説明

Fターム[4K001KA13]の内容

金属の製造又は精製 (22,607) | フラックス (686) | その他 (99)

Fターム[4K001KA13]に分類される特許

21 - 40 / 99


【課題】コールドクルーシブル式誘導溶解法を利用した酸化精錬技術において、少なくとも炭素およびCaを含む不純物元素を合金中から除去できる方法を明示すること、および、この酸化精錬技術を、製品鋳塊重量が例えば10kg以上となる実用規模の精錬技術にまで発展させるための方法を明示すること。
【解決手段】精錬剤は、酸化鉄とCaハライド組成フラックスとの混合物である。Caハライド組成フラックスは、例えばフッ化カルシウムに酸化カルシウムを5〜30wt%配合したCaF-CaOである。酸化鉄の添加重量を、合金溶湯プール6中の炭素およびカルシウムを含む不純物元素を全量酸化させるために算出される算出重量の0.2倍以上、4.0倍以下とする。また、合金溶湯プール6の重量に対するCaハライド組成フラックスの添加率を、0.5wt%以上、5.0wt%以下とする。精錬工程では、チャンバー内の排気状態を15分以上保持する。 (もっと読む)


【課題】コールドハース式電子ビーム溶解法における、酸化剤として酸化鉄などを用いる酸化精錬技術において、不純物元素である炭素を合金中から除去できる方法を明示すること、および、この酸化精錬技術を、製品鋳塊重量が例えば10kg以上となる実用規模の精錬技術にまで発展させるための方法を明示すること。
【解決手段】コールドハース式電子ビーム溶解装置11の水冷銅製皿状容器9に合金原料を供給して、5×10−4mbarよりも低い気圧下において合金溶湯プール13を形成する。その後、水冷銅製皿状容器9内の合金溶湯プール13に酸化鉄を添加して、不純物元素である炭素を除去する。ここで、酸化鉄の添加重量を、合金溶湯プール13中の不純物元素である炭素を全量酸化させるために算出される算出重量の1.0倍以上、4.0倍以下とする。 (もっと読む)


高い延伸性を有するアルミニウム合金材料及びその製造方法である。この高い延伸性を有するアルミニウム合金材料は,重量パーセントで,0.30〜1.20%の鉄と,0.03〜0.10%のケイ素と,0.01〜0.30%の希土類元素,すなわち,セリウム及びランタンと,残存部分にアルミニウム及び不可避的不純物とを含有する。アルミニウム合金は,これらの材料から,溶融鋳造処理及び半焼鈍処理によって製造される。これにより製造されたアルミニウム合金導体は,高い延伸性を有し,使用の際に良好な安全性及び安定性を有する。 (もっと読む)


【課題】ニオブ、モリブデン、タングステンなどの不純物元素を含んだ低濃度ルテニウム含有物から、高純度のルテニウムを効率よく回収できる方法を提供する。
【解決手段】ニオブ、モリブデン、タングステンの少なくとも一種を含むルテニウム含有物を、アルカリとともに加熱しアルカリ熔融液とするアルカリ熔融工程と、該アルカリ熔融液を冷却して固化し水を加えてルテニウム浸出スラリーとする湿式浸出工程と、該スラリー中にカルシウム化合物を添加し固液分離により不純物を除去したルテニウム溶液を得るカルシウム添加工程と、該ルテニウム溶液に還元剤を酸化還元電位が30〜−300mVの範囲になるまで添加し水酸化ルテニウムを生成させる湿式還元工程と、該水酸化ルテニウムを還元性雰囲気中で加熱することにより金属ルテニウムとする加熱還元工程とを行う。 (もっと読む)


【課題】非鉄製錬、電子部品などリサイクル原料の溶融炉、産業廃棄物を溶融処理する乾式炉より発生する乾式煙灰中のPbの回収において、煙灰を処理して得られた電解処理用の高Bi品位のアノードに対しても高純度の鉛を回収することができる鉛の電解方法を提供する。
【解決手段】Bi品位が5から30mass%の高不純物アノードをアンチモン品位が1から3mass%になるように調整した後、電解処理し、高純度の鉛を回収する鉛の電解方法。 (もっと読む)


【課題】高濃度で二酸化ケイ素、ケイ酸鉛、酸化アルミニウムなどの不純物を含有するルテニウム含有物から不純物を除去しルテニウムを濃縮する方法を提供する。
【解決手段】ケイ素化合物とアルミニウム化合物のうちの少なくとも一方の不純物を含むルテニウム含有物から不純物を除去しルテニウムを濃縮する方法であって、該ルテニウム含有物をアルカリ金属水酸化物などとともに220〜400℃の温度範囲に加熱してアルカリ溶融液とルテニウム含有固形物との混合体を得る低温アルカリ溶融工程と、該混合体を冷却して該アルカリ溶融液を凝固させ水を加えて浸出した後に固液分離してルテニウム濃縮残渣を得る湿式浸出工程と、該ルテニウム濃縮残渣を酸浸出した後に固液分離してルテニウム再濃縮残渣を得る酸浸出工程と、を有するルテニウムの濃縮方法。 (もっと読む)


【課題】アルミニウム合金中に含まれるマグネシウムを除去するもので、工程が簡便で短時間に作業することが可能であり、さらには使用済みの電池滓の再利用を図ることができる、低コストでアルミニウム中のMg濃度を低減させる方法を提供する。
【解決手段】マグネシウムを含有するアルミニウム合金に、ピロリン酸マンガン(Mn)を添加して加熱溶融するか又はマグネシウムを含有するアルミニウム合金を加熱溶融させた溶湯にピロリン酸マンガン(Mn)を添加して、アルミニウム中のマグネシウムを分離・除去することを特徴とするアルミニウム合金からのマグネシウムの除去方法。 (もっと読む)


【課題】設備を複雑にすることなく活性金属の添加歩留を高くすることのできる活性金属含有銅合金溶製用フラックスを提供する。
【解決手段】溶解炉又は保持炉によって、活性金属として少なくともCrを含有する銅合金を1300℃以下で溶製するに際して炉内の銅又は銅合金の溶湯の表面に使用され、当該溶湯の温度で液相となる活性金属含有銅合金溶製用フラックスであって、前記フラックスは、CaO−SiO2−Al23−MgO−X2O−Cr23系複合酸化物を含み、前記X2Oが、Na2O及びK2Oのうちの少なくとも一方であり、且つ、組成の合計を100質量%としたときに、前記CaOを16〜45質量%、前記SiO2を31〜65質量%、前記Al23を8〜25質量%、前記MgOを0質量%を超え10質量%以下、前記X2Oを0質量%を超え5質量%以下、前記Cr23を0質量%を超え5質量%以下の範囲で含有している。 (もっと読む)


【課題】銅含有鋼屑を使用して製造した溶銑中の銅を、大がかりな設備を必要とせずに硫黄含有フラックスを用いて効率良く除去し、次いで、前記硫黄含有フラックスにより持ち来たされる溶銑中の硫黄を、銅を含有する硫黄含有フラックスを排出することなく、同一反応容器内で効率的に除去し、銅含有量及び硫黄含有量ともに少ない溶銑を製造する。
【解決手段】溶銑からの銅及び硫黄の除去方法は、銅含有鋼屑を加炭溶解して製造した、反応容器内に収容された溶銑に、硫黄含有フラックスを添加し、該フラックスに溶銑中の銅を吸収させて溶銑中の銅を除去し、次いで、この銅を含有する硫黄含有フラックスを排出することなく、前記反応容器内に脱硫用フラックスを添加して溶銑に含有される硫黄を除去する。 (もっと読む)


【課題】 鉄源として銅含有鋼屑を使用し、該鋼屑中の銅に起因する溶銑中の銅を硫黄含有フラックスにより除去して高級鋼を製造するに際し、溶銑中の銅を大がかりな設備を必要とせずに効率良く除去するとともに、硫黄含有フラックスを反応容器から排出しなくても、該フラックス中の銅の溶銑へ戻りを防止して、硫黄含有フラックスにより溶銑中に持ち来たされる硫黄を効率良く除去する。
【解決手段】 本発明による鋼屑を鉄源とした溶銑の製造方法は、銅含有鋼屑を加炭溶解して製造した、反応容器内に収容された溶銑に、硫黄含有フラックスを添加し、該フラックスに溶銑中の銅を吸収させて溶銑中の銅を除去し、次いで、この銅を含有するフラックスを排出することなく、前記反応容器内にCaO含有物質を添加し、該CaO含有物質による熱吸収により前記硫黄含有フラックスを固化させる。その後、前記CaO含有物質を脱硫剤として続けて脱硫処理を行うことが好ましい。 (もっと読む)


【課題】 鉄源として銅含有鋼屑を使用し、該鋼屑を溶解して製造される溶銑中の銅を、FeS−Na2S系フラックスなどの硫黄含有フラックスにより除去するに際し、大がかりな設備を必要とせずに効率良く銅を除去する。
【解決手段】 本発明による溶銑の脱銅処理方法は、反応容器内に収容された銅含有溶銑に、精錬剤として、アルカリ金属の化合物と鉄−硫黄合金とハロゲン化物とを添加し、前記精錬剤により銅含有溶銑中の銅を吸収・除去することを特徴とする。 (もっと読む)


【課題】焼結機における未燃カーボンの発生を抑制することにより、高生産性でかつ低炭材使用原単位にて焼結鉱を製造しうる方法を提供する。
【解決手段】焼結原料中に含まれる配合カーボン量C1と、主排風機で焼結機から排出された排ガス量と該排ガス中のCOおよびCO濃度よりCバランスに基づいて算出された燃焼カーボン量C2とから下記式でカーボン燃焼率Rc(単位:%)を求め、このカーボン燃焼率Rcが予め定めた一定値以上となるように、前記焼結機の操業条件(パレット移動速度、前記吸引ガスへの酸素富化量、前記焼結原料への炭材配合量、前記焼結ベッドの上層部への炭材装入量、および、前記焼結原料に配合する炭材の粒度のうち1または2以上の操業因子)を調整する。
式 Rc=C2/C1×100 (もっと読む)


【課題】鉄源として銅含有鋼屑を使用して高級鋼を製造するに際し、鋼屑中の銅を効率良く、且つ大がかりな設備を必要とせずに除去する方法を提供する。
【解決手段】鋼屑中の銅の除去方法は、銅含有鋼屑を加炭溶解して製鋼用溶銑を製造し、その後、該溶銑に含まれる銅を硫黄含有フラックスを用いて除去し、次いで、溶銑に含まれる硫黄を除去する。この場合、前記硫黄含有フラックスとしてNa2Sを主成分とするフラックスを使用すること、溶銑に含まれる銅の除去処理を、機械攪拌式精錬装置で行う、或いはフラックス吹き込み法により行うことが好ましい。 (もっと読む)


本発明は、貴金属を回収するための方法および装置に関する。従って、本発明は、原材料から貴金属組成物を得るための連続プロセスを与え、そのプロセスは、(i)プラズマ炉内で原材料を加熱して、上側スラグ層および下側溶融金属層を形成させる工程と、(ii)前記スラグ層を除去する工程と、(iii)前記溶融金属層を除去する工程と、(iv)除去した前記溶融金属層を凝固させる工程と、(v)凝固させた前記金属層を破砕して、破砕片を形成させる工程と、(vi)前記破砕片から貴金属が豊富な組成物を回収する工程と、を含み、前記原材料は貴金属含有材料およびコレクター金属を含み、前記コレクター金属は、固溶体を形成できる金属または合金、1つ以上の貴金属を有する合金または金属間化合物である。 (もっと読む)


【課題】鉛の除去効果が高く、小型の設備でも実施可能であり、設備投資費用を抑制できるような、産業的に優れた鉛の除去方法を提供することである。
【解決手段】純金属および合金からなる群より選ばれた被処理物を加熱して溶融させ、この溶融物に対して、金属ハロゲン化物とオキシ金属ハロゲン化物との少なくとも一方を接触させることによって、被処理物中の鉛を除去する。 (もっと読む)


【課題】バナジウム鉱石等を原料とせず、フェロバナジウムを高効率、かつ安価に製造するフェロバナジウムの製造方法を提供する。
【解決手段】バナジウム原料として五酸化バナジウム、鉄原料として酸化鉄供給物質、炭素質還元剤、およびスラグ形成剤を混合する混合工程(S1)と、混合した混合物を、加熱、溶融して溶融物とし、当該溶融物中に、生成したフェロバナジウムを凝集させる溶融工程(S2)と、フェロバナジウムを凝集させた溶融物を冷却して生成したスラグと、フェロバナジウムとを分離する分離工程(S3)と、を含み、溶融工程(S2)において、加熱温度を1350〜1650℃に制御することを特徴とする。 (もっと読む)


【課題】セラミックス粒子強化アルミニウム複合材料からセラミックス粒子を完全に分離することができ、セラミックス粒子強化アルミニウム複合材料のリサイクルを可能にして、地球環境の保全や省エネルギーに貢献できるセラミック粒子強化アルミニウム複合材料のリサイクル方法を提供する。
【解決手段】セラミック粒子強化アルミニウム合金を状態図で固相と液相が共存する温度範囲まで加熱して半凝固状態になるように溶解し、この半凝固状態のアルミニウム合金に攪拌法によりフラックス粒子を添加し、その後、攪拌しながら半凝固状態のアルミニウム合金を700℃〜800℃の温度範囲に加熱して、セラミックス粒子を溶湯状態のアルミニウム合金から分離させる。 (もっと読む)


【課題】バインダーの使用量と水の使用量を極力減らしても強度が高められるブリケットを製造すること。
【解決手段】酸化鉄原料および/または炭素質物質を粉砕する工程と、酸化鉄原料および炭素質物質を用いて一次粒状物を形成する工程と、さらに複数の一次粒状物を加圧することにより二次粒状物に成型する工程を含む。 (もっと読む)


【課題】Mn及びMn合金を、大量生産に適した安価な方法で効率よく脱りんして、りん濃度が0.03質量%以下、好ましくは0.02質量%以下のMn及びMn合金を製造する。
【解決手段】炭素濃度2.0質量%以下、酸素濃度0.5質量%以下で、Mnを60質量%以上含有する溶融Mn又はMn合金を、CaF2及びCaC2を合計で80質量%以上含有し、かつそれらの質量比が(CaC2)/{(CaC2)+(CaF2)}×100=30〜65%の範囲あるフラックスを用いて、溶湯温度1350〜1500℃で脱りん処理する。前記フラックスに加えて、金属Ca及びCa合金から選ばれた少なくとも1種の金属Ca源を添加することが好ましい。 (もっと読む)


【課題】
アルミニウム合金溶湯中の酸化物を除去する非ハロゲンフラックスの使用時に、溶湯温度を上昇させなければならないという問題点を解決することにある。
【解決手段】
本発明のアルミニウム又はアルミニウム合金溶融物の精錬用の非ハロゲンフラックスは、金属硫酸塩、アルカリ金属硫酸塩、或いはアルカリ土類金属硫酸塩のいずれかの10〜70重量%と黒鉛の30〜90重量%との混合物から成る。 (もっと読む)


21 - 40 / 99