説明

Fターム[4K013BA14]の内容

溶融状態での鋼の処理 (7,585) | 処理目的 (1,164) | 介在物制御 (280)

Fターム[4K013BA14]に分類される特許

61 - 80 / 280


【課題】鋼材の成分の規格範囲を出来る限り外すことなく酸化物系介在物の低減を行うことができるようにする。
【解決手段】鋼材5を電子ビーム2によって溶解することにより高清浄度鋼を製造する製造方法において、鋼材5を電子ビーム2により溶解するに際し、鋼材5の[C]を0.03質量%以上とし、電子ビーム2に供給する電力を電力原単位で4〜10kWh/kgとし、溶解真空度を1×10-3Torr以下とし、電力原単位/溶鋼表面積の値を0.015kWh/kg・cm2以上とする。 (もっと読む)


【課題】大入熱溶接を行った場合であっても良好なHAZ靭性を達成できるとともに、低温母材靱性に優れた厚鋼板を提供すること。
【解決手段】所定の化学成分組成を満足し、酸素を除いた構成元素が質量%にして10<Ti、5<Al<20および5<Ca<40、並びに5<REM<50および/または5<Zr<40である酸化物で、円相当径が2μm未満のものが1mm2当り300個以上存在すると共に、円相当径が2μm以上のものが1mm2当り100個以下であり、且つ結晶方位差15°以上の大角粒界で囲まれた鋼の結晶粒の平均円相当径が、30μm以下である厚鋼板。 (もっと読む)


【課題】高粘性のモールドフラックスが有する利点を有したまま、鋳造開始直後から安定した緩冷却作用を得る。
【解決手段】化学組成が、質量%で、CaO/SiO2=1.05〜1.60、Al2O3=3〜22%、MgO=4〜14%、(Al2O3+MgO)で表される濃度和が12〜27%、TiO2=4〜13%、(CaO/SiO2−0.8)×TiO2で表される濃度バランス値が1.5〜4.1、(K2O+Na2O+Li2O+F)で表される濃度和が3〜7%である。結晶化温度が1190〜1290℃、1300℃における粘度が0.2〜0.9Pa・s、溶融したモールドフラックスが冷却されながら結晶化する際に、初めに晶/析出したペロブスカイトを核にして、主たる結晶としてのメリライトが晶/析出し、溶融したフラックスを2℃/minの速度で冷却した際の結晶化温度に対する10℃/minの速度で冷却した際の結晶化温度の低下が30℃以下の連続鋳造用モールドフラックスである。
【効果】モールドフラックスの巻き込みが防止され、凝固収縮に起因する変形や割れの無い高品質の鋳片を得ることができる。 (もっと読む)


【課題】本発明は、Al系介在物の少ない溶鋼を得ると共に、該溶鋼の連続鋳造速度を従来より高め、能率良く高清浄度の鋼鋳片にすることの可能なアルミ脱酸鋼の溶製方法を提供することを目的としている。
【解決手段】転炉から出鋼した溶鋼を真空脱ガス装置にて、減圧下で該溶鋼中の炭素と酸素とを反応させてリムド脱酸処理してから、さらにアルミニウムを添加してキルド脱酸処理するアルミ脱酸鋼の溶製方法を改良した。具体的には、処理対象ヒートが転炉から出鋼された直後の溶鋼の炭素含有量を測定し、該測定値を予め過去の操業データにより転炉出鋼直後の溶鋼中の炭素含有量で層別して求めたリムド脱酸終了時の溶鋼中の酸素含有量とリムド脱酸の処理時間との関係に照らして、リムド脱酸終了時の溶鋼中酸素含有量が所定値以下になるリムド脱酸の処理時間を定めてリムド脱酸を行い、その後にアルミニウムを添加してキルド脱酸を行う。 (もっと読む)


【課題】入熱量が50kJ/mm以上の大入熱溶接を行なった場合であってもHAZ靭性に優れており、しかも母材自体の疲労特性を改善した鋼材を提供する。
【解決手段】本発明の鋼材は、(a)Zr、REM、およびCaを含有する酸化物を含み、(b)全酸化物の組成を測定して単独酸化物として換算したとき、ZrO2:5〜50%、REMの酸化物:10〜50%、およびCaO:5.0〜50%を満足し、(c)円相当直径で0.1〜2.0μmの酸化物が1mm2あたり120個以上、円相当直径で5.0μm超の酸化物が1mm2あたり5個以下であり、(d)金属組織をEBSP法で観察したとき、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dが25μm以下で、該大角粒界に占めるランダム粒界の割合Rが70面積%以下で、(e)平均硬さが170Hv以上である。 (もっと読む)


【課題】 高い生産性で効率良く、しかも、CaO−Al23系介在物の含有量が少なく、耐硫化物腐食割れ性に優れた清浄鋼を2段階のCa添加によって製造する。
【解決手段】 本発明の耐硫化物腐食割れ性に優れた清浄鋼の製造方法は、転炉から取鍋への出鋼時または出鋼後に溶鋼にAlを添加して溶鋼を脱酸し、先ず、この取鍋内の溶鋼にCaOを含有するフラックスを添加して脱硫処理を施すとともに、この脱硫処理時にCa含有金属を添加し、次いで、取鍋内の溶鋼に真空脱ガス処理を施し、更に、真空脱ガス処理後の取鍋内の溶鋼にCa含有金属を添加し、その後、該溶鋼を鋳造することを特徴とする。 (もっと読む)


【課題】 酸化物系介在物を熱間圧延および冷間圧延工程で安定して伸展および微細化を図りうる高清浄度Si脱酸鋼を提供する。
【解決手段】C:0.05%以上1.2%以下、Si:0.05%以上2.0%以下、Mn:0.10%以上2.0%以下、Al:酸可溶性濃度で0.003%以下、Ti:酸可溶性濃度で0.005%以下、およびZr:酸可溶性濃度で0.0003%以下を含有し、残部Feおよび不純物からなる高清浄度Si脱酸鋼材であって、圧延長手方向に平行な断面において観察される、長さ2μm以上、幅1μm以上の酸化物系介在物の平均組成が、SiO2:35%以上、CaO:5%以上40%以下、Al2O3:10%以上35%以下、MgO:2%以上30%以下、およびZrO2:1.0%以上10%以下、ならびに残部不純物であり、前記酸化物系介在物を形成する酸化物の非晶質相の割合が体積分率で20%以上であることを特徴とする、高清浄度Si脱酸鋼材。 (もっと読む)


【課題】CaF2などのフッ素源を含有しないフラックスを用いて、鋼中介在物を微細化すると同時に介在物個数を低減し、清浄性が高く、転動疲労寿命特性に優れた軸受鋼を製造する。
【解決手段】溶鋼を収容する取鍋内にCaO−SiO2系フラックスを添加し、次いで、大気下において、Alにより脱酸された溶鋼と前記フラックスとを攪拌用ガスの溶鋼中への吹き込みによって攪拌し、溶鋼のトータル酸素濃度が0.0030質量%以下となった後に、下記の(1)で定義される[%Ca]effが0.0003質量%以上0.0010質量%以下の範囲内で溶鋼にCaを添加し、その後、真空脱ガス装置において溶鋼を減圧下で精錬する。[%Ca]eff=[質量%Ca]-(0.18+130×[質量%Ca])×[質量%T.O]−(1)。但し、[質量%Ca]は溶鋼中のCa濃度(質量%)、[質量%T.O]は溶鋼中のトータル酸素濃度(質量%)である。 (もっと読む)


【課題】酸化物系介在物を減少させて曲げ性に優れた鋼板を製造することができるようにする。
【解決手段】取鍋精錬時において、ガス攪拌の時間を5分以上とし、静止状態でのスラグ厚は260mm以上400mm未満とする。また、取鍋精錬時において、スラグ中のMgO量が1.2kg/ton以上5.0kg/ton以下とし、ガス攪拌の時間(t1)とスラグ中のMgO量(X)との関係がt1≦−5X+40を満たすとと共に、t1≧−5X+20を満たすようにする。さらに、真空脱ガス精錬において、溶鋼の還流時間を10分以上40分以下とし、溶鋼還流量も150ton/min以上200ton/min以下とする。 (もっと読む)


【課題】 タンディッシュ内の溶鋼中に存在する非金属介在物を低コストで、操業上のトラブルを発生することなく、除去する方法を提供することである。
【解決手段】 鋼の連続鋳造において、図2に示すように、タンディッシュ2内の敷11および側壁12のいずれか一方または両方に、アルミナ系耐火物13からなる形状物を固定して設置し、溶鋼に含有される非金属介在物を設置したアルミナ系耐火物13に付着させて除去する。この際、非金属介在物を付着させるアルミナ系耐火物13は、アルミナを60%以上含有しているものを使用する。 (もっと読む)


【課題】建築、橋梁などの大型構造物に使用される溶接構造用鋼材において、大入熱溶接部においてもシャルピー試験で安定して高い値を示す靭性に優れた鋼材およびその製造方法について提供する。
【解決手段】質量%で、C:0.01〜0.2%、Si:0.03〜0.5%、Mn:0.5〜2.0%、P:0.02%以下、S:0.01%未満、Al:0.005超〜0.08%、Ti:0.0005〜0.02%、Ca:0.0003〜0.02%、N:0.002〜0.009%及びO(酸素):0.001〜0.0035%を含有し、残部はFe及び不純物からなり、板厚方向で1/4位置におけるフェライト面積率が15%以上であり、鋼中に粒径0.5〜5μmのCaO・Al系介在物が存在し、その介在物のアスペクト比が1.9以下であることを特徴とする大入熱溶接熱影響部の靱性に優れた鋼材とその製造方法。 (もっと読む)


【課題】大入熱溶接を行った場合であっても、HAZ靭性の平均値は勿論のこと、その最小値をも向上させることができる厚鋼板を提供する。
【解決手段】本発明の厚鋼板は、所定の化学成分組成を満足し、且つ酸素を除いた構成元素が質量%にして10<Ti,5<Al<20,5<Ca<40である酸化物で、円相当直径が2μm未満のものが1mm2当り300個以上存在すると共に、円相当直径が2μm以上のものが1mm2当り100個以下である。 (もっと読む)


【課題】一次精錬から二次精錬にわたる工程においてMgO量をコントロールすることによって、非金属介在物中のMgO比率を確実に3.0%以下にできるようにする。
【解決手段】高強度鋼線用鋼を製造するに際し、転炉での出鋼時から二次精錬処理までの工程において溶鋼へ添加するMgOの量を、溶鋼1t当たり330g以下とし、転炉における脱炭処理を行うに際し、当該転炉へ装入する溶銑の[P]を0.040質量%以下とすると共に、供給するCaO量を原単位で12.0〜21.0kg/tする。供給するMgO量を溶鋼1t当たり100〜1500gとし、上吹きに関し、吹錬開始から60%〜80%の時間の第1上吹き区間と、その後では吹き込む酸素量を変え、底吹きに関し、吹錬開始から吹錬終了まで0.045〜0.075Nm3/分/ton且つ0.040〜0.064Nm3/分/mm2を満たすように底吹きのガスを吹く。 (もっと読む)


【課題】非延伸性非金属介在物の個数が低減された表面性状に優れるFe−Ni合金スラブとその製造方法を提案する。
【解決手段】Ni:30〜45mass%を含有し、好ましくはさらに、Si:0.001〜0.2mass%、Mn:0.1〜0.7mass%、Al:0.0001〜0.005mass%、Ca:0.00005〜0.001mass%、Mg:0.00005〜0.001mass%、Cr:0.1mass%以下、O:0.0005〜0.007mass%を含有するFe−Ni合金スラブに、1100〜1375℃の温度で、Niの拡散距離DNiが39μm以上となる均質化熱処理を施して、スラブ内のMgO・Alスピネル組成および/またはMnO−MgO−SiOシリケート組成からなる非延伸性介在物を含む非金属介在物の個数をスラブ内の全介在物個数の20%以下に低減する。 (もっと読む)


【課題】疲労による破損に対して良好な耐久性を有し、優れた横目方向の疲労強度、被削性も確保できる機械構造用鋼材の提供。
【解決手段】質量%で、C:0.13〜0.50%、Si:0.03〜1.00%、Mn:0.20〜2.5%、P≦0.040%、S:0.010%超〜0.030%、Cr:0.05〜2.5%、Al≦0.005%、Ca:≦0.0005%、N≦0.020%、O≦0.0020%を含有し、残部はFeと不純物からなる化学成分を有し、非金属介在物について、酸化物の平均組成が、CaO:10〜60%、Al2O3≦35%、MnO≦35%及びMgO≦15%で、鋼材の長手方向縦断面10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、12μm以下及び3.5〜12μmである機械構造用鋼材。 (もっと読む)


【課題】HAZ靭性のバラツキを低減し、しかも降伏比が80%以下に低減された鋼材と、その製造方法を提供する。
【解決手段】本発明の鋼材は、(A)REMとZrを含有する介在物を含む他、(B)鋼材中の固溶REMと固溶Zrが、固溶REM:0.0010%以下(0%を含む)、固溶Zr:0.0010%以下(0%を含む)を満足し、(C)組織は、ベイナイトおよび/またはマルテンサイトと、フェライトを含み、全組織に占めるフェライト分率が4〜24面積%であり、(D)鋼材の金属組織を後方散乱電子回折像法(EBSP法)で観察したときに、下記(1)式を満足するものである。下記(1)式中、Dは、EBSP法で隣接する2つの結晶の方位差を測定し、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径(μm)を意味する。
35≦D ・・・(1) (もっと読む)


【課題】HAZ靭性のバラツキを低減し、しかも母材自体の低温靭性も高められた鋼材と、その製造方法を提供する。
【解決手段】本発明の鋼材は、(A)REMとZrを含有する介在物を含む他、(B)鋼材中の固溶REMと固溶Zrが、固溶REM:0.0010%以下(0%を含む)、固溶Zr:0.0010%以下(0%を含む)を満足し、(C)鋼材の金属組織を後方散乱電子回折像法(EBSP法)で観察したときに、下記(1)式と(2)式を満足するものである。下記(1)式中、Dは、EBSP法で隣接する2つの結晶の方位差を測定し、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径(μm)を意味する。下記(2)式中、Mは、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合(面積%)を意味する。
D≦30 ・・・(1)
50≦M ・・・(2) (もっと読む)


【課題】溶接による大入熱時の状況下においても、非常にHAZ靱性が優れているものにする。
【解決手段】取鍋精錬においてスラグSの組成を所定の成分とした上で、スラグSの厚みを200mm以上400mm以下とする。スラグSの融点とスラグSの厚みとの関係を所定の式を満たすものとする。溶鋼2のAl濃度を0.01%以上に保った状態で15W/ton以上60W/ton以下で攪拌する。溶鋼2を昇温させる際の還流量を100ton/min以上200ton/min以下として10min以上攪拌する。Al投入量を0.5kg/ton以上2.0kg/ton以下とする。酸素吹き付け量を0.4Nm3/ton以上2.0Nm3/ton以下とする。昇温後は、還流量を100ton/min以上200ton/min以下として5min以上攪拌する。 (もっと読む)


【課題】溶接による大入熱時の状況下においても、非常にHAZ靱性が優れていて異方性も少ないものにする。
【解決手段】取鍋精錬においてスラグSの組成を所定の成分とした上で、スラグSの厚みを200mm以上400mm以下とする。スラグSの融点とスラグSの厚みとの関係を所定の式を満たすものとする。溶鋼2のAl濃度を0.01%以上に保った状態で15W/ton以上60W/ton以下で攪拌する。溶鋼2を昇温させる際の還流量を100ton/min以上200ton/min以下として10min以上攪拌する。Al投入量を0.5kg/ton以上2.0kg/ton以下とする。酸素吹き付け量を0.4Nm3/ton以上2.0Nm3/ton以下とする。昇温後は、還流量を100ton/min以上200ton/min以下として5min以上攪拌し、Caの添加終了後から鋳造開始までの時間を10min以上〜60min以下にする。 (もっと読む)


【課題】溶鋼中に金属元素の適正量を高い歩留りのもとに添加し、鋳片内に均一に、かつ安定して分散させることが可能な連続鋳造方法を提供する。
【解決手段】取鍋内、タンディッシュ内または鋳型内の溶鋼中に、Bi合金、Sn合金およびTe合金のうちの1種以上を添加する連続鋳造方法であって、金属Bi、金属Snおよび金属Teのうちの1つの金属を、それぞれ、Al、Ca、Si、Mg、Ti、Mn、Niおよび希土類元素のうちの1つの金属と混合するとともに、金属混合物中のBi、SnまたはTeの含有率を70質量%以上とし、該金属混合物を鉄製の被覆材により被覆して鉄被覆ワイヤーとなし、溶鋼中に添加する鋼の連続鋳造方法である。上記の方法において、鉄被覆ワイヤーは断熱ガイドパイプ内を通して溶鋼中に供給し、また、鉄製被覆材の厚さは0.1〜3.0mmとすることが好ましい。 (もっと読む)


61 - 80 / 280