を水または有機溶剤に溶解して樹脂固形分濃度が40〜70重量%に調整した樹脂溶液に加えて攪拌および脱泡処理して、粘度(25℃)が0.5〜8Pa・sのスラリーを調製し、次いで、該スラリーを成形濾過容器に流し込み、加圧濾過してケーキ状の成形体を作製し、該ケーキ状成形体を乾燥した後、熱硬化性樹脂成分を加熱硬化し、非酸化性雰囲気中で800〜3000℃の温度で焼成することを特徴とする多孔質炭素材料の製造方法。 (もっと読む)


【課題】2000℃を超える高温に炭素繊維を加熱しながら、機能化処理物質をドーピングして、連続的に炭素繊維を高機能化することができ、かつ装置の損傷が少なく、エネルギー損失も少ない高機能化炭素繊維の製造装置および方法を提供する。
【解決手段】内部にマイクロ波が共鳴可能な共鳴空間9を有し、マイクロ波2の吸収が少ない材料からなる中空共鳴容器10と、中空共鳴容器内に所定の周波数のマイクロ波を供給して共鳴空間9にマイクロ波1の共鳴状態を形成するマイクロ波供給装置12と、中空共鳴容器の外部から共鳴空間9を通ってその外部まで連続して延びる連続中空管20と、連続中空管の一端から他端まで、炭素繊維1を連続的に供給する炭素繊維供給装置22と、連続中空管の一端から他端まで、高機能化処理物質を含む高機能化処理ガスを流通させるガス流通装置24とを備える。 (もっと読む)


【課題】薄壁のグラフィチック・カーボンナノチューブで被覆されたヘテロ接合含有のMg(半導体)ナノワイヤ−Ga(金属)ナノワイヤの製法を提供すること。
【解決手段】グラフィチック・カーボンナノチューブ(GCNTs)で被覆されたヘテロ接合含有のMg(半導体)ナノワイヤ−Ga(金属)ナノワイヤは、以下の工程を経て製造される。(1)Ga、活性炭、及びMgB粉末を混合し(2)溶融石英管と炭素繊維断熱層でコートされた高純度グラファイト製誘導加熱円筒管とからなり、頂部及び底部に二つの入口がある炉の中央部に、前記混合物を坩堝に入れて置き(3)溶融石英管と誘導加熱円筒管を減圧にし(4)二つの入口を通して純窒素ガスを定流速で炉の周囲圧にて導入する(5)坩堝を約1400℃に加熱し、この温度で維持すし(6)坩堝を室温に冷却する(7)頂部近辺の断熱層から産生物を集める。 (もっと読む)


【目的】優れたレート特性と高度の可逆容量および初期効率に加えて容量維持率の高い特徴を備えたリチウムイオン二次電池用負極材を製造する方法を提供する。
【構成】平均粒子径が5〜30μm、平均格子面間隔d(002)が0.3400nm未満の黒鉛質粉末と、軟化点70〜250℃のピッチと、空気中400℃に加熱した時の揮発分が50%以上、不活性雰囲気中800℃に加熱した時の残炭率が3%以下の溶融性有機物とを加熱混合して、黒鉛質粒子の表面にピッチおよび溶融性有機物を被覆する工程、得られたピッチおよび溶融性有機物で被覆された黒鉛質粒子を圧縮、摩擦させることにより粒子径アスペクト比が1.0〜2.0のピッチおよび溶融性有機物で被覆された球状化黒鉛質粒子を得る工程、続いて平均粒子径が0.05〜5μm、平均格子面間隔d(002)が0.3400nm以上のアモルファスカーボン粉末を添加して機械的衝撃を与えながらピッチおよび溶融性有機物を軟化させ、該軟化ピッチおよび溶融性有機物中にアモルファスカーボン粉末を分散、固定化した後、非酸化性雰囲気中で750〜2250℃の温度で焼成炭化し、解砕・分級することを特徴とする。 (もっと読む)


【課題】制振性、熱伝導性、導電性を有し、モータのダンパー材として用いて好適な炭素粉配合ゴム組成物を提供する。
【解決手段】本発明にかかる炭素粉配合ゴム組成物は、ゴム材料に炭素粉を配合した炭素粉配合ゴム組成物において、前記炭素粉に、シルク溶液にカーボンナノチューブを分散し、乾燥させた混合材料を非酸化性雰囲気中で焼成し、粉砕した焼成炭素分を用いることを特徴とする。 (もっと読む)


本発明は、概ねホウ素ドープされた各単層カーボンナノチューブ(B−各SWCNT)を合成または作製する方法および装置に関する。本発明は、廉価な炭素原料を利用して単層カーボンナノチューブから大量の連続的なマクロの炭素繊維を製造するための高収率かつ簡単なステップ法を提供することであり、上記カーボンナノチューブは、ホウ素置換ドーピングによって製造される。一実施形態において、上記開示のナノチューブは、送電ケーブル、太陽電池、バッテリーにおいて、また、アンテナ、分子電子工学、プローブおよびマニピュレーターとして、複合材料において単独または複数で使用される。本発明の他の目的は、このような方法によって製造されたマクロな炭素繊維を提供することである。
(もっと読む)


81 - 100 / 225