説明

Fターム[4K030JA09]の内容

CVD (106,390) | 処理条件 (6,571) | 圧力、真空度 (1,123)

Fターム[4K030JA09]に分類される特許

121 - 140 / 1,123


【課題】成長条件とを駆使し、基板上への成長膜厚を均一にする方法を提供する。
【解決手段】チャンバ120内に、支持台110上に載置された基板101が収容され、この基板101上に成膜するためのガスを供給する第1の流路及びガスを排気する第2の流路が接続された気相成長装置を用い、基板上に半導体層を気相成長する際に、成膜するための反応ガス及びキャリアガスの流量と濃度、チャンバ内の真空度、基板温度及び基板を回転する回転速度を制御して、半導体層の膜厚を均一にする。 (もっと読む)


【課題】大面積の基板であっても短時間にカーボンナノチューブを形成することができる化学気相成長方法および化学気相成長装置を提供する。
【解決手段】基板Wに対して比較的小さいヘッド30を所定の方向に所定の速度で相対的に移動させる。ヘッド30には、基板Wに還元ガスを供給する還元室40と炭素源ガスを供給する炭素源室50とを設けている。また、基板Wに対するヘッド30の相対移動方向に沿って還元室40を炭素源室50よりも前段側に設ける。基板Wの表面に配置された触媒が還元室40または炭素源室50に対向しているときには、その触媒を加熱することにより還元処理およびカーボンナノチューブの成膜処理を行う。大面積の基板Wであっても還元室40および炭素源室50の雰囲気置換に長時間を要することはなく、短時間にカーボンナノチューブを形成することができる。 (もっと読む)


【課題】十分なガスバリア性を示す高密度の非晶質窒化珪素膜を簡便な方法で提供すること。
【解決手段】高周波放電を利用したプラズマCVD法において、シランガスと、水素ガスと、アンモニアガスまたは窒素ガスの少なくとも一方とを含む混合ガスを用いて、電極間距離を50〜100mmとし、シランガスに対する水素ガスの流量比(H2/SiH4)を0.5〜3.0として非晶質窒化珪素膜を成膜する。 (もっと読む)


【課題】抵抗率の低い不純物元素を有する非晶質半導体を形成する。また、電気特性が良好な半導体装置を、歩留まり高く作製する。
【解決手段】プラズマCVD法により不純物元素を有する非晶質半導体を形成する方法において、パッシェンの法則で最小放電開始電圧を満たす圧力及び電極間隔において、パルス変調した放電開始電圧を電極に印加することより、抵抗率の低い不純物元素を有する非晶質半導体を形成する。 (もっと読む)


【課題】基板に製膜処理を継続するときの膜のヘイズ率分布の悪化を抑制することが可能なCVD製膜装置を提供することを目的とする。
【解決手段】基板に製膜される膜の原料ガスを含む供給ガスを供給するノズル39を有するインジェクタ35と、インジェクタを35挟んで対向する一対の面34の間に形成され、供給された供給ガスが基板とインジェクタ35との間から排気される排気流路37と、一対の面の各面34の基板近傍に形成される排気入口部34aと、を有し、排気流路37の幅方向の中央部における排気入口部34aとインジェクタ35との間の距離は、幅方向の両端部における排気入口部34aとインジェクタ35との間の距離よりも大きいことを特徴とする。 (もっと読む)


【課題】半導体デバイス製造の多層プロセスにおいて、劣悪な平坦性は、ホトリソグラフィー工程で問題を惹起し得る。特に初期の堆積ステップにおける劣悪な平坦性は、半導体デバイス製造のより高い層を通じて増幅される傾向がある。この点を改良した半導体デバイス製造工程初期のブランケット層の堆積方法を提供する。
【解決手段】ガス状の前駆体混合物を形成するためにシリコンソース、ゲルマニウムソース及びエッチャントを混合することを含み、SiGe膜30をブランケット堆積する方法。本方法はさらに、化学気相成長条件下において、ガス状の前駆体物質を基板10上に流し、パターンの有無に関わらず、基板10上にエピタキシャルSiGeを堆積させる方法に依り、平坦性の優れたブランケット層30を堆積する。 (もっと読む)


【課題】電気特性が良好な半導体装置を、生産性高く作製する。
【解決手段】第1の条件により、高い結晶性の混相粒を低い粒密度で有する種結晶を形成した後、第2の条件により混相粒を成長させて混相粒の隙間を埋めるように、種結晶上に微結晶半導体膜を積層形成する。第1の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量を50倍以上1000倍以下にして堆積性気体を希釈し、且つ処理室内の圧力を67Pa以上1333Pa以下とする条件である。第2の条件は、シリコンまたはゲルマニウムを含む堆積性気体と、水素との流量比を周期的に増減させながら処理室に供給し、且つ処理室内の圧力を1333Pa以上13332Pa以下とする条件である。 (もっと読む)


【課題】薄膜と被成膜基材との密着性を十分に確保できる被成膜基材への薄膜の成膜方法を提供する。
【解決手段】本発明の一態様は、プラスチック又はプラスチックにSiO及びAlの少なくとも一方を分散させた材料からなる被成膜基材2の表面に酸素プラズマ処理、オゾン処理及び紫外線照射処理のいずれかの処理を施した後に、前記被成膜基材2の表面上に、プラズマCVD法、スパッタ法及び蒸着法のいずれかの方法により薄膜を成膜することを特徴とする被成膜基材への薄膜の成膜方法である。 (もっと読む)


【課題】 本発明の目的は、平行平板型のプラズマCVD装置の反応チャンバー内に備わっている平行平板電極表面の堆積物を、FあるいはCFOFを含有するガスをクリーニングガスとして用いて、反応チャンバー内の材質に損傷を与えることなく除去する方法を提供することである。
【解決手段】 平行平板型のプラズマCVD装置の反応チャンバー内にあるプラズマを発生させる平行平板電極表面に堆積した、Si含有物、Ge含有物、または金属含有物を、FまたはCFOFを含有するガスをクリーニングガスとして用いてプラズマを発生させることにより除去する方法において、該クリーニングガスの存在下で印加電力密度が0.05W/cm以上0.5W/cm以下の範囲内のプラズマを発生させて該堆積物を除去することを特徴とする、平行平板電極のプラズマクリーニング方法。 (もっと読む)


【課題】比較的低温で成膜しても含有する炭素濃度を多くさせてクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができる成膜方法を提供する。
【解決手段】被処理体Wが収容されて真空引き可能になされた処理容器4内に、シラン系ガスと窒化ガスと炭化水素ガスとを供給して前記被処理体の表面にSiCN膜よりなる薄膜を形成する成膜方法において、前記シラン系ガスと前記窒化ガスと前記炭化水素ガスとをそれぞれ一定の供給期間でパルス状に供給する供給工程と供給を停止する停止工程とよりなる1サイクルを複数回繰り返し実行してプラズマを用いることなく前記薄膜を形成する。これにより、比較的低温で成膜しても含有する炭素濃度を多くさせてクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させる。 (もっと読む)


【課題】熱分解やガスの反応による生成物質が処理室周辺に付着する事を抑制可能な基板処理装置を提供する。
【解決手段】基板処理装置202は、複数のサセプタ(被誘導加熱体)218と該サセプタ上に載置された複数のウェハ200を有し、サセプタ218からの輻射熱によりウェハ200を加熱処理する、インナーチューブ230から形成される処理室201と、インナーチューブ230の外側に設けられ、インナーチューブ230と間隙SPを成して囲うアウターチューブ205と、間隙SPに配置されるガス供給ノズル2321と、アウターチューブ205の外側に設けられ、サセプタ218を誘導加熱する誘導加熱装置と、を備え、インナーチューブ230には、処理室201に配置されるウェハ200の周縁側方に開口部FHが設けられている。また、ガス供給ノズル2321には、開口部FHおよびウェハ200に向けてガスを吹き出す吹出し口が設けられている。 (もっと読む)


【課題】 基材への密着性に優れ、他への移行成分を含まず、他の成分を吸着せず、しかも再利用でき、撥水性に優れる離型紙などに用いる撥水性皮膜3の製造方法を提供する。
【解決手段】 基材1へ、表面自由エネルギーが16〜40mN/mの撥水性皮膜3の製造方法であって、オクタメチルトリシロキサン、デカメチルテトラシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、トリストリメチルシロキシメチルシラン、テトラキストリメチルシロキシシランからなる選択される少なくとも1種の原料ガスと酸素ガスとを少なくとも含む混合ガスを、sccm基準で原料ガス:酸素ガス=100:0.001〜9の流量比で、真空槽内に導入し、真空度が0.1〜15Paで、プラズマが作成可能以上で6kW以下の蒸着源分解出力で、プラズマ化学気相成長方式により、炭素含有酸化ケイ素の撥水性皮膜を形成することを特徴とする。 (もっと読む)


【課題】膜中及び膜表面の不純物が効果的に除去でき、Cu配線構造に適用したときにバリア層及びCu配線層に対する密着性に優れて一層の低抵抗を実現できるCo膜形成方法を提供する。
【解決手段】基材Sを処理室10内に配置して処理室内を真空引きすると共に、基材を一の所定温度に加熱し、アルキル基を有するイオン又は分子がコバルトに配位した有機金属材料Lを気化させ、気化させた有機金属材料を基材表面に供給し、有機金属材料を熱分解させてCo膜を成膜する。その後、同一の処理室内で、またはCo膜が成膜された基材を他の処理室内に配置し、この基材をアンモニアガスと水素ガスとを含む混合ガス雰囲気中にて他の所定温度でアニールする。 (もっと読む)


【課題】セルフクリーニングを行うタイミングを簡素に、かつ、汎用性を有するように設定でき、しかも、このタイミングを一層延長させることができ、生産効率を向上できる真空処理装置を提供することを目的とする。
【解決手段】基板に製膜処理を行う製膜室1内に、クリーニングガスを導入してセルフクリーニングを行う真空処理装置の運転方法であって、セルフクリーニングの終了後に、製膜室1内に下地膜32を形成する下地製膜作業を行う工程を備え、該下地製膜作業を行う工程において、下地膜32を200nm以上3000nm以下の膜厚とし、製膜圧力が製膜処理時の1.0倍以上1.5倍以下で、かつ、少なくとも製膜初期に放電電極に供給する高周波電力が製膜処理時の0.1倍以上1.0倍以下で実施され、製膜処理の積算膜厚が500μmを超えないよう運用することを特徴とする。 (もっと読む)


【課題】 本発明の目的は、見た目に美しい金色の外観を有するコーティングされたガラス製品を提供することである。
【解決手段】 本発明は、ガラス製品上に酸化鉄コーティングを施す方法を定める。製品は、建築用グレイジングとして用いられるのが好ましい。上記方法には、コーティングが蒸着される表面を有する加熱ガラス基材を供給する過程が含まれる。コーティングされる表面に向けてかつその表面に沿って、フェロセン及びオキシダントが送り出され、フェロセン及びオキシダントはガラス基材の表面またはその付近で反応して酸化鉄コーティングを形成する。 (もっと読む)


【課題】大気圧プラズマ処理装置、大気圧プラズマ処理方法を提供する。
【解決手段】処理ガスが流通する流路51(第2の配管50)に介装され、前記流路51
を開閉可能なバルブ52と、前記流路51から前記処理ガスが供給され、前記処理ガスを
大気圧下でプラズマ化するプラズマ発生部16と、前記プラズマ発生部16及び前記バル
ブ52に接続され、前記バルブ52の開放時から一定の遅延時間経過後に前記プラズマ発
生部16を駆動させる制御部60と、を有することを特徴とする。 (もっと読む)


【課題】結晶性に優れたIII族窒化物の受光層を形成することのできる半導体積層構造、及びこれを用いた紫外線センサーを提供する。
【解決手段】所定の基材3上において、III族窒化物下地層4と、少なくともGaを含むIII族窒化物層5とを順次に積層し、その上にInおよびAl、あるいは一方を含むIII族窒化物からなるAlyInxGa1-x-yN受光層6を設けた半導体積層構造1、及びこれを用いて表面にショットキー電極7s、およびオーミック電極7oを形成させて紫外線センサー2を作製する。 (もっと読む)


【課題】発光層の結晶性低下や、p型半導体層への不純物の混入に起因するp型半導体層の結晶性低下を防ぎ、かつ、高い出力の得られる半導体発光素子およびその製造方法を提供する。
【解決手段】第一有機金属化学気相成長装置において、基板11上に第一n型半導体層12aと第二n型半導体層12bと、井戸層と障壁層とを交互に繰返し積層し、最上面が前記障壁層となる発光層13を形成する第一工程と、第二有機金属化学気相成長装置において、前記発光層の最上面の前記障壁層上に前記障壁層の再成長層13cとp型半導体層14とを順次積層する第二工程と、を具備してなることを特徴とする半導体発光素子の製造方法を採用する。 (もっと読む)


【課題】電気特性が良好な半導体装置を、生産性高く作製する方法を提供する。
【解決手段】第1の条件により、高い結晶性の混相粒を低い粒密度で有する第1の微結晶半導体膜を酸化絶縁膜上に形成した後、第2の条件により混相粒を結晶成長させて混相粒の隙間を埋めるように、第1の微結晶半導体膜上に第2の微結晶半導体膜を積層形成する。第1の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量比を50倍以上1000倍以下にして堆積性気体を希釈し、処理室内の圧力を67Pa以上1333Pa以下とする条件であり、第2の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量比を100倍以上2000倍以下にして堆積性気体を希釈し、処理室内の圧力を1333Pa以上13332Pa以下とする条件である。 (もっと読む)


【課題】結晶性の高い微結晶シリコン膜を作製する方法を提供する。
【解決手段】本発明の微結晶シリコン膜の作製方法は、絶縁膜55上に、第1の条件により第1の微結晶シリコン膜57をプラズマCVD法で形成し、第1の微結晶シリコン膜上に、第2の条件により第2の微結晶シリコン膜59を形成し、第1の条件は、処理室内に供給する原料ガスとしてシリコンを含む堆積性気体と水素が含まれたガスを用い、堆積性気体の流量に対する水素の流量を50倍以上1000倍以下にして堆積性気体を希釈し、且つ処理室内の圧力を67Pa以上1333Pa以下とする条件であり、第2の条件は、処理室内に供給する原料ガスとしてシリコンを含む堆積性気体と水素が含まれたガスを用い、堆積性気体の流量に対する水素の流量を100倍以上2000倍以下にして堆積性気体を希釈し、且つ処理室内の圧力を1333Pa以上13332Pa以下とする条件である。 (もっと読む)


121 - 140 / 1,123