説明

Fターム[4K014AC17]の内容

Fターム[4K014AC17]に分類される特許

61 - 80 / 160


【課題】高Si溶銑の脱珪処理に有効な溶銑脱珪剤及び溶銑脱珪方法を提供する。
【解決手段】鋳床脱珪処理で発生し、鋳床ダストを90%以上含有し且つ酸素濃度16.3Wt%以上の溶銑脱珪剤5、好ましくは鋳床ダストのみからなり且つ酸素濃度19.2Wt%以上の溶銑脱珪剤5を傾注樋2上の溶銑6の浴面に吹き込む。また、複数の高炉間で脱珪剤の使用量バランスを調整し、高Si溶銑の高炉に対してのみ、前記溶銑脱珪剤5を傾注樋2上の溶銑6の浴面に吹き込む。また、高Si溶銑の高炉に対しては、他の高炉の鋳床脱珪処理で発生し、集塵機によって集塵された鋳床ダストからなる溶銑脱珪剤5も高Si溶銑の高炉の傾注樋2上の溶銑6の浴面に吹き込む。 (もっと読む)


【課題】 溶銑または溶鋼を酸化精錬するにあたり、効率的な酸化精錬が可能であると同時に転炉型精錬容器の付着地金を効率的に溶解するための上吹きランスを提供する。
【解決手段】 本発明の精錬用上吹きランス1は、上吹きランスの先端部に、鉛直下向きまたは斜め下向き方向の主孔ノズル11及び副孔ノズル12を有し、前記先端部から上方に隔離した位置の上吹きランスの側面部に、水平または斜め下向き方向の二次燃焼用ノズル13を有し、且つ、上吹きランスの内部には、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに前記主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを、前記主孔ノズルを通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを、前記二次燃焼用ノズルを通じて供給するための第2の供給経路と、粉体状の固体酸素源を、搬送用ガスとともに前記副孔ノズルを通じて供給するための第3の供給経路と、を有する。 (もっと読む)


【課題】精錬の際に生成した精錬副成物Sに含まれる有価元素を簡単に回収することができるようにする。
【解決手段】精錬の際に生成した精錬副成物Sから有価元素を回収する方法であって、精錬副成物Sに含有される回収目的とする有価元素の化合物の一部又は全部が溶融した状態で、当該化合物との間で固溶体を生成する化合物を含み、且つ空隙率が15%以上となる固体物6と接触させることで有価元素を回収する。精錬副成物Sは製鋼工程における脱りん処理若しくは脱炭処理で生成したスラグであり、スラグSと主成分がMgOの固体物6を1350℃〜1400℃で接触させることによりFe及びMnを回収する。 (もっと読む)


【課題】脱りん処理の際にリサイクルスラグとして脱炭スラグを使用しても十分に脱りん処理を行うことができるようにする。
【解決手段】脱炭工程に先だって上底吹き転炉型精錬容器に脱炭工程にて生成した脱炭スラグをリサイクルして溶銑の脱りん処理を行うに際し、処理中に供給する酸素量であって脱珪反応に使用される酸素以外の酸素量と全CaOに対する前記脱炭スラグ中のCaOの割合との関係を式(1)を満たすようにし、投入する造滓剤の粒径を5〜40mmとし、気体酸素の吹き込みの際の溶湯の凹み深さLと浴の深さL0との比を0.01〜0.20にすると共に、底吹き攪拌動力密度εを0.5〜3.5kw/tとしている。 (もっと読む)


【課題】低りん鋼の製造と、副生する製鋼スラグの強アルカリ化と膨張の抑制を、経済的に安定に両立させる。
【解決手段】溶銑脱りんと転炉吹錬を行うプロセスにおいて、溶銑脱りん工程では脱炭滓と粒径1mm以下のCaO源を用い、その他にはCaO源を添加せずに脱りん処理を行う。溶銑の脱りん工程での塩基度を1.8以下とする。また、脱炭工程での塩基度を4.5以下とする。更に脱りん工程に用いる脱炭滓を20mm以下とする。溶銑脱りん工程に使用する以外の脱炭滓は、脱炭工程で炉内に残し、次吹錬に使用する。 (もっと読む)


【課題】 多種多様な鉄スクラップを鉄源として、各種の高品位鋼の製造に使用できる銑鉄を製造する実用的なプロセスを提供する。
【解決手段】 上記課題を解決するための本発明に係る溶銑の製造方法は、鉄スクラップを鉄源として用いて炭素を含有する溶銑を電気炉にて製造する工程と、その後、該溶銑に対して脱銅処理を行う工程と、脱銅された溶銑と高炉にて製造された溶銑とを混合する工程と、混合した後の溶銑に対して脱硫処理を行う工程と、を有することを特徴とする。 (もっと読む)


【課題】混銑車にて脱りん処理を行うに際して、スラグのフォーミングの抑制、混銑車へのスラグ付着の抑制及び脱りん効率を向上させながら脱りん処理を行う。
【解決手段】Siが0.1質量%〜0.3質量%の溶銑を混銑車に装入してCaOを含む精錬剤を用いて溶銑の脱りん処理を行う方法において、前記脱りん処理の開始から3分〜5分間となる第1段階では、溶銑に供給する気体酸素比率を0%とし、スラグの塩基度が1.7〜1.9になるまでの第2段階では気体酸素比率を50〜63%とし、スラグの塩基度が2.0〜2.3になるまでの第3段階では気体酸素比率を67〜78%とし、スラグの塩基度が2.0以上となる第4段階では気体酸素比率を0%とする点にある。 (もっと読む)


【課題】 インペラーを偏心させることにより、溶銑の回転流に強制的な乱れを発生させながら溶銑を脱硫処理する際に、回転流に十分な強制的乱れを確保しつつ偏心に起因する電動機トルクの負荷を最小限に抑制するべく、インペラー偏心量を最適化すると同時に、溶銑回転流の乱れに応じて脱硫剤の添加位置を最適化し、かくして、添加した脱硫剤を溶銑中に効率良く分散させる。
【解決手段】 精錬容器2に収容された溶銑3にインペラー4を浸漬させ、インペラーの回転軸4aをほぼ鉛直として溶銑中で回転させ、溶銑上の脱硫剤7と溶銑とを攪拌して溶銑を脱硫する際に、前記回転軸を、精錬容器の内径をDとしたとき精錬容器の中心に対して半径方向にD/20未満の範囲で偏心させるとともに、粉状の脱硫剤を、インペラーの偏心方向とは反対側のインペラー羽根外周部を中心とし、半径をD/4とする円形の範囲内に、上置き添加または搬送用ガスとともに上吹き添加する。 (もっと読む)


【課題】溶銑予備処理において溶銑鍋内の溶銑の成分調整のため、石灰などの原料を溶銑中に投射する原料投射装置を提供する。
【解決手段】原料投射機構と、溶銑鍋1の蓋となる集塵フード4と、その昇降装置8と、集塵フードを挿通して原料を溶銑中に投射するランス3と、集塵フードに連結する廃ガス排出機構を備え、集塵フードは、原料投射機構で原料を溶銑中に投射する際、昇降装置によって溶銑鍋を密閉する。廃ガス排出機構は集塵機と、集塵ダクト6と、集塵ダクトと集塵フード間にガス排出調整弁10を有し、原料投射機構は原料送給装置と、原料供給装置とランスを連結する管路dと、管路の途中に調整バルブ11を有し、ガス排出調整弁はフード内圧、集塵側圧力および前記ガス排出調整弁の自重を基に廃ガス排出量が最小となるように開度が調整され、調整バルブは、調整されたガス排出調整弁の開度において原料の歩留まりが最大となるように開度が調整される。 (もっと読む)


【課題】 機械攪拌式脱硫装置を用いて溶銑を脱硫処理するにあたり、添加した脱硫剤を溶銑中に効率良く分散することができ、溶銑を従来に比べて高い脱硫率で脱硫処理することのできる脱硫処理用精錬容器及び脱硫処理方法を提供する。
【解決手段】 本発明の精錬容器13は、底部の内面形状が該精錬容器の中心軸に対して軸対称とはならないように、底部に施工される耐火物16の施工厚みが施工箇所に応じて異なることを特徴とし、本発明の脱硫処理方法は、内部に耐火物が施工された、ほぼ円形平断面の鍋型精錬容器に収容された溶銑に、前記精錬容器のほぼ中心位置でインペラーを浸漬させ、且つ該インペラーの回転軸をほぼ鉛直にして溶銑中で回転させ、溶銑上に添加された脱硫剤と溶銑とを攪拌して溶銑を脱硫処理するにあたり、前記精錬容器として、その底部の内面形状が該精錬容器の中心軸に対して軸対称ではない鍋型精錬容器を用いる。 (もっと読む)


【課題】設備費や処理コストの高いLF装置や真空脱ガス装置を使わず、また、環境に悪影響を与えず、より簡便に、高効率でかつ安定して極低硫黄濃度まで脱硫処理する。
【解決手段】精錬容器内の溶鉄を脱硫精錬する方法において、(i)第一工程として、溶鉄に脱硫剤を添加して脱硫処理を施し、(ii)第二工程として、第一工程で溶鉄表面の全面を覆うように生成した脱硫スラグの一部又は全部を残した状態で、該スラグの上方から、プラズマ気流中の酸素濃度が1体積%以上100体積%以下のプラズマアークを、溶鉄まで到達しないように、脱硫スラグに照射し、第二工程終了後の溶鉄中のS濃度を、第一工程終了後の溶鉄中のS濃度よりも低くする。第二工程終了後、脱酸剤で溶鉄とスラグを脱酸する(第三工程)。脱硫剤は、実質的にフッ素を含まないフラックス、又は、上記脱硫精錬方法で発生したスラグを用いる。 (もっと読む)


【課題】CaF2含有物質を使用することなく、上底吹き転炉型精錬容器において、広範なSi濃度の溶銑について、脱珪処理を行うと同時に高効率で脱りん処理を行うことが可能な溶銑の脱りん方法を提供する。
【解決手段】上底吹き転炉型精錬容器においてCaF2含有物質を使用せずにCaO含有粉体をランスから酸素含有ガスとともに上吹きして溶銑に対して脱りん処理する、溶銑の脱りん方法において、前記溶銑のSi濃度が0.3質量%以上であり、前記CaO含有粉体中の純CaOとしての上吹き速度と前記酸素含有ガス中の純酸素ガスとしての質量流量の比を下記式で示す範囲内に調整する。0.56+0.5×[Si]<CaO/O<0.56+1.5×[Si]。(CaO: CaO含有物質粉体中の純CaOとしての上吹き速度(kg/min)、O:酸素含有ガス中の純酸素ガスとしての質量流量(kg/min)、[Si]:処理前溶銑のSi濃度(質量%)) (もっと読む)


【課題】蛍石を使用しないで、溶銑中のP濃度を0.020%以下とすることができる、溶銑の脱りん方法を提供する。
【解決手段】上底吹き転炉を用い、粉状のCaO含有脱りん剤を上吹きランスから溶銑に吹き付けて脱りん処理するに際し、前記吹き付ける粉状のCaO含有脱りん剤質量を、転炉内に投入する全CaOの合計質量の40%以上、脱りん処理後の配合塩基度(添加したCaOの、溶銑中のSiO2に対する比の値)を2.0〜3.0、脱りん処理後の溶銑温度を1350℃〜1420℃とする。そして、前記粉状のCaO含有脱りん剤の溶銑への吹き付けを、当該脱りん処理における上吹き酸素の供給開始時から全上吹き酸素の供給時間T1の15〜35%経過後に開始し、前記時間T1の85%〜100%経過時までの間継続し、かつ、吹き付け継続期間中の平均脱りん剤吹き付け速度を0.5〜3.0kg/min/tとする。 (もっと読む)


【課題】 機械攪拌式脱硫装置を用いて溶銑を脱硫処理する際に、反応性に優れる細粒の脱硫剤を効率良く溶銑中へ添加すると同時に、溶銑の酸素ポテンシャルを効率良く低下させて、溶銑を安定して効率的に脱硫する。
【解決手段】 上記課題を解決するための溶銑の脱硫方法は、機械攪拌式脱硫装置を用いた溶銑3の脱硫方法において、インペラー4によって攪拌されている溶銑の浴面上に上吹きランス5から搬送用ガスとともに脱硫剤7を上吹き添加するとともに、前記上吹きランスとは別の上吹きランス6から炭化水素を含有するガスを前記溶銑の浴面上に吹き付けて脱硫処理を行うことを特徴とする。 (もっと読む)


【課題】転炉を用いた溶銑脱りん法において、フラックス粉体と酸素ジェットとの干渉率を高めて、フラックスの滓化率および脱りん率を向上させる手段を提供する。
【解決手段】同一円周上に等間隔で配置された3孔以上の孔(周縁孔)および中心孔を有するランスを用いて,周縁孔から酸素含有ガスを上吹きしかつ中心孔からCaO含有粉体および不活性ガスを上吹きするに際し,前記周縁孔のそれぞれについて,ランス中心軸がz軸,周縁孔の孔出口位置がx軸上となるように定めたxyz直交座標系において,yz平面およびxz平面への周縁孔の孔軸の投影がz軸となす角度をそれぞれαおよびβとしたとき,αとβが0<tanα/tanβ<2.75の関係を満足し,かつ中心孔から噴出する不活性ガスの圧力(CaO含有粉体を上吹きしない場合の圧力)が周縁孔から噴出される酸素含有ガスの圧力よりも小さくなるようにする。 (もっと読む)


【課題】製鋼工程の精錬処理時に発生する製鋼スラグの溶融改質処理方法において、スラグ組成等の影響により流動性が低いスラグを溶融改質処理した場合であっても、高品質のスラグを高い歩留りで得る。
【解決手段】SiO含有物質を改質材として、溶融改質処理装置内の製鋼スラグに改質材を溶射することにより、製鋼スラグを溶融改質処理する製鋼スラグの溶融改質処理方法において、溶融改質処理の開始前における(TLL−T)/(TLL−TSL)で表される固相率が0.5以上の製鋼スラグを使用した場合に、製鋼スラグの溶融改質処理開始前の温度Tと製鋼スラグの液相線温度TLLとの関係が、T+150℃≧TLLを満たす条件で溶融改質処理を開始する。 (もっと読む)


【課題】脱りん剤と酸素とを混銑車1内の溶銑2に連続的に供給することによって溶銑2の脱りん処理を行う際に、発塵を抑制することができるようにする。
【解決手段】CaO、又は、CaO及びOを含む固体脱りん剤と、気体酸素とを混銑車1内の溶銑2に連続的に供給することによって溶銑2の脱りん処理を行う方法において、溶銑2の脱りん処理の開始時には、固体脱りん剤に含有するO2と気体酸素のO2とを合計した総酸素供給速度を、0〜0.07Nm3/t/分としておき、溶銑2中の[Si]が0.15質量%以上0.20質量%未満となる間に、総酸素供給速度を0.10〜0.23Nm3/t/分の範囲にて上昇させ、溶銑2中の[Si]が0.10質量%以上0.13質量%未満となる間に、さらに、総酸素供給速度を0.25〜0.35Nm3/t/分の範囲にて上昇させる。 (もっと読む)


【課題】転炉型脱りん炉を用いて脱りんを行うに際して、脱りん効率を低下させることなくスラグのフォーミングを確実に抑制することができるようにする。
【解決手段】転炉型脱りん炉の溶銑2に対して脱りん処理を行って出湯するに際し、スラグのフォーミングを抑制すべく球換算直径が20〜50mmとなる酸化鉄源が、0.05×Wslag≦W≦0.2×Wslag(W:酸化鉄源、Wslag:スラグ量)を満たすように、吹錬終了時に投入し、溶銑2を出湯する。 (もっと読む)


【課題】 燐を含有する製鋼スラグ中の燐を回収・濃化して、燐含有量の高い燐酸資源原料を安価に且つ効率的に製造する方法を提供する。
【解決手段】 燐を含有する製鋼スラグを、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて還元することにより、前記製鋼スラグ中の鉄酸化物及び燐酸化物が還元されて得られる、燐を0.5質量%以上含有する燐含有溶銑に対し、供給する酸素源の40体積%以上の酸素源を酸素ガスとして上吹きランスを介して溶銑に吹き付けて供給するとともに、供給する石灰源の純CaO換算の40質量%以上を前記上吹きランスを介して搬送用ガスとともに溶銑に吹き付けて供給し、石灰源の滓化促進剤としてフッ素源を使用することなく、酸素源及び石灰源を供給して脱燐処理を施し、生成される脱燐スラグ中の燐酸濃度を10質量%以上に濃縮させ、該脱燐スラグを回収して燐酸資源原料とする。 (もっと読む)


【課題】 脱燐スラグなどの燐を含有する製鋼スラグのリサイクルにあたり、該製鋼スラグから燐及び鉄を安価に回収するとともに、回収した燐及び鉄をそれぞれ資源として有効活用することのできる、製鋼スラグからの鉄及び燐の回収方法を提供する。
【解決手段】 本発明の回収方法は、燐を含有する製鋼スラグを、炭素、Si、Alなど還元剤を用いて還元処理して、該スラグ中の鉄酸化物及び燐酸化物を燐含有溶融鉄として還元・回収する第1の工程と、鉄酸化物及び燐酸化物が除去された製鋼スラグを焼結工程におけるCaO源として使用し、製造された焼結鉱を高炉にリサイクルする第2の工程と、前記還元処理により回収した燐含有溶融鉄を、燐含有溶融鉄中の燐濃度が0.1質量%以下となるまで脱燐処理し、CaO系フラックス中に燐を濃縮させる第3の工程と、この燐濃度が0.1質量%以下の燐含有溶融鉄を鉄源として高炉溶銑に混合する第4の工程と、を有する。 (もっと読む)


61 - 80 / 160