説明

Fターム[4K021BA02]の内容

非金属・化合物の電解製造、そのための装置 (13,231) | 電解液 (1,914) | 電解液 (1,642) |  (812)

Fターム[4K021BA02]に分類される特許

361 - 380 / 812


本発明は、所定の温度の熱及びエネルギー場を提供する熱源(例えば、太陽コンセントレータ)、電子を放出するよう構成されかつ動作可能である電子源、ガス分子を解離するのに十分なエネルギーを供給するよう適合された電界を生成する電界ジェネレータ、及び、チャンバ内での解離性電子付着(DEA)により電子が分子を生成化合物及びイオンに解離するように、電子と分子との相互作用を生じるように構成されかつ動作可能である反応ガスチャンバ、を含むシステムに関する。
(もっと読む)


【課題】電極自体と(外部)接続用端子との間の導電性に優れると共に従来よりも熱的に安定な電極構造を提供する。
【解決手段】電極1Aとその制御用機器とを電気的に接続する接続用端子2とを具備し、前記電極1Aと接続用端子2との相互間にはイオン液体3を介在させるようにした。ここでイオン液体3は室温でも液体で存在する塩であって、電流を流すことができ、100℃以下での体積変化が小さいものである。電極1Aと接続用端子2とがイオン液体3との界面を介して電気が流れることとなる。 (もっと読む)


【課題】動作中の信頼性が高くかつ長寿命の電解用電極を提供する。
【解決手段】電極基板17は炭素材料、好ましくは特定範囲の密度を有するグラファイトからなる基体18を有する。さらに、基体18と、多結晶ダイアモンド又はダイアモンドライクカーボンからなる基板コーティング19との間に、ホウ素がドーピングされた炭化珪素等の非金属の電導性材料からなり、コーティングを支持する少なくとも1つの接触層20が形成される。 (もっと読む)


【課題】水から水素酸素混合ガスを効率的に発生させる装置を提供する。
【解決手段】中央にメイン孔11aが形成された多数の第1の板材11及びメイン孔11aの周りを囲む環形ガスケット13が交番に設けられる外部板材ユニット10と、メイン孔11aらが形成する電解空間10aの内部に所定の間隔を有して設けられる多数の第2の板材21からなる内部板材ユニット20と、外部板材ユニット10の前、後方に設けられる、前、後方カバー30、40と、前方カバー30に形成される水供給ホール50と水素酸素混合ガス排出ホール60とを含むことによって、第1の板材11同士はボディーを成し、メイン孔11a同士はシリンダーを成し、複数の環形ガスケット13の内側及びメイン孔11aは電解空間10aを成し、第1の板材11において環形ガスケット13の外側を成す部分は冷却ピンの役目をすることを特徴とする水素酸素混合ガス発生装置。 (もっと読む)


【課題】燃焼時の逆火を防止する水素酸素混合ガス発生システムの提供。
【解決手段】電解液が貯蔵される電解液貯蔵槽10と、多数の−電極25と+電極26から構成され、電解液貯蔵槽10の下部側と連結される第1、2のライン21、22及び発生された水素酸素混合ガスを電解液貯蔵槽10に供給するための第3のライン23を含む電極ユニット20と、電解液貯蔵槽10の内部に設けられて、電解液から水素酸素混合ガスを分離するための混合ガス分離フィルター50と、混合ガス分離フィルター50の上部に形成され、分離された水素酸素混合ガスを捕集する捕集部60と、捕集部60から流入される水素酸素混合ガスがその捕集部60に逆流されることを防止するための水が貯蔵される第1のフィルターユニット70と、及び捕集部60と第1のフィルターユニット70を連結する第1のガスライン75とを含む水素酸素混合ガス発生システム。 (もっと読む)


イオンを生成するために従来のアノードとカソードとの間に使用される典型的な3Vよりもはるかに少ない値を使用して水酸化物イオンおよび/または重炭酸イオンおよび/または炭酸イオンを生成する低電圧で低エネルギーの電気化学システムおよび方法;その結果、本発明のシステムおよび方法に起因する二酸化炭素の放出が大幅に減少する。一実施形態において、本発明のシステムは:カソードに接触する第1の電解質と;アノードに接触する第2の電解質と;第1のイオン交換膜によって第1の電解質から分離された第3の電解質と;第2のイオン交換膜によって第2の電解質から分離された第4の電解質と;第3および第4の電解質を分離する第3のイオン交換膜と含む。 (もっと読む)


【課題】バイオマスによる発電に際して、二酸化炭素を効率的に且つ大気中に拡散させることなく回収処理し、大気中二酸化炭素の減少或いは削減に寄与することが出来る大気中二酸化炭素の分離回収処理装置の提供。
【解決手段】バイオマス(1)からバイオガスを生成する装置(2)と、バイオガスを燃料として発電する発電装置(3、3A)と、発電装置(3、3A)の排ガスの組成が二酸化炭素と水のみになる様に当該排ガスに酸素を供給する機構(12)と、二酸化炭素と水のみから組成されている排ガスを冷却して凝縮水を分離する機構(5)と、分離された凝縮水から生成した城下水をバイオマス希釈水として供給するべき水供給機構(40)と、発電装置の発電電力を用いて酸素を製造する酸素製造装置(35)とを備えている。 (もっと読む)


【課題】低電流密度により、常温の電解質溶液(例えば、水)の電気分解によって、高効率にてオゾンを生成することを可能となる電解用電極およびこれを用いた電解ユニットの提供。
【解決手段】基体22と、前記基体22の表面に構成された表面層25を備えて成るものであって、表面層25は、X線回折において単斜晶の酸化ジルコニウム(−111)面の回折ピークが検出されるとともに、斜方晶の酸化ジルコニウム(111)面の回折ピークが検出されないことを特徴とする電解用電極21により課題を解決できる。 (もっと読む)


【課題】
フラットパネル型電解槽構成に適合するための方法論の開示。
【解決手段】
アルカリ電解槽セル構成(AECC)は、水素半セル、酸素半セル、GSM(ガス分離膜)、2つの内部水素半セルスペーサスクリーン、外部水素半セルスペーサスクリーン、水素電極、2つの内部酸素半セルスペーサスクリーン、外部酸素半セルスペーサスクリーン、及び酸素電極を有する。水素半セルは、前記2つの内部水素半セルスペーサスクリーンと前記外部水素半セルスペーサスクリーンとの間に位置する水素電極を含む。酸素半セルは、前記2つの内部酸素半セルスペーサスクリーンと前記外部酸素半セルスペーサスクリーンとの間に位置する酸素電極を含む。GSMは、水素半セルの前記2つの内部水素半セルスペーサスクリーンと、酸素半セルの前記2つの内部酸素半セルスペーサスクリーンとの間に提供されて電解槽を形成する。 (もっと読む)


【課題】有利なエネルギ貯蔵システム及びエネルギを貯蔵及び供給するための有利な方法を提供する。
【解決手段】電解槽5と、水素ガス貯蔵部6,20と、発電所7,35,32とが設けられており、電解槽5が水素ガス貯蔵部6,20に接続されており、水素ガス貯蔵部6,20が発電所7,25,32に接続されている。 (もっと読む)


【課題】飲料水などの液体の改質を効率良く行なうことができ、改質効果を長期に亘って維持できる液体処理方法を提案すること。
【解決手段】飲料水の改質装置1では、改質対象の飲料水3が高圧ポンプ9を介してナノバルブ発生器8に供給される。飲料水3の一部は純水器4に供給され、ここで発生した純水5が水素酸素混合ガス発生器6に供給される。水素酸素混合ガス発生器6で発生した水素酸素混合ガス7はナノバブル発生器8に高圧で供給され、ナノバブル化されて飲料水に注入される。水素酸素混合ガスのナノバブルが注入溶解して改質された改質飲料水10が改質飲料水タンク11に供給され、ここに貯められる。水素酸素混合ガスをナノバブル化して飲料水に注入することにより、その溶解量および溶解速度を高めることができ、ナノバブルが気化することなく残留するので改質効果も持続する。 (もっと読む)


【課題】酸素を含むガスと水を用いて過酸化水素を効率良く生成できる過酸化水素製造装置並びにそれにより製造された過酸化水素を洗浄に利用した空調機、空気清浄機及び加湿器を提供することを目的としている。
【解決手段】水素イオン伝導性を有する電解質膜3と電解質膜3の第一の面に接して配設された陽極電極4と電解質膜3の第二の面に接して配設された陰極電極5とにより構成された電解セル2と、電解セル2の陽極電極4側に設けられた陽極水槽10と、電解セル2の陰極電極5側に設けられた陰極水槽11と、陰極電極5に周期的に水を供給する水供給手段と、陽極電極4と陰極電極5とに直流電圧を印加する直流電源18と、を備えたもので、効率良く過酸化水素を生成できる。 (もっと読む)


【課題】低電流密度により、常温の電解質溶液(例えば、水)の電気分解によって、高効率にてオゾンを生成することを可能となる電解用電極およびこれを用いた電解ユニットの提供。
【解決手段】基体22と、前記基体22の表面に構成された表面層25を備えて成るものであって、表面層25は、蛍光X線法で測定した厚さが金属換算で5〜330nmで、X線回折法で測定した結晶構造がアモルファスである金属酸化物であることを特徴とする本発明の電解用電極21により課題を解決できる。 (もっと読む)


水溶液に電流を印加して通電させるステップを含む、水素生成する方法及び装置が開示されている。キャビテーションが前記水溶液内で発生し、前記キャビテーションが、前記水溶液の化学結合を分解するのに必要なエネルギーの量を低減させる。 (もっと読む)


平均熱膨張係数が異なる2つの構成部材間の、典型的には500℃超で動作するアセンブリであって、少なくとも一方の構成部材の熱膨張係数と少なくとも1.10−6−1の値だけ異なる熱膨張係数を有するシールが2つの構成部材間に挿入される、アセンブリ関する。本発明によれば、・閾値温度を下回る場合には、シールは、2つの構成部材を互いに接近する方向に一定にクランプすることによって達成される直交方向の圧縮を受け、・前記閾値温度を上回る場合には、シールは、クランプによる直交方向の圧縮と、閾値温度未満ではどこにも接触しないシールの端部部分が少なくとも一方の構成部材に対する半径方向に圧縮した状態となるまで、少なくとも一方の同一構成部材に対して圧迫接触するシール表面で摺動することによって達成される半径方向の圧縮と、を受ける。本シールは、所定の耐用期間の使用サイクル中にそれ自体のクリープ破断点に達しないように設計する。
(もっと読む)


【課題】本発明において、遷移金属または貴金属が、不安定な高原子価の状態を保持できる安定した有機金属高分子を提供する。また、高い触媒効率で、ニッケルと同程度あるいは、それ以上の酸素発生能力を発揮する酸素発生電極触媒を提供する。
【解決手段】有機金属高分子を含む酸素発生電極触媒であって、前記有機金属高分子が、有機高分子と遷移金属または貴金属を含み、前記有機高分子は、窒素(N)、酸素(O)、硫黄(S)、およびセレン(Se)から選択される少なくとも一種を含む複素5員環、または複素6員環あるいは、これらの縮合環を含む導電性配位子を含み、前記遷移金属または貴金属は前記導電性配位子に配位していることを特徴とする酸素発生電極触媒を提供する。 (もっと読む)


入口(12、63、65)、出口(36、63、65)、および同軸円筒状の内側電極および外側電極(20、22)を含む電解セル(10)が提供される。内側電極と外側電極(20、22)との間に円筒状のイオン選択性膜(18)が置かれ、この膜(18)の対向する側に、第1および第2の電解反応室(14、16)が形成される。第1および第2の室(14、16)に沿った流体流路は、入口(12、63、65)を通過する結合入口流路(70)および出口(36、63、65)を通過する結合出口流路(72)として合流する。
(もっと読む)


液体リザーバ(12,52,88,510)と、液体出口(14,74,89,508)と、電解セル(18,50,80,406,552,708,804)と、電源(32,402,542)と、直流・直流変換器(1004)とを含む手持ち式スプレーボトル(10,400,500,500’)が提供される。電解セル(18,50,80,406,552,708,804)は、スプレーボトル(10,400,500,500’)によって支えられ、リザーバ(12,52,88,510)と液体出口(14,74,89,508)との間に流体的に連結されている。電源(32,402,542)は、スプレーボトル(10,400,500,500’)によって支えられ、電圧出力を有する。直流・直流変換器(1004)は、電圧出力と電解セル(18,50,80,406,552,708,804)との間に連結され、そして電解セル(18,50,80,406,552,708,804)を活性化するため電源(32,402,542)の電圧出力より大きいステップアップ電圧を供給する。
(もっと読む)


イオン選択性膜(58,208)によって分離されたアノードおよびカソード(60,62,84,86,100,104,108,204,206)を有する電解セル(18,50,80,406,552,708,804)の中に水を通す方法および装置(10,400,500,500’,700,800,980)が提供される。カソードはアノードより大きい表面積を有している。この方法は、陽極液および陰極液(70,72,76)を生成するため、アノードおよびカソード(60,62,84,86,100,104,108,204,206)に第1の極性(300)で活性化電圧を印加するステップと、アノードまたはカソード(60,62,84,86,100,104,108,204,206)のうち少なくとも一つへの堆積物を減らすため、短期間(302)に亘って活性化電圧を第2の極性へ一時的に反転させ、その後、活性化電圧を第1の極性(300)へ戻すステップと、印加ステップおよび反転ステップの間に、単位時間当たりの陰極液の供給が陽極液の供給より多量である実質的に定量供給のアノード室(54)からの陽極液およびカソード室(56)からの陰極液を吐出するステップと、を含む。
(もっと読む)


アノード電極およびカソード電極(60,62,84,86,100,104,108,204,206)を含む電解セル(18,50,80,406,552,708,804)が提供される。アノード電極またはカソード電極のうちの少なくとも一つ(60,62,84,86,100,104,108,204,206)は、第1のサイズおよび/または形状を有している第1の複数のアパーチャ(102,106,110)と、第2の異なったサイズおよび/または形状を有している第2の複数のアパーチャ(102,106,110)とを含む。
(もっと読む)


361 - 380 / 812