説明

Fターム[4M104EE16]の内容

半導体の電極 (138,591) | 絶縁膜(特徴のあるもの) (8,323) | 材質 (4,070) | 金属酸化物 (1,421)

Fターム[4M104EE16]に分類される特許

21 - 40 / 1,421


【課題】ショートチャネル特性などを向上する。
【解決手段】n型FET111Nの半導体活性層111Cの上面に、バックゲート絶縁膜401を介してバックゲート電極121を金属材料で形成する。ここでは、バックゲート電極121,221について、半導体活性層111Cの上面においてゲート電極111Gおよび一対のソース・ドレイン領域111A,111Bに対応する部分を被覆するように、バックゲート電極121を形成する。 (もっと読む)


【課題】ノーマリーオフの電気特性を有し、オン電流の高い、酸化物半導体膜を用いたトランジスタを提供する。また、該トランジスタを用いた高速動作が可能な半導体装置を提供する。
【解決手段】下地絶縁膜と、下地絶縁膜上に設けられた酸化物半導体膜と、酸化物半導体膜上に設けられたゲート絶縁膜と、ゲート絶縁膜を介して酸化物半導体膜と重畳して設けられたゲート電極と、少なくともゲート電極を覆って設けられた、開口部を有する層間絶縁膜と、層間絶縁膜上に設けられ、開口部を介して酸化物半導体膜と接する配線と、を有し、少なくとも酸化物半導体膜と配線とが接する領域の、下地絶縁膜および酸化物半導体膜の間に、絶縁膜および絶縁膜上に設けられたバッファ層を有する半導体装置である。 (もっと読む)


【課題】酸化物半導体を含み、高速動作が可能なトランジスタを提供する。または、該トランジスタを含む信頼性の高い半導体装置を提供する。
【解決手段】下地絶縁層の溝に埋め込まれた電極層上に、一対の低抵抗領域及びチャネル形成領域を含む酸化物半導体層を設ける。チャネル形成領域は、サイドウォールを側壁に有するゲート電極層と重なる位置に形成される。溝は、深い領域と浅い領域を有し、サイドウォールは、浅い領域と重なり、配線との接続は、深い領域と重なる。 (もっと読む)


【課題】所定の安定した特性を有するN−MISFETとP−MISFETとを備えた半導体装置を容易に実現できるようにする。
【解決手段】半導体装置の製造方法は、半導体基板101の上に高誘電体膜121と、第1の膜122と、犠牲導電膜123と、第2の膜124とを順次形成した後、第2の膜124におけるN−MISFET形成領域101Nに形成された部分を第1の薬液を用いて選択的に除去する。この後、第2の膜124に含まれる第2の金属元素を犠牲導電膜124におけるP−MISFET形成領域101Pに形成された部分に拡散させる。続いて、犠牲導電膜124及び第1の膜122におけるN−MISFET形成領域101Nに形成された部分を、それぞれ第2の薬液及び第3の薬液を用いて選択的に除去する。第3の膜125を形成した後、第3の膜125に含まれる第3の金属元素を高誘電体膜121中に拡散させる。 (もっと読む)


【課題】結晶欠陥の発生を抑え、デバイスのリーク電流の発生、耐圧低下、しきい値電圧の継時変化、およびショートチャネル効果を抑制することが可能な半導体装置を提供すること。
【解決手段】単結晶AlNからなる基板を準備するステップと、前記単結晶AlNからなる基板の表面を酸素プラズマによって酸化し、単結晶AlNからなる基板上に酸化アルミニウムまたはアルミニウムオキシナイトライドからなる絶縁膜を形成するステップとを備えることを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】アンチモン反応物質および酸素ソースを使用して酸化アンチモン薄膜を原子層堆積によって堆積させるプロセスを提供する。
【解決手段】アンチモン反応物質は、ハロゲン化アンチモン、例えばSbCl、アンチモンアルキルアミン、およびアンチモンアルコキシド、例えばSb(OEt)を含んでもよい。酸素ソースは、例えばオゾンであってもよい。いくつかの実施形態では、この酸化アンチモン薄膜は、バッチ反応器の中で堆積される。この酸化アンチモン薄膜は、例えば、エッチング停止層または犠牲層としての役割を果たしてもよい。 (もっと読む)


【課題】高電圧動作時においても電流コラプス現象を十分に抑制し、高耐圧及び高出力を実現する信頼性の高い化合物半導体装置を得る。
【解決手段】HEMTは、化合物半導体層2と、開口を有し、化合物半導体層2上を覆う保護膜と、開口を埋め込み、化合物半導体層2上に乗り上げる形状のゲート電極7とを有しており、保護膜は、酸素非含有の下層絶縁膜5と、酸素含有の上層絶縁膜6との積層構造を有しており、開口は、下層絶縁膜5に形成された第1の開口5aと、上層絶縁膜6に形成された第1の開口5aよりも幅広の第2の開口6aとが連通してなる。 (もっと読む)


【課題】化合物半導体積層構造上の絶縁膜に所期の微細な開口を形成するも、リーク電流を抑止した信頼性の高い高耐圧の化合物半導体装置を実現する。
【解決手段】化合物半導体積層構造2上にパッシベーション膜6を形成し、パッシベーション膜6の電極形成予定位置をドライエッチングにより薄化し、パッシベーション膜6の薄化された部位6aをウェットエッチングにより貫通して開口6bを形成し、この開口6bを電極材料で埋め込むように、パッシベーション膜6上にゲート電極7を形成する。 (もっと読む)


【課題】半導体装置の特性を損なうことがない半導体装置およびその作製方法を提供する。
【解決手段】酸化物半導体層を含むトランジスタ(半導体装置)において、電極層を酸化物半導体層の下部に接して形成し、不純物を添加する処理により酸化物半導体層に自己整合的にチャネル形成領域と、チャネル形成領域を挟むように一対の低抵抗領域を形成する。また、電極層および低抵抗領域と電気的に接続する配線層を絶縁層の開口を介して設ける。 (もっと読む)


【課題】電極と化合物半導体層との界面に電極材料が到達することを抑止し、ゲート特性の劣化を防止した信頼性の高い高耐圧の化合物半導体装置を提供する。
【解決手段】化合物半導体積層構造2と、化合物半導体積層構造2上に形成され、貫通口6aを有するパッシベーション膜6と、貫通口6aを埋め込むようにパッシベーション膜6上に形成されたゲート電極7とを有しており、ゲート電極7は、相異なる結晶配列の結晶粒界101が形成されており、結晶粒界101の起点が貫通口6aから離間したパッシベーション膜6の平坦面上に位置する。 (もっと読む)


【課題】絶縁耐圧が高く、オン抵抗を増加させることなく、ノーマリーオフとなる半導体装置を提供する。
【解決手段】基板11の上に形成された第1の半導体層13と、前記第1の半導体層の上に形成された第2の半導体層14と、前記第2の半導体層の上に形成された第3の半導体層15と、前記第3の半導体層の上に形成されたゲート電極21と、前記第2の半導体層に接して形成されたソース電極22及びドレイン電極23と、を有し、前記第3の半導体層には、半導体材料にp型不純物元素がドープされており、前記第3の半導体層は、前記ゲート電極の端部より、前記ドレイン電極が設けられている側に張出している張出領域を有していることを特徴とする半導体装置。 (もっと読む)


【課題】頻繁なリフレッシュ動作が不要で、正常な読み出しを行うことのできる2トランジスタ型のDRAMを備えた半導体装置を提供する。
【解決手段】本実施形態の半導体装置は、ゲートが第1配線に接続され、第1ソース/ドレインの一方が第2配線に接続された第1トランジスタと、ゲート絶縁膜、ゲート電極、および前記ゲート絶縁膜と前記ゲート電極との間に設けられしきい値を変調するしきい値変調膜を有するゲート構造と、第2ソース/ドレインとを備え、前記ゲート電極が前記第1トランジスタの前記第1ソース/ドレインの他方に接続され、前記第2ソース/ドレインの一方が第3配線に接続され、前記第2ソース/ドレインの他方が第4配線に接続された第2トランジスタと、を備えている。 (もっと読む)


【課題】オン抵抗を増加させることなく、ノーマリーオフとなる半導体装置を提供する。
【解決手段】基板11の上に、第1の半導体層14、第2の半導体層15及びp型の不純物元素が含まれている半導体キャップ層16を順次形成する工程と、前記半導体キャップ層を形成した後、開口部を有する誘電体層21を形成する工程と、前記開口部において露出している前記半導体キャップ層の上に、p型の不純物元素が含まれている第3の半導体層17を形成する工程と、前記第3の半導体層の上にゲート電極31を形成する工程と、を有することを特徴とする半導体装置の製造方法により上記課題を解決する。 (もっと読む)


【課題】ゲートリーク電流が低減され、かつ、ノーマリーオフ動作する半導体装置を提供する。
【解決手段】基板11の上に形成された第1の半導体層12と、第1の半導体層12の上に形成された第2の半導体層13と、第2の半導体層13の上に形成された下部絶縁膜31と、下部絶縁膜31の上に、p型の導電性を有する酸化物により形成された酸化物膜33と、酸化物膜33の上に形成された上部絶縁膜34と、上部絶縁膜34の上に形成されたゲート電極41と、を有し、ゲート電極41の直下において、下部絶縁膜31の表面には凹部が形成されている半導体装置。 (もっと読む)


【課題】ホモエピタキシャルLED、LD、光検出器又は電子デバイスを形成するために役立つGaN基板の形成方法の提供。
【解決手段】約10/cm未満の転位密度を有し、傾角粒界が実質的に存在せず、酸素不純物レベルが1019cm−3未満の窒化ガリウムからなる単結晶基板上に配設された1以上のエピタキシャル半導体層を含むデバイス。かかる電子デバイスは、発光ダイオード(LED)及びレーザーダイオード(LD)用途のような照明用途、並びにGaNを基材とするトランジスター、整流器、サイリスター及びカスコードスイッチなどのデバイスの形態を有し得る。また、約10/cm未満の転位密度を有し、傾角粒界が実質的に存在せず、酸素不純物レベルが1019cm−3未満の窒化ガリウムからなる単結晶基板を形成し、該基板上に1以上の半導体層をホモエピタキシャルに形成する方法及び電子デバイス。 (もっと読む)


【課題】ノーマリオフ型のHEMT構造を有し、かつ優れたデバイス特性を有する窒化物半導体装置およびその製造方法を提供する。
【解決手段】窒化物半導体装置は、窒化物半導体からなる電子走行層3と、電子走行層3に積層され、電子走行層3とはAl組成が異なり、Alを含む窒化物半導体からなる電子供給層4と、電子供給層4と電子走行層3との界面に連続する界面を有し、電子走行層3上に形成された酸化膜11と、酸化膜11を挟んで電子走行層3に対向するゲート電極8とを含む。 (もっと読む)


【課題】酸化物半導体を用いた半導体装置において、電気特性の安定した半導体装置を提供する。とくに、酸化物半導体を用いた半導体装置において、より優れたゲート絶縁膜を有する半導体装置を提供する。また、当該半導体装置の作製方法を提供する。
【解決手段】ゲート電極と、ゲート電極上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成された酸化物半導体膜と、酸化物半導体膜と接して形成されたソース電極、及びドレイン電極と、を有し、ゲート絶縁膜は、少なくとも酸化窒化シリコン膜と、酸化窒化シリコン膜上に形成された酸素放出型の酸化膜と、により構成され、酸素放出型の酸化膜上に酸化物半導体膜が接して形成される。 (もっと読む)


【課題】チャネル長Lが短く微細化が可能な、酸化物半導体を用いたトップゲート型の半
導体素子を提供することを課題とする。また、該半導体素子の作製方法を提供することを
課題とする。
【解決手段】絶縁表面上に酸化物半導体層と、酸化物半導体層上にソース電極層及びドレ
イン電極層と、酸化物半導体層、前記ソース電極層、及び前記ドレイン電極層上にゲート
絶縁層と、ゲート絶縁層上にゲート電極層とを有し、ソース電極層及びドレイン電極層は
側壁を有し、側壁は前記酸化物半導体層の上面と接する半導体素子である。 (もっと読む)


【課題】一定のドレイン電圧及びゲート電圧に対して得られるドレイン電流を増大することの出来る半導体装置の製造方法を提供する。
【解決手段】チャンネル領域と、ソース領域及びドレイン領域と、前記ソース領域及びドレイン領域にそれぞれ電気的に接続する合計二つの第1の電極と、前記チャンネル領域上にゲート絶縁膜を介して設けられた第2の電極とを備えた半導体装置の製造に際し、前記ゲート絶縁膜を、酸素の含有量を1ppb以下にした水素添加超純水にIPAを添加した洗浄液を用いて、酸素含有量1ppb以下の窒素雰囲気でしかも遮光した状態で表面の洗浄を行ない、かつ等方性酸化または窒化で形成することにより、前記チャンネル領域と前記ゲート絶縁膜との界面の平坦度を、前記ソース領域から前記ドレイン領域に向かう方向での長さ2nmにおけるピーク・トゥ・バレイ値が0.3nm以下となるようにするとともに、前記第1の電極から前記チャンネル領域までの抵抗率を4Ω・μm以下とした。 (もっと読む)


【課題】半導体装置について、小型化を図りつつ、ドレイン耐圧を向上する。
【解決手段】ゲート電極20と、ゲート電極20と離間するソース電極24と、平面視でゲート電極20からみてソース電極24の反対側に位置し、かつゲート電極20と離間するドレイン電極22と、平面視でゲート電極20とドレイン電極22の間に位置し、絶縁膜26を介して半導体基板10上に設けられ、かつゲート電極20、ソース電極24およびドレイン電極22と離間する少なくとも一つのフィールドプレート電極30と、絶縁膜26中に設けられ、かつフィールドプレート電極30と半導体基板10を接続する少なくとも一つのフィールドプレートコンタクト40と、を備え、平面視でフィールドプレート電極30は、フィールドプレートコンタクト40からソース電極24側またはドレイン電極22側の少なくとも一方に延伸している。 (もっと読む)


21 - 40 / 1,421