説明

Fターム[4H001YA65]の内容

発光性組成物 (40,484) | 付活剤構成元素 (10,817) | Tb (610)

Fターム[4H001YA65]に分類される特許

21 - 40 / 610


【課題】電子線を照射した際、青色蛍光体の他の蛍光体に対する発光強度比が減少することで色温度が減少しても、発光色の色合いを自然な昼光色に維持することが可能な白色蛍光体を提供する。
【解決手段】Y:Eu、及び、YS:Euのうち少なくとも1種の化合物を含む赤色蛍光体、
Al12:Tb、及び、Y(Al,Ga)12:Tbのうち少なくとも1種の化合物を含む緑色蛍光体、並びに、ZnS:Ag、Al、ZnS:Ag、Cl、及び、ZnS:Ag、Al、Clのうち少なくとも1種の化合物を含む青色蛍光体からなる蛍光体であって、全体の重量に対して前記青色蛍光体を50〜60重量%含み、前記緑色蛍光体と前記赤色蛍光体との重量比(前記緑色蛍光体の重量/前記赤色蛍光体の重量)が0.5〜2.0であり、前記蛍光体、前記緑色蛍光体及び前記青色蛍光体を構成する粒子の平均粒子径が3〜15μmであることを特徴とする白色蛍光体。 (もっと読む)


【解決手段】(A1-xx3512(式中、AはY,Gd及びLuから選ばれる1種以上の希土類元素、BはCe,Nd及びTbから選ばれる1種以上の希土類元素、CはAl及びGaから選ばれる1種以上の元素であり、xは0.002≦x≦0.2である。)で示されるガーネット相を含有し、複数の一次粒子で構成された球形の多結晶体二次粒子であり、二次粒子の平均粒子径が5〜50μmである蛍光体粒子。
【効果】本発明の蛍光体粒子は、蛍光体粒子を分散させる樹脂、無機ガラス等の材料中において、励起光の吸収率を向上させ、蛍光体と封止樹脂との熱膨張率の差により発生する材料間界面応力による剥離を抑制することができる。また、発光に寄与しないフラックスに起因する不純物がないため、LEDの光取出し効率を向上させることができる。 (もっと読む)


【解決手段】(Axyz3512(式中、AはY,Gd及びLuから選ばれる1種以上の希土類元素、BはCe,Nd及びTbから選ばれる1種以上の希土類元素、CはAl及びGaから選ばれる1種以上の元素であり、x,y及びzは0.002<y≦0.2、0<z≦2/3、及びx+y+z=1を満たす正数である。)で示される組成のガーネット相を含有し、平均粒子径が5〜50μmであり、複数の一次粒子で構成された球形の多結晶体二次粒子である蛍光体粒子。
【効果】本発明の蛍光体粒子は、発光中心をなす希土類元素が、従来の蛍光体粒子と比べて、より均一分散しており、発光効率の高い黄色発光蛍光体として機能させることができる。 (もっと読む)


【解決手段】珪素酸窒化物又は珪素酸化物の蛍光体を、一般式SiOz(式中、zは、0<z<2を満たす)で表される部分酸化珪素を、窒素ガスを含有する雰囲気下で加熱して窒化させて得られ、一般式SiNxy(式中、x及びyは、0<x≦1.3、0<y≦1.5、かつ3x/4+y/2≦1を満たす)で表される窒化酸化珪素を出発物質として含む原材料を焼成して製造する。
【効果】本発明によれば、珪素酸窒化物又は珪素酸化物の蛍光体として、良好な蛍光特性を有する蛍光体を、低温で、かつ効率よく製造することができる。 (もっと読む)


【解決手段】(A1-xx3512(式中、AはY,Gd及びLuから選ばれる1種以上の希土類元素、BはCe,Nd及びTbから選ばれる1種以上の希土類元素、CはAl及びGaから選ばれる1種以上の元素であり、xは0.002≦x≦0.2である。)で示されるガーネット相を含有し、複数の一次粒子で構成された球形の多結晶体二次粒子であり、二次粒子の平均粒子径が5〜50μmである蛍光体粒子。
【効果】本発明の蛍光体粒子は、蛍光体粒子を分散させる樹脂、無機ガラス等の材料中において、励起光の吸収率を向上させ、蛍光体と封止樹脂との熱膨張率の差により発生する材料間界面応力による剥離を抑制することができる。また、発光に寄与しないフラックスに起因する不純物がないため、LEDの光取出し効率を向上させることができる。 (もっと読む)


【課題】カラーディスプレーに対する高い順応性をもち、純粋な色特性を備えたエレク
トロルミネッセンス装置を得ること。
【解決手段】芳香族反復単位を含むなるマトリックスと、発光性金属イオンもしく
は発光性金属イオン錯体とを含有してなる光ルミネッセンスおよびエレクトロル
ミネッセンス組成物が提供される。かかる組成物を製造する方法、および該組成
物から形成されるエレクトロルミネッセンス装置(10)が開示される。 (もっと読む)


【課題】均一な組成を有し、相対的に低温工程で行うことができる蛍光体の製造方法を提供する。
【解決手段】本発明は、蛍光体原料となる少なくとも1つの金属を液化アンモニアに溶解させて金属アミドタイプの前駆体を形成する段階と、上記金属アミドタイプの前駆体を収去する段階と、上記前駆体から蛍光体が形成されるように上記前駆体を焼成する段階を含む蛍光体の製造方法を提供する。 (もっと読む)


【課題】α−サイアロン蛍光材料、その製造方法およびその材料の製造装置を提供する。
【解決手段】α−サイアロンを有する蛍光材料の製造方法は、α−サイアロンの前駆体を提供する工程と、前駆体と点火剤を混合し、反応混合物を得る工程と、点火剤を燃焼させ、反応混合物の反応を誘発して蛍光材料を得る工程と、を備えてなる。 (もっと読む)


【課題】より高い量子変換効率、並びにデバイスの製造及び操作に好適な性能特性を有する様々な合金系の選択的な結晶相を合成する。
【解決手段】希土類金属元素及び/又は遷移金属元素がドープされた、化学式Ca1+xSr1−xGaIn2−ySe3−z(式中、0≦x≦1、0≦y≦2、0≦z≦3である)によって表されるエネルギー下方変換蛍光体が開示される。ドーパント不純物は、活性化剤として存在する1つ又は複数の化学種(Eu、Ce、Mn、Ru及び/又はそれらの混合物等)であり得る。モル分率x、y及びz、ドーパント種並びにドーパント濃度を変更して、ピーク発光波長及び/又は発光ピーク幅を調整することができる。 (もっと読む)


【課題】太陽輻射に含まれる近赤外線〜可視光領域の波長の内、近赤外線領域波長を可視光領域波長に変換することで遮熱性を有し、可視光領域の光は透過し、かつ透過した可視光と、近赤外線領域波長から変換した可視光領域波長の光を合わせることで高い採光性を有するシートの提供。
【解決手段】本発明の遮熱性採光シートは、近赤外線遮蔽層を含む可撓性シートであって、前記近赤外線遮蔽層が、近赤外線領域波長を可視光領域波長に変換する波長変換材料を含む合成樹脂組成物と、前記波長変換材料を含まない合成樹脂組成物との非相溶混合体からなる海島分散構造によって形成された非相溶樹脂層であることによって得られる。 (もっと読む)


【課題】高演色高効率・広色域高効率の白色LED発光装置と、それを作成可能な赤色発光蛍光体の提供。
【解決手段】本発明の実施形態による赤色発光蛍光体は、下記一般式(1):
(M1−xECAlO (1)
を有することを特徴とするものである。式中、MはIA族元素、IIA族元素、IIIA族元素、IIIB族元素、希土類元素、およびIVA族元素から選択される元素であり、 ECはEu、Ce、Mn、Tb、Yb、Dy、Sm、Tm、Pr、Nd、Pm、Ho、Er、Cr、Sn、Cu、Zn、As、Ag、Cd、Sb、Au、Hg、Tl、Pb、Bi、およびFeから選択される元素であり、
元素Mは、元素Mとは異なるものであり、4価の元素群から選択されるものであり、0<x<0.2、
0.55<a<0.80、
2.10<b<3.90、
0<c≦0.25、および
4<d<5であり、この蛍光体は、波長250〜500nmの光で励起した際に波長620〜670nmの間にピークを有する発光を示す。 (もっと読む)


【課題】濃度消光を抑制した高輝度蛍光体及びその製造方法を提供すること。
【解決手段】立方晶の結晶構造を有する第2族元素及び/又は第12族元素と第16族元素の化合物及び賦活剤成分を含む化合物を含有する高輝度蛍光体の前駆体と発熱分解性化合物を容器内に投入する(ステップS1)。次に、この密閉容器を封止して密閉する(ステップS2)。次に、発熱分解性化合物を加熱する(ステップS3)。次に、発熱分解性化合物を分解して、密閉容器内を1MPa以上50MPa以下に加圧する(ステップS4)。 (もっと読む)


【課題】賦活剤の活性の高い高輝度蛍光体及びその製造方法を提供すること。
【解決手段】立方晶の結晶構造を有する第2族元素及び/又は第12族元素と第16族元素の化合物を含有する高輝度蛍光体の前駆体を容器内に投入する(ステップS1)。次に、この密閉容器を加熱する(ステップS2)。次に、容器の周囲から衝撃波を付与する(ステップS3)。 (もっと読む)


【課題】 透明性が高く、異相の少ないガーネット構造酸化物からなる固体シンチレータ用材用および固体シンチレータを提供する。
【解決手段】 下記一般式で表わされるガーネット構造酸化物からなることを特徴とする固体シンチレータ用材料。一般式:(Gd1−α−β−γTbαLuβCeγ3(Al1−xGaaO、0<α≦0.5、0<β≦0.5、0.0001≦γ≦0.1、0<x<1、4.8≦a≦5.2、11.6≦b≦12.4。また、Ba含有量が10〜400質量ppmであることが好ましい。 (もっと読む)


【課題】緑色蛍光体およびその製造方法、ならびにそれを含む白色発光素子を提供する。
【解決手段】下記化学式(1)で表される組成を有し、かつCuのKα1で回折させたX線回折パターンで、第1強度ピークが回折角(2θ)30.5°±1.0°に位置し、第2強度ピーク〜第6強度ピークが、回折角(2θ)24.8°±1.0°、32.0°±1.0°、35.0°±1.0°、39.3°±1.0°および48.5°±1.0°に順序なしに位置する緑色蛍光体、その製造方法および該緑色蛍光体を含む発光素子である。
(もっと読む)


【課題】近紫外光による励起効率の高い緑色蛍光体を有する発光装置を提供する。
【解決手段】近紫外光を出射する発光素子10と、発光素子10の出射光により励起されて緑色光を発光する、M1-x-y-zInxBO3:Cey,Tbz(MはSc、Y、La、Gd、Luから選択される少なくとも1種の元素を示し、0<x、0<y、0<z、0<x+y+z≦1)で表される緑色蛍光体を含む蛍光体層20とを備える。 (もっと読む)


【課題】ガーネット型化合物において、Pr等の置換イオンを母体化合物中に固溶させやすくする。
【解決手段】本発明のガーネット型化合物は、下記一般式で表されるものである。一般式A1(III)3-2xA2(II)A3(III)B(III)C1(III)3-xC2(IV)12(ローマ数字:イオン価数、A1〜A3:Aサイトの元素、B:Bサイトの元素、C1及びC2:Cサイトの元素、A1、A2、B、C1、及びC2は各々、上記イオン価数の少なくとも1種の元素、A3:3価の希土類(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)からなる群より選ばれた少なくとも1種の元素、A1とA3とは異なる元素、0<x<1.5(但し、x=1.0を除く。)、O:酸素原子) (もっと読む)


【課題】実用上、発光強度および温度変化に対する安定性において問題の少ない蛍光体を提供することにある。
【解決手段】式aM12O・bM2O・cM32(式中のM1はLi、Na、K、RbおよびCsからなる群より選ばれる1種以上の元素であり、M2はCa、Sr、Ba、MgおよびZnからなる群より選ばれる1種以上の元素であり、M3はSiおよび/またはGeであって、aは0.1以上1.5以下の範囲であり、bは0.8以上1.2以下の範囲であり、cは0.8以上1.2以下の範囲である。ただしa=b=c=1でかつM1=LiかつM3=Siのとき、M2はSrのみであることはない。)で表される化合物に、少なくとも付活剤としてEuが含有されることを特徴とする蛍光体。 (もっと読む)


【課題】二次粒子と一次粒子の大きさの差異が小さく、融着、凝集の少ない高分散性、単分散のサイアロン系酸窒化物蛍光体を得る。蛍光が均一で、発光強度の大きい蛍光体を提供する。
【解決手段】MxSi12-(m+n)Al(m+n)n16-n:Lny(式中、0.3≦x+y<1.5,0<y<0.7,0.3≦m<4.5、0<n<2.25、m=ax+byである)で表わされ、α−サイアロンに固溶する金属Mの一部または全てが、発光の中心となるランタニド金属Lnで置換されたα−サイアロンを主成分とし、(A)粒度分布曲線におけるメジアン径とBET比表面積から換算される球相当径との比率A1=D50/DBETが3.0以下、または(B)粒度分布曲線におけるメジアン径と走査型電子顕微鏡写真による一次粒子径との比率A2=D50/Dparticleが3.0以下である酸窒化物蛍光体。 (もっと読む)


【解決手段】Sc及びYを含む希土類から選ばれる1種類以上の希土類金属と、Al,Ga,In,Si及びGeから選ばれる1種類以上の金属とを含む金属材料を溶融して合金とし、該合金を平均粒径が50μm以下の球形状乃至略球形状の微粒子に形成し、該合金微粒子を酸化することにより酸化物蛍光粒子を製造する。
【効果】本発明の製造方法により得られた蛍光粒子は、ネッキングや融着が非常に少なく、蛍光粒子製造工程において、ネッキングや融着を解消するための解粒や分級工程が軽減できる。また、従来の蛍光粒子と比較して、粒度分布をシャープにすることができ、実際に蛍光粒子を使用する場合に、粒子の塗布や混合工程において、流動性がよく、取り扱いが容易である。また、形状が一定であることにより、蛍光体の発光の取り出し効率が向上する。 (もっと読む)


21 - 40 / 610