説明

Fターム[4K001AA30]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Zn (341)

Fターム[4K001AA30]に分類される特許

161 - 180 / 341


【課題】ドワイトロイド型の上吹き焼結機で、硫化亜鉛及び硫化鉛を含有する硫化物原料とともに、酸化亜鉛及び酸化鉛を含有する酸化物原料を含む装入原料を焼結する方法において、酸化物原料を増処理する際に、必要な発熱量を確保することにより、焼結塊の生成において良好な生産性と残留するカドミウム等の品質を向上することができる酸化物原料を含む硫化物原料の焼結方法を提供する。
【解決手段】前記装入原料として、前記硫化物原料と前記酸化物原料を混合工程で混合解砕に付し、次いで造粒工程に付して製造したペレットを用いる際に、該装入原料に、粒径が5〜20mmであって、該酸化物原料の装入量に対し1〜5質量%に当たる粒状コークスを添加することを特徴とする。 (もっと読む)


【課題】電気炉方式の溶融部を有するフューミング炉を用いる際に、銅源の溶融部への投入にともなう融体の温度低下を抑制して、フューミング炉の電力消費量を低減することができるスラグフューミング方法を提供する。
【解決手段】前記フューミング炉は、電気炉方式の溶融部、ダスト回収部及び該溶融部とダスト回収部をつなぐ排ガスダクト部からなり、かつ下記(1)及び(2)の要件を満足することを特徴とする。
(1)前記排ガスダクト部の空間では、前記溶融部の下部に形成される融体から揮発した亜鉛と鉛を含む蒸気が、送入空気で酸化され、それにともなう酸化発熱により排ガスの温度を上昇する。
(2)前記銅源は、前記排ガスダクト部の空間に設置した銅源装入用シュートに、フューミング炉外に設けた装入口から供給され、該シュート内部を移動する間に、排ガスによるシュートの加熱により予熱された後、溶融部の融体直上に設けた排出口から排出される。 (もっと読む)


【課題】亜鉛及び/又は鉛製錬の熔錬法で産出される含銅ドロスから、銅、鉛等の有価金属を効率的に回収する製錬方法を提供する。
【解決手段】亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグを銅共存下でスラグフューミング処理する際に産出される熔融状態のマット及び銅合金からなる融体に、銅及び鉛を含有する含銅ドロスを投入し、次いで酸素含有ガスを吹き込むことを特徴とする。この際、前記融体の温度としては、1200〜1500℃であることが好ましい。 (もっと読む)


【課題】フューミング炉内に亜鉛及び/又は鉛製錬の熔錬炉から産出される亜鉛、鉛、ヒ素及びハロゲン族元素を含有するスラグと銅源を投入して融体を形成しながら、フューミングにより、亜鉛と鉛を揮発分離するスラグフューミング方法において、亜鉛の高揮発速度の下で、エネルギーコストを削減し、かつハロゲン族元素の含有量が少ない亜鉛と鉛を含むダストが得られるスラグフューミング方法を提供する。
【解決手段】前記フューミングに際し、炉内に炭素質還元剤と石灰石を添加するとともに、炉内の気相部に過剰の炭素質還元剤を燃焼するに十分な量の空気を送入してスラグ温度の低下を防止する。 (もっと読む)


【課題】製鉄工程から発生する鉄および亜鉛含有のダスト、スラリー等の副生成物を還元する還元炉において発生した二次ダストから亜鉛を回収するに当たって、亜鉛濃縮率とともに亜鉛回収率を上げることができる実用的な亜鉛回収方法を提供する。
【解決手段】還元炉で発生した二次ダストをpHが8〜10のスラリー化した上で、鉄含有量の多い大きな粒子に付着した亜鉛含有量の多い微粒子をミクロ状態で超音波洗浄のような処理法で剥離する第一の工程と、その第一の工程で生じた亜鉛含有量の多い微粒子を多く含む部分と鉄粒子を多く含む部分を湿式磁選のような手段で分離する第二の工程により、亜鉛微粒子を多く含む亜鉛原料に用いる部分と鉄粒子を多く含む製鉄原料に用いる部分に分離する。 (もっと読む)


【課題】従来の湿式法に比べて、工程が効率的で、かつ経済的に優れた製鉄ダストの亜鉛回収方法を提供することにある。
【解決手段】亜鉛溶出工程と、固液分離工程と、亜鉛回収工程とを具え、前記亜鉛回収工程はキレート塔等のキレート30を具えた設備に、前記溶出液21を通過させることことで、キレート30を前記溶出液21に接触させて、前記溶出液21中の亜鉛を、亜鉛アンモニア錯イオンから、亜鉛キレート錯体を経て、亜鉛単独イオンに変換させることを特徴とする。 (もっと読む)


【課題】銅の溶出を抑制しつつ脱塩素と亜鉛溶出を進めることができる溶融飛灰等の処理方法を提供する。
【解決手段】有価金属成分および塩素成分を含む溶融飛灰を水浸出して脱塩素処理した後に、その固形分を硫酸浸出して有価金属を溶出させる処理方法において、上記硫酸浸出工程で脱塩素処理後の固形分と硫酸性溶液とを混合したスラリーのpHを4以上〜5.4以下、酸化還元電位を300mV以下、好ましくはスラリーのpHを5以上〜5.4以下、酸化還元電位を200〜300mVに制御することによって銅の溶出を抑制しつつ脱塩素と亜鉛溶出を進めることを特徴とする溶融飛灰等の処理方法。 (もっと読む)


【課題】スクラップを収容するスクラップ収容室を大気圧状態から高真空状態にする必要がなく、運転時間を短縮させるのに有利な蒸発亜鉛回収装置を提供することを課題とする。
【解決手段】蒸発亜鉛回収装置は、蒸発可能な亜鉛が付着しているスクラップを収容するスクラップ収容室10をもつ炉体1と、スクラップ収容室10よりも低温に維持されスクラップ収容室10から流れた亜鉛蒸気を凝縮させて亜鉛微粒子を生成させる第1冷却室20と亜鉛微粒子を捕集する第1捕集部23とをもつ第1冷却部2と、第1冷却室20よりも低温に維持され第1冷却室20から流れたガスを冷却させつつ通過させる第2冷却室30と亜鉛微粒子を捕集する第2捕集部33とをもつ第2冷却部3と、スクラップ収容室10に供給した非酸化性ガスをキャリアガスとして、スクラップ収容室10、第1冷却室20および第2冷却室30の順に流すキャリアガス供給源6とを有する。 (もっと読む)


【課題】凝固速度が大きな状態で晶出した金属がある程度成長した後に冷却体から剥離する事態を回避して、精製効率の向上を図ることができ、しかも得られる精製金属重量も大きな金属精製方法及び装置等を提供する。
【解決手段】精製すべき溶融金属2中に冷却体3を浸漬し、この冷却体3を回転させながら冷却体表面に高純度金属を晶出させる金属の精製方法において、精製初期前半の冷却体3の最大周速を精製初期以降の平均周速よりも大きく設定し、かつ精製初期後半の冷却体の平均周速を精製初期以降の平均周速よりも小さく設定して精製を行う。 (もっと読む)


【課題】熔錬炉法において生成する含銅ドロスを簡易かつ効率的に処理する方法を手段を提供する。
【解決手段】熔鉱炉で発生したスラグを、含銅粗鉛および炉鉄を粗分離した後、スラグフューミング炉内で加熱還元するに際して、該スラグフューミング炉に、前記スラグと共に、銅と、含銅粗鉛から分離して得られた含銅ドロスとを装入し、かつ、前記スラグフューミング炉内で熔体に、燃料と酸素を、同時に吹き込むか、あるいは、同時に吹き付けることによって、局部的な高温領域を生成させることにより、スラグからの亜鉛と鉛の回収と共に、含銅ドロスの変換処理を同時に行う。 (もっと読む)


【課題】 酸化亜鉛ケーキの含水率の影響を受け、ロータリーキルン内壁への付着物の成長抑制を可能とする操業方法の提供を課題とする。
【解決手段】 亜鉛を含有する鉄鋼ダストを還元剤とともに還元焙焼炉に装入して還元する工程と、該還元焙焼炉から回収された粗酸化亜鉛に湿式処理を施す工程と、得られる酸化亜鉛スラリーに脱水処理を行う工程と、得られる酸化亜鉛ケーキを乾燥加熱炉に装入して焼成する工程とからなる酸化亜鉛焼鉱または酸化亜鉛団鉱の製造方法の、酸化亜鉛ケーキを乾燥加熱炉に装入して焼成する工程において、酸化亜鉛ケーキを、スクリューコンベアを介してロータリーキルンに装入して酸化亜鉛を乾燥するに際して、ロータリーキルンに供給するスクリューコンベア内で酸化亜鉛ケーキに必要に応じて水を注水する。 (もっと読む)


【課題】精製すべき溶融金属中に冷却体を浸漬し、冷却体を回転させながら表面に高純度金属を晶出させる金属の精製方法に用いられる前記冷却体であって、冷却体が表面に経時的な摩耗劣化を生じても、冷却体の全体を交換する必要を無くして、材料面、コスト面等での無駄の発生を防止した冷却体等を提供する。
【解決手段】上下方向に分割された複数の分割体35、36、37の隣接するもの同士がねじ止め等により分離可能に連結固定されることにより、冷却体3が形成されている。 (もっと読む)


【課題】 亜鉛あるいは鉛製錬の熔鉱炉から排出される溶湯のスラグフューミングにおいて、不純物品位の低いスラグフューミング後スラグを安定して得るために、熔鉱炉の溶湯からスラグと粗鉛とを確実に分離し、鉛や砒素の含有量が少ないスラグをスラグフューミング炉に安定して供給する。
【解決手段】 熔鉱炉1からの溶湯を底部に底抜き穴を有するレードル2に受け入れ、溶湯を受け入れたレードル2を2分間以上静置して粗鉛をレードル2の底に沈降させ、溜まった粗鉛を底抜きして回収した後、レードル2を傾転してスラグとスパイスをスラグフューミング炉3に装入する。 (もっと読む)


【課題】精製すべき溶融金属中に冷却体を浸漬し、冷却体を回転させながら表面に高純度金属を晶出させる金属の精製方法に用いられる前記冷却体であって、表面に晶出した金属の遠心力による剥離防止効果を高めることができる冷却体等を提供する。
【解決手段】冷却体3の表面に1個または複数個の凹部31、32、38が形成されると共に、凹部内を含む冷却体の表面に晶出した金属5に冷却体3の回転によって遠心力が加わることによる晶出金属の剥離を防止するために、凹部の底部から開口部までの間の壁面に、凹部内の空間を狭める方向に突出した剥離防止用突部313が形成されているか、及び/または、底部から開口部までの間の壁面の少なくとも一部が、前記遠心力に対して晶出金属に抵抗力を付与する方向に傾斜した平面状または曲面状の傾斜面315に形成されている。 (もっと読む)


【課題】処理コストが低減される還元処理装置及び還元処理方法を提供する。
【解決手段】亜鉛含有酸化鉄又は酸化亜鉛又は酸化鉄が供給される還元炉2内に、還元材として効果的であると共に加熱材として機能する廃棄物である汚泥、油泥、木くず、繊維くず、ゴムくず、動植物性残渣のうちの少なくとも一つを供給し、これを熱源にすると共にこれ以外の還元材を用いない状態で還元処理を行い、無駄に還元材を用いること無く、用いられる還元材を熱源として利用し、処理コストの低減を図りつつ、亜鉛を還元し且つ/又は酸化鉄を還元して金属鉄を得る。 (もっと読む)


【課題】カルシウム、鉛、亜鉛、銅及び塩素を含む重金属含有粉末から、水分含有率が小さく塩素濃度の低い、鉛及び亜鉛を含む固形分を得る方法を提供する。
【解決手段】(A)重金属含有粉末をpH9〜12で水洗後、固液分離して固形分を得る工程と、(B)工程(A)の固形分と硫酸を混合し、pH2〜4のスラリーを得た後、固液分離し、Ca及びPbを含む固形分と、Zn及びCuを含む液分を得る工程と、(C)工程(B)の固形分とアルカリ水溶液を混合し、pH13.5以上のスラリーを得た後、固液分離し、Caを含む固形分と、Pbを含む液分を得る工程と、(D)工程(C)の液分に硫酸を加えてpHを9〜12とし、Pb(固形分)を含むスラリーを得る工程と、(E)工程(B)の液分に金属亜鉛を浸漬し、金属銅と、Znを含む液体を得る工程と、(F)工程(D)のスラリーに対して、pHを常時9以上に保ちつつ、工程(E)の液分を徐々に添加し、pH9〜12の混合液を得た後、固液分離し、Pb及びZnを含む固形分を得る工程を含む。 (もっと読む)


【課題】重金属類及び有機物を含有する有害排水を浄化処理し、該排水を放流可能な状態にまで無害化する。
【解決手段】塩素バイパスダストを含むスラリーS1を浮遊選鉱した際に発生する浮遊選鉱排水W3等に消石灰スラリー等のアルカリ剤を添加してスラリーS2のpHを10〜12に調整する。次に、pH調整したスラリーS2をフィルタープレス12で固液分離し、排水W3に残留する重金属類を除去する。次に、フィルタープレス12のろ液W4を、砂ろ過器14で二次ろ過し、キレート樹脂塔15で重金属類を吸着除去したろ液W5に対し、有機物処理槽16において酸化剤を添加し、ろ液W5中の有機化合物を分解する。該排水処理方法により、ばいじんのスラリーを浮遊選鉱した際に発生する排水や、汚染土壌のスラリーを浮遊選鉱した際に発生する排水等についても無害化することができる。 (もっと読む)


【課題】短時間で原料を処理して再資源化できる再資源化装置を提供する。
【解決手段】原料の投入を許容する原料供給部10と、前記原料を異なる温度で加熱する減容槽20、溶融槽30および熱分解槽40と、前記原料を搬送して全ての前記減容槽20、溶融槽30および熱分解槽40に通過させるベルトコンベア70とを備えた原料処理装置1において、少なくとも溶融槽30のベルトコンベア70に、加熱により前記原料が液化した液化物を排出する貫通穴72を備えた。 (もっと読む)


【課題】短時間で原料を処理して再資源化できる再資源化装置1,1aを提供する。
【解決手段】原料の投入を許容する原料供給部10と、前記原料を加熱する減容槽20、溶融槽30および熱分解槽40と、前記原料を搬送して全ての前記加熱槽に通過させるベルトコンベア70とを備えた再資源化装置1,1aにおいて、前記減容槽20、溶融槽30および熱分解槽40を、順に並べて配置し、前記ベルトコンベア70を、前記配置順に前記原料を搬送する構成とした。 (もっと読む)


【課題】ステンレス鋼製造工程で発生するダスト等の廃棄物を再利用するに際し、Crの還元エネルギーの減少とCrの溶鋼への収率の上昇を可能とするステンレス鋼の製造方法を提供する。
【解決手段】原料を電気炉11で溶解して溶鋼Gとしたのち、この溶鋼Gを精錬炉としてのAOD12で精錬してステンレス鋼Hとするステンレス鋼製造工程1を有するステンレス鋼の製造方法であって、ステンレス鋼製造工程1で発生する電気炉ダストなどの亜鉛含有廃棄物Aに炭素質還元剤Bを添加してブリケットプレス2で炭材内装塊成物Cを形成し、この炭材内装塊成物Cを回転炉床炉3内で加熱することにより亜鉛を還元揮発させて除去して脱亜鉛塊成物Dとし、この脱亜鉛塊成物DをAOD12の酸化期および/または還元期に冷却材として装入する。 (もっと読む)


161 - 180 / 341