説明

Fターム[4H001YA25]の内容

発光性組成物 (40,484) | 付活剤構成元素 (10,817) | Mn (688)

Fターム[4H001YA25]に分類される特許

661 - 680 / 688


【課題】 従来の希土類付活サイアロン蛍光体より長波長の橙色や赤色に発光し高い輝度を有し、化学的に安定な無機蛍光体を提供する。
【解決手段】 付活元素M(Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる1種または2種以上の元素)、2価の元素A(Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素)、3価の元素E(Eは、B、Al、Ga、Inから選ばれる1種または2種以上の元素)、4価の元素D(Dは、Si、Ge、Snから選ばれる1種または2種以上の元素)、窒素、酸素(酸素を含有しない場合も含む)、その他の元素X(Xを含有しない場合も含む)とからなる組成式Mabcdefgで示される無機蛍光体設計において、式中のa、b、c、
d、e、f、gで示される各パラメータを特定の領域に調製、設定することによって、570nm以上の波長の橙色や600nm以上の波長の赤色に発光する演色性に富んだ無機蛍光体を提供する。 (もっと読む)


【課題】蛍光体の紫外線による発光効率を高めることによって、任意の色温度の白色光や各種の中間色光を効率および精度よく取り出すことを可能にした表示装置を提供する。
【解決手段】表示装置は、青色発光蛍光体、緑色発光蛍光体および赤色発光蛍光体を含む樹脂層を発光部として有する。赤色発光蛍光体は酸硫化ランタンを母体とする蛍光体であり、かつ緑色発光蛍光体は、a(M2,Eu,Mn)O・bAl23(M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも1種、a>0、b>0、0.2≦a/b≦1.5)で実質的に表される2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体である。 (もっと読む)


【課題】 発光輝度を従来レベルに維持しつつ、蛍光体の経時劣化の抑制可能なマンガン付活珪酸亜鉛蛍光体を提供する。
【解決手段】 マンガン付活珪酸亜鉛蛍光体であって、粒子の表面およびその近傍における珪素原子総数に対する亜鉛原子総数の比をαとし、前記蛍光体粒子全体における珪素原子総数に対する亜鉛原子総数の比をβとするとき、前記αおよび前記βは、0<β−α≦0.5、かつ、1.7≦βの関係を有する。
(もっと読む)


【課題】
紫外〜可視の発光部と組合せて使用する際、人間の視感度の高い領域において自身の発光波長を任意に設定できることで、当該領域での輝度を向上させることができ、且つ、前記発光部から出る波長域の光に渡って励起帯を持つ蛍光体およびその製造方法、並びに、前記蛍光体を用いた照明およびLEDを提供することを目的とする。
【解決方法】
原料として、例えばCa3N2、CaO、AlO3、AlN、Si3N4、SiO2、Eu2O3を準備し、各元素のモル比を、例えば(Ca,Eu) : Al : Si = 1 : 1 : 1となるように各原料を秤量し、素雰囲気下で混合して仕込み、窒素雰囲気中で1500℃焼成してCaAlSiN3:Euで示される蛍光体の主たる生成相を得るが、原料仕込み時に各原料の配合量を制御することで、当該生成相の構造中の酸素濃度、Eu添加のモル濃度を制御し、当該生成相の発光波長を任意に設定する。 (もっと読む)


【課題】 凝集粒子が少なく、しかも、高純度で化学組成が均一で、発光特性に優れた蛍光体を安価に製造する蛍光体の製造方法の提供。
【解決手段】 蛍光体前駆体の焼成時のガス雰囲気中の酸素ガス濃度が0.02〜0.2%であることを特徴とする蛍光体の製造方法。 (もっと読む)


【課題】液相中でサイズ分布が狭いミクロンサイズの無機半導体一次粒子を製造する方法、特に硫化亜鉛を母体とする蛍光体の製造方法を提供し、それを用いることで発光素子として充分な高い輝度を有するEL蛍光体素子を提供する。
【解決手段】圧力0.2〜20MPa、温度120〜370℃の、水を主とする溶媒を用いた反応系で無機半導体一次粒子を生成させるにあたり、分散媒に少なくとも一種の水溶性ビニル高分子を含有させる無機半導体一次粒子の製造方法。 (もっと読む)


【課題】焼成コストが低く、発光強度の高い微粉末状態の複合窒化物蛍光体を製造する方法を提供する。
【解決手段】付活元素Mの単体及び/又は化合物、2価の金属Mの窒化物、3価の金属Mの窒化物、並びに、4価の金属Mの窒化物を含む原料混合粉末を焼成して、下記一般式(I)で示される微量酸素を含有する複合窒化物蛍光体を製造する方法。原料混合粉末を嵩密度0.05g/cm以上1g/cm以下の状態とし、焼成温度を1200℃以上1750℃以下とし、被焼成原料中の窒素と酸素の合計モル数に対する酸素のモル数が1%以上20%以下となるように被焼成原料中に酸素を存在させて焼成する。
(I)
(0.00001≦a≦0.15、0.5≦b≦2、0.5≦c≦2、0.5≦d≦2、1.5≦e≦6、0<f≦1.2、0<f/(e+f)≦0.2) (もっと読む)


【課題】粒子サイズ分布の狭い微粒子のEL蛍光体を高効率で得る方法および該方法により得られた微粒子のEL蛍光体を用いた高輝度で均一性の高い発光の分散型EL素子を提供する。
【解決手段】中心粒子サイズが1〜20nmの範囲の1次粒子が凝集してなる、中心粒子サイズが0.05〜5.0μmの範囲にあり、Cu、Mn、Ag、Au及び希土類元素からなる群から選ばれる少なくとも1種を有する2次粒子を含有してなる硫化亜鉛系蛍光体前駆体。 (もっと読む)


【課題】従来の希土類付活サイアロン蛍光体より長波長の橙色や赤色に発光する蛍光特性を有する無機蛍光体を提供する。
【解決手段】CaSiAlN3結晶と同一の結晶構造を有する無機化合物を母体結晶とし、M(ただし、MはMn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選ばれる1種または2種以上の元素)を発光中心として添加した固溶体結晶蛍光体を用いることにより、赤み成分に富む演色性の良い白色発光ダイオードを設計する。 (もっと読む)


本発明は、光透過性放電管を有する低圧水銀蒸気放電ランプであって、前記放電管は、気密方式で、水銀が充填された放電空間を取り囲み、前記放電管の壁の少なくとも一部には、発光体組成物が設置され、該発光体組成物は、一般式が(Gd1-x-y-zYxLuy)PO4:Cezで、0≦x<1.0、0≦y<1.0、0<z≦0.2で、x+y+z<1である第1のUV−A蛍光体を含み、さらに、当該低圧水銀蒸気放電ランプは、前記放電管内で、電気放電を開始し、持続する放電手段を有する、低圧水銀蒸気放電ランプに関する。そのようなランプは、特に、日焼け用、さらには美容用および医療用に有益である。また本発明は、一般式が(Gd1-x-y-zYxLuy)PO4:Cezで、0≦x<1.0、0≦y<1.0、0<z≦0.2で、x+y+z<1である、UV−A蛍光体に関する。 (もっと読む)


本発明の白色発光ダイオードは、370nm〜420nmの間の波長範囲の放射線の発光源、式Ba3(1-x)Eu3xMg1-yMnySi28(1)(ここで、xは0<x≦0.3、yは0<y≦0.3である)の青色光及び赤色光を発する第1の蛍光体、並びに緑色光を発する第2の蛍光体を含むことを特徴とする。別の具体例において、前記ダイオードは、同じ発光源及び化学組成がBa3(1-x)Eu3xMg1-yMnySi28(ここで、xは0<x≦0.3、yは0<y≦0.3である)であり且つ少なくともBa2SiO4、Ba2MgSi27及びBa3MgSi28の相の混合物の形にある単一の蛍光体を含む。本発明のダイオードは、照明装置に用いることができる。
(もっと読む)


高い光収量と高い色温度の低圧放電ランプ用の蛍光体組成物であって、前記蛍光体組成物は、ユーロピウムがドーピングされた酸化イットリウム、又は、セリウム及びマンガンがドーピングされたガドリニウム−亜鉛−マグネシウム−五ホウ酸塩のグループからなる、赤色波長領域で放射する蛍光体、前記セリウム及びテルビウムがドーピングされたランタンホスファターゼ、及び/又は、前記テルビウムがドーピングされたセリウム−マグネシウム−アルミン酸、及び/又は、前記テルビウムがドーピングされたセリウム−マグネシウム五ホウ酸塩のグループからなる、緑色波長領域で放射する蛍光体、及び、場合によって、前記ユーロピウムがドーピングされたバリウム−マグネシウム−アルミン酸のタイプの青色波長領域で放射する蛍光体を有している蛍光体組成物において、
蛍光体組成物は、付加的に少なくとも1つの蛍光体、マンガン及びユーロピウムがドーピングされたマンガン−ストロンチウム−バリウム−マグネシウム−アルミン酸、又は、ユーロピウム及びマンガンがドーピングされたバリウム−マグネシウム−アルミン酸、及び、ユーロピウムがドーピングされたストロンチウム−アルミン酸、及び、ユーロピウムがドーピングされたストロンチウム−バリウム−カルシウム−亜鉛アパタイト、及び、ユーロピウムがドーピングされたストロンチウム−ホウ素−リン酸塩のグループからなる、青色乃至緑色波長領域で放射する蛍光体を有している。
(もっと読む)


明るい環境下でも目視できる高輝度応力発光材料およびその製造方法とその利用の代表的な一例とを提供する。本発明にかかる応力発光材料は、摩擦による静電気に由来する発光機構、摩擦によるマイクロプラズマに由来する発光機構、歪による圧電効果に由来する発光機構、格子欠陥に由来する発光機構、および発熱に由来する発光機構の少なくとも何れかの発光機構により発光する条件を満たしている。例えば、応力発光材料として、少なくとも1種のアルミン酸塩からなる母体材料を含有する場合には、歪による圧電効果に由来する発光機構を実現するために、上記母体材料には、自発分極性を有する結晶構造が含まれる構成、具体的には、α−SrAlを挙げることができる。 (もっと読む)


式(Ba,Sr,Ca)SiO4:Euを有する蛍光体組成物、及び半導体光源及び上記蛍光体を含む発光デバイス。(Ba,Sr,Ca)SiO4:Eu及び1種以上の追加の蛍光体の混合物、及びそれを組み込んでいる発光デバイスも開示される。好ましい混合物は、(Sr,Ba,Ca)2SiO4:Eu及び(Sr,Mg,Ca,Ba,Zn)2P2O7:Eu,Mn;(Ca,Sr,Ba,Mg)5(PO4)3(Cl,F,OH):Eu,Mn;(Sr,Ba,Ca)MgAl10O17:Eu,Mn;及びMg4FGeO6:Mn4+の少なくとも1種;及び一般式(Y,Gd,La,Lu,T,Pr,Sm)3(Al,Ga,In)5O12:Ceを有する1種以上のガーネット蛍光体を含む。
(もっと読む)


実験式La2−x−y2236、Mnを有するプラズマディスプレイパネル(PDP)用のマンガンおよびアルカリハライドで活性化された緑色を発光するランタンアルミネート発光体を提供するもので、式中のAはLi、NaまたはKであり、BはAIまたはAI+Gaであり、0.01≦x≦0.1であり、0.01≦y≦0.1である。発光体は、緑色領域に帯放射を有し、キセノンガス混合物からの147および173nmの放射線で励起する場合、515nmでピークを有し、均一な粒径分布(0.01〜10μm)を有し、様々なフラットパネルディスプレイおよびランプ用途に必要な薄型の発光体画面に適切なサイズ分布である。それらは、VUV励起下で高輝度、良好な彩度、良好な安定性およびより短い残光性を示す。 (もっと読む)


基板2上に励起光を発する発光素子3を設けるとともに、前記励起光を可視光に変換する波長変換器4を備え、前記可視光を出力光とする発光装置であって、前記波長変換器4が、蛍光体として、平均粒径が20nm以下である少なくとも1種の半導体超微粒子と、平均粒径0.1μm以上である少なくとも1種の蛍光物質とをそれぞれ樹脂マトリックス中に含有する複数の波長変換層4a、4b、4cからなり、これによって蛍光体同士の自己消光を低減させ、高い発光効率を有する。 (もっと読む)


本発明は、少ない消費エネルギーで高輝度の光を発生し、熱等に変換される損失が少なく、長期使用による劣化が少ない電界発光材料であって、特に黄色よりも波長の短い青色、緑色等の光を発する無機系の電界発光材料を提供する。 具体的には、下記3種の電界発光材料に関するものである:(1)一般式:RMO〔式中、Rは希土類元素を示す。MはAl、Mn又はCrを示す。〕で表されるペロブスカイト型結晶構造を有する酸化物からなる電界発光材料、(2)一般式:RCuO〔式中、Rは希土類元素を示す。〕で表されるペロブスカイト型結晶構造を有する酸化物からなる電界発光材料、及び(3)一般式:RZCu〔式中、Rは希土類元素を示す。Zはアルカリ土類金属を示す。〕で表されるペロブスカイト型結晶構造を有する酸化物からなる電界発光材料。 (もっと読む)


【課題】
本発明は、蛍光粒子を含有する透明な蛍光プラスチックガラスを提供するとともに、その製造方法を提供する。
【解決手段】
蛍光粒子にはナノ粒子を用い、このナノ粒子は、蛍光色素である蛍光材料並びに/または遷移金属及び/若しくはランタニド元素でドープされた蛍光材料である。前記ガラスは透明性の点で純粋なプラスチックガラスとほとんど異ならないかほんのわずか相違するのみである。加えて前記ガラスは容易に製造することができる。
(もっと読む)


本発明は蛍光灯に関連し、前記蛍光灯の蛍光層は1乃至3の蛍光体を有し、前記蛍光灯は赤色、緑色及び深赤色の波長領域のそれぞれでピーク波長を有し、前記深赤色の蛍光体は非活性化緑色、親水性蛍光体から引き出される。蛍光層は、望ましくは赤色、Eu3+活性化蛍光体、緑色、Tb3+活性化蛍光体及び深赤色、Mn2+活性化蛍光体を有し、前記深赤色、Mn2+活性化蛍光体は、Tb3+,Mn2+活性化蛍光体である。Tb3+,Mn2+活性化蛍光体は、望ましくは(GdMg)B10:Ce3+,Tb3+,Mn2+活性化蛍光体である。このような蛍光体は、蛍光灯の製造工程において水性懸濁物として適用できる。 (もっと読む)


照明系は、青、緑及び赤からの混色原理(RGB混色)とLEDから発光される一次放射線を、前記放射線を吸収する蛍光体によってより長波長の光に変換する原理とを同時に利用し、その際、少なくとも2種のLEDが使用され、前記の第1のLEDは340〜470nmの領域(主波長)で一次発光し、かつ第2のLEDは600〜700nmの赤色領域(主波長)で発光し、その際、緑色成分は、第1のLEDの一次放射線を少なくとも部分的に緑色発光蛍光体により変換することにより製造され、その際、緑色発光蛍光体として、カチオンMを有しかつ基本式M(1−c)Si:D(式中、Mは成分としてSrを有し、Dは二価のユーロピウムでドープされていて、M=Sr又はM=Sr(1−x−y)BaCa、x+y<0.5である)で示されるオキシニトリドシリケートの種類からなる蛍光体を使用し、その際、前記オキシニトリドシリケートは完全に又はほとんどが、高温安定性の変態HTからなる。
(もっと読む)


661 - 680 / 688