説明

Fターム[4M104HH01]の内容

半導体の電極 (138,591) | 目的 (7,416) | エレクトロマイグレーション防止 (153)

Fターム[4M104HH01]に分類される特許

61 - 80 / 153


【課題】 エレクトロマイグレーションの制約を受け難く、配線抵抗が小さくトランジスタの電力損失が少ない、パッド配置の制約の少ないパワーMOSトランジスタを提供する。
【解決手段】 半導体基板1に形成されたソース領域2およびドレイン領域3が格子状に形成されたゲート4を挟んで互いに隣接するMOSトランジスタにおいて、半導体基板1上に順次形成された3層のメタル配線5、6、7とを有する。メタル配線は、ソース領域及びドレイン領域に電気的に接続され、ドレイン領域を第3層メタル配線7に接続する場合、ソース領域を第2層メタル配線6及び第1層メタル配線5に接続する。第3層メタル配線7のドレイン配線は、半導体基板1の全領域を覆うように配置され、第1層及び第2層メタル配線5、6のソース配線は第1層及び第2層メタル配線の全領域を覆うように配置される。 (もっと読む)


半導体デバイスの製造に選択的低温Ru堆積を統合することで、バルクCu金属中でのエレクトロマイグレーション及びストレスマイグレーションを改善する方法。当該方法は、誘電体層(304)中に凹部を有するパターニング基板を供する工程であって、前記凹部は平坦化されたバルクCu金属(322)によって少なくとも実質的に充填されている工程、H2、N2、若しくはNH3、又はこれらの混合気体が存在する中で前記バルクCu金属及び前記誘電体膜を熱処理する工程、並びに、前記の熱処理されたバルクCu金属上にRu金属膜を選択的に堆積する工程、を有する。
(もっと読む)


集積回路のための相互接続構造体に、銅線の核形成、成長及び接着を促進する窒化コバルトの層が組み込まれる。銅の拡散バリヤーとして機能し、かつ窒化コバルトと下地の絶縁体の間の接着性も増加させる、窒化タングステン又は窒化タンタルなどの耐熱性の金属窒化物又は金属炭化物層上に窒化コバルトを堆積してよい。窒化コバルトは、新規なコバルトアミジナート前駆体からの化学気相成長により形成され得る。窒化コバルト上に堆積された銅層は、高い電気伝導度を示し、マイクロエレクトロニクスにおける銅伝導体の電気化学的な堆積のための種層として機能できる。 (もっと読む)


【課題】ヒロック、エッチング残渣、ITO等との電気化学反応の発生を防止した低抵抗な配線膜を再現性よく成膜することができ、かつスパッタ時におけるダスト発生を抑制したスパッタターゲットの製造方法を提供する。
【解決手段】Y、Sc、La、Ce、Nd、Sm、Gd、Tb、Dy、Er、Th、Sr、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Pd、Ir、Pt、Cu、Ag、Au、Cd、Si、PbおよびBから選ばれる少なくとも1種の第1の元素を0.001〜30原子%の範囲で含み、残部がAlからなるインゴットまたは焼結体を、大気溶解法、真空溶解法、急冷凝固法、粉末冶金法で作製するにあたって、インゴットまたは焼結体にCを第1の元素量に対して20原子ppm〜37.8原子%の範囲で含有させ、得られたインゴットや焼結体を加工してスパッタターゲットを作製する。 (もっと読む)


【課題】極めて微細な孔又は溝内に銅を埋め込むことができる、新たな銅配線の製造方法を提供する。
【解決手段】1価の銅イオンと錯体を形成し、1価の銅イオンとの錯化定数が1×103より高い値を示し、且つ使用環境下において1価の銅イオンと形成する錯体の溶解度が0.5g/L以上の銅錯化剤、若しくは、1価の銅イオンと錯体を形成し、1価の銅イオンとの錯化定数が1×103より高い値を示し、且つ2価の銅イオンとの錯化定数が1×1020以下の値を示す銅錯化剤を1wt%以上と、水を1wt%以上と、銅成分とを含む電解液を強制攪拌しながら、被めっき体における配線接続孔又は配線溝内に銅を電気めっきする工程を備えた銅配線の製造方法によれば、攪拌の程度を調整することにより、微細孔への銅の埋め込み率を調整することができ、微細孔への銅の埋め込み率をより一層高めることができる。 (もっと読む)


【課題】安価で且つエレクトロマイグレーションの生じない銅を使用して、低温焼成であっても高導電性を有する導電材を形成する方法及び該方法により形成された導電材を提供すること。
【解決手段】本発明の導電材の形成方法は、一次粒子の平均粒径が1〜150nmの銅微粒子(P)を、少なくとも、分子中に1又は2以上の水酸基を有するアルコール及び/又は多価アルコールからなる有機溶媒を含む分散媒(S)に分散させて銅微粒子分散液を調整する工程と、前記銅微粒子分散液を被塗布体上に付与して、所定パターンを有する銅微粒子分散液の液膜を形成する工程と、前記所定パターンを有する銅微粒子分散液の液膜を焼成して焼結導電層を形成する工程とを有する。 (もっと読む)


Ruの選択堆積を半導体デバイスの作製に統合することで、Cuメタライゼーションにおけるエレクトロマイグレーションとストレスマイグレーションを改善する方法。当該方法は、熱化学気相成長法によって、Ru3(CO)12先駆体蒸気及びCOガスを有するプロセスガスを用いて、メタライゼーション層(302)上及びバルクCu(322)上にRu金属膜を選択的に堆積する工程を有する。1つ以上の選択的に堆積されたRu金属膜を有する半導体デバイスが記載されている。
(もっと読む)


【課題】メタルキャップ層の信頼性と生産性を向上させた半導体装置の製造方法及び半導体装置の製造装置を提供する。
【解決手段】成膜チャンバ40Dの内部空間Sに吸着期間の間だけZr(BHを導入した。そして、シリコン基板2の表面、すなわち第2層間絶縁膜の表面及び第1配線の表面に、あるいはハードマスクの表面及び第2配線の表面にZr(BHを吸着させ、吸着分子からなる単分子層を形成した。また、吸着期間の経過後、照射管47の内部に改質期間の間だけマイクロ波を照射し、プラズマ化したHを、すなわち水素活性種をシリコン基板2の表面に供給した。そして、Zr(BHの供給と、水素活性種の供給と、を交互に繰り返した。 (もっと読む)


【課題】 平面表示装置等の配線膜のプロセス温度域での低抵抗化が可能であるとともに、Cu系膜で発生するヒロックおよびボイドを抑制可能な耐熱性を有するCu合金膜とそのCu合金膜を形成するためのスパッタリングターゲット材を提供する。
【解決手段】 添加元素としてBを0.1〜1.0原子%、さらにMnおよび/またはNiを0.1〜2.0原子%含み、残部Cuおよび不可避的不純物からなる配線膜用Cu合金膜である。また、上記の配線膜用Cu合金膜を形成するためのスパッタリングターゲット材である。 (もっと読む)


【課題】メタルキャップ層の製造工程におけるパーティクルの発生や組成比の変動を抑制させて、半導体装置の信頼性と生産性を向上させた半導体装置の製造装置に関するものである。
【解決手段】成膜チャンバ33は、第1カソード40aと第2カソード40bを備え、各カソード40a,40bに、それぞれZrを含む第1ターゲット42aと、BNを主成分とする第2ターゲット42bを搭載する。そして、成膜チャンバ33は、各外部電源を駆動して第1ターゲット42aと第2ターゲット42bとを同時にスパッタし、第1絶縁層の表面と第1配線の表面、又は、第2絶縁層の表面と第2配線の表面に、ZrBNを主成分とするメタルキャップ層を成膜させる。 (もっと読む)


【解決課題】集積回路用のサブミクロン相互接続構造を製作する方法を提供する。
【解決手段】添加剤を含み、平坦で光沢があり延性があり低応力のCu金属を付着させるのに通常用いられる浴からCuを電気めっきすることによって、ボイドのないシームレスな導体が得られる。ボイドまたはシームを残すことなくフィーチャを超充填できるこの方法の能力は独特であり、他の付着方法より優れている。この方法で電気めっきされたCuを利用する構造のエレクトロマイグレーションの抵抗は、AlCu構造または電気めっき以外の方法で付着されたCuを用いて製作された構造のエレクトロマイグレーションの抵抗より優れている。 (もっと読む)


金属間化合物導体材料は、集積回路において相互接続を形成するために使用される。いくつかの場合では、この金属間化合物導体材料は、アルミニウムの金属間化合物合金であり得る。
(もっと読む)


【課題】電子移動の性能を改善しまたリソグラフィープロセスステップを有利にする目的で、バリア層のアルミニウムの{111}含有率を上げる。
【解決手段】IMP技術を用いて(Ti又はTiNX)/TiN/TiNXバリア層を堆積する場合に、Ti又はTiNX である第1層の厚さを約100オングストローム以上、〜約500オングストロームまで(表面形状の幾何関係がこの厚みの上限を制限する)までの範囲に厚くし、TiNの第2層を約100オングストローム以上約800オングストローム以下(好ましくは約600オングストローム以下)の範囲に薄くし、TiNXの第3層の形成を制御してTi含有率が約50原子パーセントチタン(ストイキオメトリック)〜約100原子パーセントチタンとなるようにすることにより、(Ti又はTiNX)/TiN/TiNXバリア層を改良することができる。第1層がTiNXである場合は、Tiの原子パーセントは少なくとも約40パーセントである。 (もっと読む)


【課題】アルミニウム膜の流動性の低下を抑制しつつ、耐熱性を向上させる。
【解決手段】イオンビームデポジションなどの方法にて高純度アルミニウム膜15を絶縁層13上に形成した後、イオンビームデポジション法にて、添加元素17を含む添加元素膜16を高純度アルミニウム膜15上に形成し、添加元素膜16の熱処理を行うことで、添加元素膜16に含まれる添加元素17を高純度アルミニウム膜15に拡散させ、高純度アルミニウム膜15に添加元素17を添加する。 (もっと読む)


【課題】バリアメタルが薄い場合でもAl配線のモフォロジ及びエレクトロマイグレーションを改善することができる半導体装置の製造方法を得る。
【解決手段】まず、半導体基板11上にSiO層間膜13(酸化膜)を形成する。次に、SiO層間膜13上にTi膜18を形成する。次に、Ti膜18上にTiN膜32を形成する。次に、TiN膜32上にAl配線33を形成する。ここで、Ti膜18を形成する工程において、圧力が0.3Pa以下の雰囲気中で物理気相成長法を用いる。これにより、Ti膜18とSiO層間膜13との間にTiO膜31が形成される。 (もっと読む)


【課題】配向性の高いAl膜を有する半導体装置の製造方法を提供する。また、配向性の高いTi膜を成膜可能な成膜装置を提供する。
【解決手段】スパッタリングを行う成膜室内に、Hガスを導入してから、または、Hガスを導入しながら、Ti膜の成膜を行う。成膜中におけるHガスの分圧は、1×10−4Pa〜1×10−2Paであることが好ましい。また、Ti膜の成膜は、半導体基板を200℃〜250℃の温度に加熱した状態で行うことが好ましい。 (もっと読む)


【課題】銅めっきをアンテナに用いた、集積回路とアンテナが一体形成された半導体装置において、銅の拡散による回路素子の電気特性への悪影響を防止し、また、集積回路とアンテナが一体形成された半導体装置において、アンテナと集積回路の接続不良に伴う半導体装置の不良を防止する装置を提供する。
【解決手段】半導体装置によると、同一の基板102上に集積回路100とアンテナ101とが一体形成された半導体装置において、銅めっき層108をアンテナ101の導体に用いた場合に、アンテナ101の下地層107に所定の金属の窒化膜を用いているので銅の回路素子への拡散を防ぎ、銅の拡散による回路素子の電気特性への悪影響を低減できる。また、アンテナの下地層の金属の窒化物の一つにニッケルの窒化物を用いることで、アンテナと集積回路の接続不良を低減することができる。 (もっと読む)


【課題】金属膜を吸着および分解プロセスの繰り返しにより、効率よく成膜する。
【解決手段】成膜方法は、被処理基板表面に金属元素のカルボニル原料を気相分子の形で、前記気相分子の分解を抑制する気相成分と共に、前記気相成分の分圧を、前記カルボニル気相原料分子の分解が抑制される第1の分圧に設定して供給する第1の工程と、前記被処理基板表面において前記気相成分の分圧を、前記カルボニル原料の分解が生じる第2の分圧に変化させ、前記被処理基板表面に前記金属元素を堆積させる第2の工程と、よりなることを特徴とする。 (もっと読む)


【課題】III族窒化物系化合物半導体発光素子の電極中の銀のマイグレーションの抑制。
【解決手段】サファイア等の誘電体基板10に、n型AlxGayIn1-x-yN層11、発光層12、p型AlxGayIn1-x-yN層13を形成する。この後、n型AlxGayIn1-x-yN層11をエッチング等により露出させ、n電極30を形成する。正電極側は、p型層13の上に、ITOから成る透光性電極層21、銀合金から成る反射電極層22、TiとPtを積層した拡散防止層23、金から成る厚膜電極24を順に積層する。銀合金から成る反射電極層22は、パラジウム(Pd)と銅(Cu)を添加し、酸素(O)を含む。これにより、銀合金から成る反射電極層22からのマイグレーションを抑制した上、下層のITOから成る透光性電極層21との界面での黒化を防止でき、光取り出し効率が向上する。 (もっと読む)


【課題】正電極に銀合金を用いる際のp型GaN層とのオーミック性改善
【解決手段】III族窒化物系化合物半導体発光素子100は、サファイア基板10にAlNバッファ層を形成した後、n型GaN層11、n型AlGaNクラッド層12、GaN/InGaN多重量子井戸構造の発光層13、p型AlGaNクラッド層14、p型GaN層15をMOCVDで積層した。蒸着とリフトオフによりnコンタクト電極31を形成し、スパッタリングとリフトオフによりPdとCuを含む膜厚400nmの銀合金層から成るpコンタクト電極21を形成した。窒素ガス下で600℃で1分間の加熱処理と、酸素ガスで炉内を置換して300℃、3分間の加熱処理の後、Tiと金から成るパッド電極22と32を形成したIII族窒化物系化合物半導体発光素子100の駆動電圧は3.1Vと良好であり、オーミック性の良いコンタクト電極21が形成された。 (もっと読む)


61 - 80 / 153