説明

Fターム[4K017EK05]の内容

金属質粉又はその懸濁液の製造 (21,321) | その他の製造 (315) | 化合物分解 (150) | 熱分解 (128)

Fターム[4K017EK05]の下位に属するFターム

Fターム[4K017EK05]に分類される特許

41 - 60 / 91


【課題】水などの溶媒中での分散性が改善され、良好にフィルター処理を行うことができ、さらに積層セラミックスコンデンサ製造過程での脱バインダ工程において良好な熱分解挙動が得られるニッケル粉末を提供する。
【解決手段】表面に、10nm〜20nmの膜厚のニッケルの酸化物被膜を有することを特徴とするニッケル粉末。 (もっと読む)


【課題】熱分解法によって合成するFeナノ粒子の飽和磁化を向上させ、磁性材料の高周波透磁率特性を改善する。
【解決手段】
Fe源としてFe(CO)、界面活性剤としてオレイルアミンを使用し、溶媒として凍結乾燥法により溶解酸素及び水分を除去したオクチルエーテル,ケロシン及びそれらの混合物を用い、熱分解法によりFeナノ粒子を作製した。反応系中の酸素量の減少とともに、飽和磁化Msは増加しており、溶媒がオクチルエーテルのみの場合Msが115emu/g,ケロシンのみの場合で153emu/gとなった。この結果から、酸素/鉄モル比が10より大きい範囲では、溶媒の分子構造中の酸素によるMsの低下が見られるが、酸素/鉄モル比を10以下にすることにより、酸素の影響を低減できることが分かる。このため、磁性材料の飽和磁化を向上させ、高周波透磁率特性の改善を図ることができる。 (もっと読む)


【課題】本発明は、主に銀からなる金属超微粒子を利用して導電性を発現させる方法に関し、詳しくは従来必要であった焼成工程を必要とせずに高い導電性を得る事ができる導電性発現方法および導電性部材を提供することにある。
【解決手段】基材上に、水及び/または有機溶媒中に金属コロイドとして分散されている主に銀からなる金属超微粒子を付与し、設けられた金属超微粒子含有部に導電性を発現する方法であり、該金属超微粒子含有部に亜硫酸塩類、チオ硫酸塩類、チオシアン酸塩類、クロム酸塩類の中より選択される少なくとも一種の化合物を作用させることを特徴とする導電性発現方法。 (もっと読む)


本発明は、適切な界面活性剤の存在下でアルカリ又はアルカリ土類金属還元剤を用いて鉄とチタンを含有する先駆物質を還元すること、及びアルカリ又はアルカリ土類金属還元剤なしで鉄とチタンを含有する先駆物質を熱分解することによって、鉄とチタンを含有するナノ粒子を生成するための方法に向けられる。
(もっと読む)


【課題】小さい平均粒径に分散可能で、分散性、分散安定性等が良好な、金属又は金属化合物の微粒子分散体の製造方法を提供することにあり、また、その製造方法を使用して製造された微粒子分散体、更には、その微粒子分散体に対して溶媒置換を施した微粒子分散液を提供する。
【解決手段】金属の気体又は金属化合物の気体を、低蒸気圧液体に接触させることによって、該金属又は該金属化合物の微粒子が該低蒸気圧液体に平均粒径100nm以下で分散された分散体を製造する方法であって、該低蒸気圧液体中にエステル系界面活性剤を溶解させておく。 (もっと読む)


【課題】金属単体、特に遷移金属単体のナノ粒子を安定して製造する方法を提供する。
【解決手段】ジメチルグリオキシム(DMG)2分子と遷移金属(M)イオン1個から成るキレート錯体(M−DMG)を300〜400℃で加熱することにより、炭素粒子に担持された遷移金属(M)ナノ粒子を生成させる。更に、上記キレート錯体(M−DMG)とアルミナとの混合物を上記加熱することにより、アルミナに担持された遷移金属(M)ナノ粒子を生成させる。望ましくは、遷移金属MはNi、Cu、Pd、Ptのうちのいずれかである。典型的には、生成する遷移金属(M)ナノ粒子のサイズは直径5〜15nmである。 (もっと読む)


【課題】Feの含有比率が高く且つ平均粒径の大きいFe及びPtを含有するナノ粒子の製造方法を提案する。
【解決手段】有機酸及び有機塩基の共存下、有機塩基を有機酸に対し過剰に用い、Fe原料とPt原料とを反応させる。 (もっと読む)


【課題】ナノメートルサイズのオーダーで、粒度分布が狭く、かつ保存安定性に優れ、しかも容易に製造でき高収率であること、また、低温焼結性の優れた銀超微粒子の製造方法を提供する。
【解決手段】シュウ酸銀と、オレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンを含む錯化合物を生成し、生成した錯化合物を加熱分解させて銀超微粒子を生成する。 (もっと読む)


【課題】有機金属化合物を原料として、室温で、簡便、効率よくナノ粒子を作製する方法及びその製品を提供する。
【解決手段】ナノメートルサイズの金属化合物ナノ微粒子を製造する方法であって、基板上に成膜した前駆体の有機金属化合物原料膜に200nmより短波長の紫外線を照射することにより粒子の生成及び粒子径の増大を図り、粒径がナノメートルサイズのナノ粒子を製造することを特徴とする金属化合物ナノ粒子の製造方法、及びそのナノ粒子膜。
【効果】本発明により、低温、特に室温で、粒径の制御されたナノメートルサイズのナノ粒子及びナノ結晶膜を作製することが実現可能であり、高い機能性を有するナノ材料の提供並びにその作製プロセスの効率化に貢献できる。 (もっと読む)


本発明は、従来の管状炉内で、含ケイ素物質およびGeX2の同時熱不均化によりケイ素ゲルマニウム合金ナノ結晶を調製する方法に関する。含ケイ素物質およびGeX2の熱不均化の生成物の酸エッチングにより、自己保持性ケイ素ゲルマニウムナノ結晶を調製する方法も含まれる。
(もっと読む)


【課題】
鉄含有ナノ粉末粒子を製造する方法を提供する。
【解決手段】
鉄含有ナノ粉末粒子の一製造方法は、鉄含有成分と、コロイド安定化剤と、所定量の水とから熱分解法により製造するものである。この方法では、鉄含有成分と、コロイド安定化剤と、所定量の水とからなる混合物を鉄含有ナノ粉末形成に適した温度に加熱した後、鉄含有ナノ粉末を分離する。鉄含有ナノ粉末粒子のもう一つの製造方法は、反復シェル成長法を用いるものであり、第1の量の鉄含有成分とコロイド安定化剤とからなる混合物を作成し、この混合物を鉄含有ナノ粉末形成に適した温度に加熱し、室温まで冷却する。冷却した混合物に別の量の鉄含有成分を添加し、反応温度に再加熱し、分離される鉄含有ナノ粉末粒子の粒径が所望の大きさになるまでこの工程を繰り返す。 (もっと読む)


【課題】篩などによる分級を行うことなく、最大粒径8μm以下、平均粒径5.0μm以下の微粒子白金粉末を安定して工業生産することのできる方法を提供する。
【解決手段】塩化白金酸溶液と塩化アンモニウム溶液を反応させて塩化白金酸アンモニウムを生成し、これを低温焼成する白金粉末の製造方法において、理論値の1.5〜5倍量の塩化アンモニウム溶液に分散安定剤を含有する塩化白金酸溶液を滴下し、微細な塩化白金酸アンモニウムを生成させ、上記塩化白金酸アンモニウムを360℃〜530℃の低温で焼成することを特徴とする白金粉末の製造方法。 (もっと読む)


【課題】低コストで均一な中空磁性球体、及びその製造方法を提供することを課題とする。
【解決手段】磁性成分が溶解した溶液を微粒子液滴とし、前記微粒子液滴を不活性ガス、又は不活性ガスと水素又は酸素との混合ガスによりプラズマ炎中に導入し、熱分解により生成する。ここで得られる中空磁性球体は、平均粒径が10μm以下で、球体外表面の厚さが数10nmであり、球体となる殻の表層に磁性成分が分布していることから、密度が小さく軽量であり、樹脂等との混合性にも優れている。 (もっと読む)


【課題】 粒径が微小で且つ粗粒を含まず、多層配線基板の導電ペースト用や導電樹脂用の導電性粒子として好適な錫微粉末、並びにその錫微粉末を効率よく製造する方法を提供する。
【解決手段】 プラズマ法により錫微微粒子を生成させ、錫の一次粒子生成部の温度を平均粒径2μmの粒子間の融合温度以下に調整した。得られた錫微粉末は真球状で、平均粒径が0.3〜2μm及び最大粒径が5μm以下であり、粒径の幾何標準偏差が1.6以下で凝集が少なく分散性に優れているものである。 (もっと読む)


【課題】立方体又はそれ以外の多面体形状を有する金属微粒子を工業的規模で製造できる方法を提供する。
【解決手段】多面体金属微粒子を製造する方法であって、(1)水溶性高分子及び金属塩を含む混合溶液を塗布、乾燥させて薄膜を形成する第1工程、(2)前記薄膜を熱処理することにより金属塩を還元して、多面体金属微粒子が前記高分子中に分散してなる複合フィルムを得る第2工程を含むことを特徴とする多面体金属微粒子の製造方法に係る。 (もっと読む)


【課題】元素周期表の第9族及び第10族から選択される元素と第16族から選択される元素とを共に含有する、新規なナノコロイド粒子を提供する。
【解決手段】第16族元素を含有するアルコキシド化合物及びハロゲン化合物のうち少なくとも一方を原料として用いる。 (もっと読む)


本発明は、銀ナノ粒子の製造方法及びこれにより製造される銀ナノ粒子を含む銀インク組成物に関する。本発明は、a)銀化合物と、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、またはアンモニウムバイカーボネート系化合物から選択される1種または2種以上の混合物を反応して、特殊な構造を有する銀錯体化合物を製造する段階と、b)前記銀錯体化合物に還元剤を反応させるか、熱を加え還元または熱分解させることにより銀ナノ粒子を製造する段階とを含むことを特徴とする。本発明による製造方法は、簡単な製造工程により多様な形態の銀ナノ粒子を製造することができるだけではなく、銀ナノ粒子大きさの選択性を向上させることができ、また150℃以下の低い温度で短い時間焼成しても焼成が可能であり、塗膜厚の調節が容易でありながらも高い伝導度を示す塗膜または微細パターンが形成できるインク組成物を提供して、反射膜材料、電磁波遮蔽剤、抗菌剤などに適用可能な銀インク組成物を提供することができる。 (もっと読む)


【課題】効率よくギ酸銅を製造する方法、その方法を用いて銅粒子を製造する方法、当該銅粒子を分散させた液体材料を用いた配線基板の製造方法を提供すること。
【解決手段】ギ酸と、銅と、酸化剤とを反応させることによりギ酸銅を得るギ酸銅の製造方法。ギ酸銅を得る第1の工程と、ギ酸銅を脂肪族アミンに溶解することによりギ酸銅錯体を製造する第2の工程と、ギ酸銅錯体の2価の銅が0価の銅に還元されるとともに、ギ酸配位子が二酸化炭素に酸化されるように、ギ酸銅錯体を分解することにより銅粒子を製造する第3の工程とを有する銅粒子の製造方法、ならびに、かかる方法により得られた銅粒子を分散媒に分散させて液体材料を形成する液体材料形成工程と、液体材料を基板に塗布する塗布工程と、塗布工程の後、基板に熱処理を施し基板上に配線を形成する熱処理工程と、を有する配線基板の製造方法に関する。 (もっと読む)


本発明は、金属酸化物で被覆される金属コアを含む少なくとも1つのナノワイヤを含む一次元複合構造体、又はこのようなナノワイヤから構築される少なくとも1つの複合構造体に関する。本発明はさらに、これらの構造体との金属−有機結合体を分解することができる、触媒を用いないMOCVD法に関する。複合構造体はナノ電子、光学又は磁気部品又は材料に好適である。 (もっと読む)


【課題】簡便かつ低コストに、銅粒子を製造する方法および当該銅粒子を分散させた液体材料を用いた配線基板の製造方法、ならびに、当該銅粒子を製造するために用いられるギ酸銅錯体を提供すること。
【解決手段】本発明は、下記一般式(1)


(式中、Cuは2価の銅、RおよびRはそれぞれ置換基を有していてもよい脂肪族炭化水素基を示す。)で表されるギ酸銅錯体の前記2価の銅が0価の銅に還元されるとともに、前記ギ酸配位子が二酸化炭素に酸化されるように前記ギ酸銅錯体を分解することにより銅粒子を得る銅粒子の製造方法、当該銅粒子を分散させた液体材料を基板に塗布する配線基板の製造方法、上記一般式(1)で表されるギ酸銅錯体を提供することを特徴とする。 (もっと読む)


41 - 60 / 91