説明

Fターム[4K018AA27]の内容

粉末冶金 (46,959) | 製造目的金属、金属基合金 (5,030) | Fe、Fe基合金 (2,155) | Fe合金(C≦0.035%) (950) | 希土類−Fe合金 (683)

Fターム[4K018AA27]に分類される特許

161 - 180 / 683


【課題】永久磁石の保磁力性能を向上させる金属粒を永久磁石の深部を含む全領域の磁粉表面に形成でき、しかも、主相が金属粒によって改質されることを抑止して永久磁石の磁化特性をも向上させることができ、さらには、永久磁石用磁粉や永久磁石を効率的に製造することのできる、永久磁石用磁粉の製造方法と製造装置、永久磁石の製造方法と製造装置および製造システムを提供する。
【解決手段】一つの閉空間Hの中に磁粉Mを投入し、閉空間H内で磁場を発生させるとともに該磁場の方向を変化させることにより、閉空間H内で磁粉Mをその飛翔方向を変化させながら飛翔させ、閉空間H内で、飛翔する磁粉に対して物理蒸着法(PVD法)を適用して保磁力性能を高める金属粒Pを該磁粉M表面に付着させて、永久磁石用の磁粉を製造する、永久磁石用磁粉の製造方法である。 (もっと読む)


【課題】急速凝固プロセスにより製造され、良好な磁気特性と熱安定性を示す、高度に急冷可能なFe系希土磁性材料を提供する。
【解決手段】磁性材料の製造において使用される最適ホイール速度及び最適ホイール速度ウィンドウよりも低い最適ホイール速度及び広い最適ホイール速度ウィンドウを有する急速凝固プロセスにより製造された等方性Nd-Fe-B型磁性材料に関する。該材料は、室温において、それぞれ、7.0〜8.5kG及び6.5〜9.9kOeの残留磁気(Br)値及び固有保磁力(Hci)値を示す。さらにまた、該材料の製造方法、及び、多くの用途において異方性焼結フェライトと直接置き換えるのに適している、該磁性材料から製造されたボンド磁石にも関する。 (もっと読む)


【課題】 磁石全体にわたって主相結晶粒の外殻部に重希土類元素RHを拡散させた希土類焼結磁石の製造方法を提供する。
【解決手段】
本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系焼結磁石を用意する。次に、焼結磁石体の表面にRH(但し、RHは、Dy、Ho、Tbから選ばれる希土類元素の1種又は2種以上)と、RHMとなり融点を下げる金属M(但し、MはAl、Cu、Co、Fe、Agから選ばれる金属元素の1種または2種以上)とからなるRHM合金層を被覆する。この後、真空又はAr雰囲気中で800℃以上1000℃以下の熱処理を行い、表面から金属元素Mを焼結磁石の内部に拡散させ、また、表面から重希土類元素RHを希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】保磁力及び角型比の両方を十分に高い異方性希土類ボンド磁石の製造方法を提供すること。
【解決手段】本発明に係る異方性希土類ボンド磁石の製造方法は、第1の希土類元素を含む水素化分解・脱水素再結合法(HDDR法)による処理が施された磁性粉末、第1の希土類元素とは異なる第2の希土類元素を含む拡散材、及び、分散媒を含有するスラリーを調製するスラリー調製工程と、スラリーを磁場中成形して成形体を作製する成形工程と、成形体を加熱して第2の希土類元素を磁性粉末に拡散させる拡散熱処理工程と、拡散熱処理工程後の成形体に樹脂を含浸させる樹脂含浸工程と、成形体に含浸した樹脂を硬化させる硬化処理工程とを備える。 (もっと読む)


【課題】希土類元素を含む磁石合金粉を原料とし、成形性に優れ、かつ耐食性に優れた樹脂結合型磁石用樹脂組成物の製造方法、樹脂結合型磁石用組成物、樹脂結合型磁石を提供。
【解決手段】希土類元素を含む鉄系磁石合金粗粉を有機溶媒中で粉砕する際、又は粉砕後に、リン酸を添加し攪拌して、磁石合金粉の表面に複合金属リン酸塩被膜を形成し、得られた磁石合金粉に、再びリン酸と有機溶媒を含む溶液を添加し攪拌して、複合金属リン酸塩被膜を積層し、次に、得られた複数層の複合金属リン酸塩被膜を有する磁石粉末に樹脂バインダーとして熱可塑性樹脂、熱硬化性樹脂から選ばれるいずれか一種と、0.001〜3質量%の重金属不活性化剤及び/又は活性炭とをインテグラルブレンド法で添加し、混練することを特徴とする樹脂結合型磁石用組成物の製造方法などによって提供する。 (もっと読む)


【課題】磁石特性に優れる希土類磁石が得られ、成形性に優れる磁石用粉末及びその製造方法、上記磁石の原料に利用される粉末成形体、希土類-鉄系合金材、希土類-鉄-窒素系合金材及びその製造方法を提供する。
【解決手段】磁石用粉末を構成する各磁性粒子1は、Feなどの鉄含有物の相2中に希土類元素の水素化合物の相3の粒子が分散して存在する組織を有する。磁性粒子1中に鉄含有物の相2が均一的に存在することで、この粉末は成形性に優れ、相対密度が高い粉末成形体4が得られる。上記磁石用粉末は、希土類-鉄系合金粉末を水素雰囲気中で熱処理して希土類元素と鉄含有物とを分離し、かつ希土類元素の水素化合物を生成することで得られる。この磁石用粉末を圧縮成形して粉末成形体4が得られ、粉末成形体4を真空中で熱処理して希土類-鉄系合金材5が得られる。希土類-鉄系合金材5を窒素雰囲気中で熱処理して希土類-鉄-窒素系合金材6が得られる。 (もっと読む)


【課題】常温下でも成形体の作製が可能であり、優れた残留磁束密度を有する希土類焼結磁石を容易に製造することが可能な希土類焼結磁石の製造方法を提供すること。
【解決手段】希土類化合物を含む磁性粉末と、油及びゴムを含有する油展ゴムと、を含む混合物を成形して成形体を作製する成形工程と、成形体から油展ゴムを除去する脱溶媒工程と、油展ゴムを除去した成形体を焼成して希土類焼結磁石10を得る焼成工程と、を有する希土類焼結磁石10の製造方法。 (もっと読む)


【課題】希土類化合物を焼結体に、効率よくかつ、焼結体の表面に均一に塗布するができる希土類焼結磁石製造方法を提供することにある。
【解決手段】希土類化合物を含むスラリーを焼結体に塗布する塗布工程と、焼結体の長手方向の一方の端部と、一方の端部の反対側の他方の端部とを保持し、焼結体の長手方向に平行であり、かつ、焼結体を通る直線を回転軸として焼結体を回転させる回転工程と、スラリーが塗布され、焼結体を回転させつつ、乾燥させる乾燥工程と、スラリーが乾燥された焼結体を熱処理する熱処理工程と、を有し、塗布工程は、焼結体を回転させつつ、回転軸に直交する方向から、焼結体にスラリーを供給し、焼結体に前記スラリーを塗布することで上記課題を解決する。 (もっと読む)


【課題】 磁気特性が良好であり比較的長い、交互多極磁化された棒状ボンド磁石を得る。
【解決手段】 本発明は、磁性粉末と樹脂とを混練しコンパウンドを得る第一の工程と、上記コンパウンドを溶融させてキャビティ内に射出して、そのキャビティに向かって配置された配向用磁石により配向磁場を印加しながら上記コンパウンドを成形する第二の工程と、を有する棒状ボンド磁石の製造方法において、上記第二の工程は、軸方向に沿った側面がN極とS極とに交互に多極磁化され、半円状の断面を有する複数の単位ボンド磁石を成形する工程を有しており、上記複数の単位ボンド磁石の平面側を向かい合わせにして配置することにより円柱状に形成することを特徴とする棒状ボンド磁石の製造方法である。 (もっと読む)


【課題】ボンド磁石用組成物としたときの成形性やボンド磁石の機械強度に優れるボンド磁石用希土類−鉄系磁石粉末とその製造方法を提供。
【解決手段】あらかじめ希土類元素を含む鉄系磁石合金からなる磁石粉末の表面にリン酸鉄と希土類金属リン酸塩を含む複合金属リン酸塩被膜(A)を形成し熱処理を施した後、シリケート被膜(B)を被覆形成してなり、かつX線光電子分光装置により表面を分析したとき、実質的に金属状態のFeが検知されない希土類元素を含む鉄系磁石合金粉;希土類元素を含む鉄系磁石合金粗粉を有機溶媒中で粉砕する際、又は粉砕後に、リン酸を添加し攪拌して、磁石合金粉の表面に複合金属リン酸塩被膜(A)を形成し、この磁石合金粉スラリーから溶液を分離除去した後に減圧下で100℃以上として熱処理を施す工程と、次いで、ポリアルコキシポリシロキサンを磁石合金粉に対して0.01〜5質量%の割合で添加し、混合して攪拌して、被膜(A)の表面にシリケート被膜(B)を形成する工程とを含む希土類元素を含む鉄系磁石合金粉の製造方法などによって提供する。 (もっと読む)


【課題】残留磁束密度が基本的に低下しないまま保磁力を大きく向上させ、大量生産を可能にし、且つ大きいサイズの高残留磁束密度と高保磁力の希土類永久磁石を生産する。
【解決手段】R−T−B系希土類永久磁石材料の製造方法であって、焼結体R1−T−B−M1を得る工程の後、焼結体をHR2M2とR3酸化物、R4フッ化物、R5フッ酸化物の一種または多種成分の粉末からなる混合粉末の中に埋め込み、真空或いは不活性ガス中において、磁石の焼結温度と同じまたはそれ以下の温度で、粉末中に埋め込んだ焼結体に対して1〜20時間の吸収処理を行う。ここで、R1、R3、R4、R5は希土類元素のうち少なくとも1種、TはFe、Coの少なくとも1種、Bはフッ素、M1はTi、Zr、Hf、V、Ta等のうち少なくとも1種、HR2はDy、Ho、Tbのうち少なくとも1種、M2はAl、Cu、Co、Ni、Mn等のうち少なくとも1種の元素である。 (もっと読む)


【課題】より優れた容易磁化方向の配向性を有する磁気異方性磁石を容易に製造することができる磁気異方性磁石の製造方法を提供する。
【解決手段】磁石表面の曲面上の一点で、その点での接平面に垂直な直線の方向に磁石粉末の容易磁化方向が配向された磁気異方性磁石の製造に当たって、まず、磁石粉末を磁場中で成形して磁石粉末の容易磁化方向が互いに平行な平面からなる成形面に垂直な直線の方向に配向された平板成形体を形成する。次に、平板成形体の平面を曲げ成形金型により成形加工して磁石成形体を形成する。最後に、磁石成形体を着磁して磁気異方性磁石を製造する。 (もっと読む)


【課題】焼結時の結晶化により粗大結晶粒を生成させず、良好な磁気特性を備えたナノコンポジット磁石を製造する方法を提供する。
【解決手段】硬磁性相と軟磁性相とから成る急冷組織から成り、結晶組織が85重量%以上である急冷合金を、加圧下で急速昇温により結晶化温度以下の温度に昇温して焼結することを特徴とするナノコンポジット磁石の製造方法。 (もっと読む)


【課題】外殻部に重希土類元素RHが濃縮された主相結晶粒をR−Fe−B系希土類焼結磁石体の内部にも効率よく形成し、残留磁束密度の低下を抑制しつつ保磁力を向上させる。また、耐食性を高める。
【解決手段】R−Fe−B系希土類焼結磁石は、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体と、前記R−Fe−B系希土類焼結磁石体の表面に形成された保護層とを備える。R−Fe−B系希土類焼結磁石体は、重希土類元素RH(Dy、HoおよびTbからなる群から選択された少なくとも1種)を含有し、保護層は、軽希土類元素RLを含有し、厚さが0.5μm以上の部分を有している。 (もっと読む)


【課題】酸化熱処理によって温度や湿度が変動する環境においても十分な耐食性が付与され、磁気特性の低下が抑制され、ハイブリッド自動車や電気自動車の駆動モータや空調機のコンプレッサーに組み込まれるIPMモータで使用しても、高温や高圧の環境下で発生する水素を吸蔵し脆化することによる磁気特性の低下が効果的に防止される、表面改質された希土類系焼結磁石の製造方法を提供する。
【解決手段】希土類系焼結磁石に対し、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が200Pa〜1000Paの雰囲気下、250℃〜600℃で熱処理工程を含み、常温から熱処理開始温度までの昇温を、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が1×10-3Pa〜100Paの雰囲気下で2段階工程で行い、常温から200℃迄の昇温を20分間未満で行った後、200℃から熱処理開始温度迄の昇温を20分間以上で行う。 (もっと読む)


【課題】 過酷条件下においても優れた耐食性を発揮するR−Fe−B系焼結磁石の製造方法を提供すること。
【解決手段】 R−Fe−B系焼結磁石の表面に、水素含有量が50ppm以上のAlまたはその合金からなる被膜を蒸着形成した後、蒸着形成されたAlまたはその合金からなる被膜に対してピーニング処理を行うことを特徴とする。 (もっと読む)


【課題】均一な加熱を確保して結晶粒の粗大化を防止できる通電焼結方法を提供する。
【解決手段】ダイス内の原料粉末を一対のポンチで加圧かつ通電加熱して焼結する通電焼結方法において、上記一対のポンチのうち少なくとも一方を揺動させながら通電する。 (もっと読む)


【課題】高磁気特性(保磁力)を維持しつつ、さらにモータ環境などでの耐熱性にも優れる磁性成形体を提供する。
【解決手段】本発明の希土類磁石成形体は、磁石粒子と当該磁石粒子間に存在する絶縁相とを含む。そして、Dy、Tb、Pr、およびHoからなる群から選択される1種または2種以上の元素が偏析した偏析領域が磁石粒子内部に分散して存在する。 (もっと読む)


下記一般式:Ra−x−yHoDyFe1−a−b−c−dCo によって表された希土類永久磁性材料を提供すること。式中、x、y、a、b、c、およびdは対応する元素の重量割合であり、28%≦a≦34%、0.95%≦b≦1.3%、0≦c≦1.5%、1%≦d≦10%、15%≦x≦20%、および3%≦y≦8%であり;Rは希土類元素であり、Nd、Pr、La、Ce、Gd、Tb、およびそれらの組み合わせからなる群から選択され;Mは、Al、Cu、Ti、V、Cr、Zr、Hf、Mn、Nb、Sn、Mo、Ga、Si、およびそれらの組み合わせからなる群から選択される。また、希土類永久磁性材料を調製する方法を提供すること。 (もっと読む)


【課題】高保磁力の希土類磁石の製造方法を提供する。
【解決手段】本発明の希土類磁石の製造方法は、希土類元素(R1)を含む磁性合金の表面にその共晶点よりも低温で液相を生じ得る浸透材(Nd−Cu合金)を付着させる付着工程と、この付着工程後に加熱して磁性合金の結晶粒の粒界へ浸透材を浸透拡散させる浸透工程とを備えてなる。これにより、結晶粒が少なくとも浸透材の構成元素で被包された希土類磁石が得られ、希土類磁石の保磁力を高めることができる。 (もっと読む)


161 - 180 / 683