説明

Fターム[4M112DA04]の内容

圧力センサ (26,807) | 製造工程 (5,073) | 素子本体の製造工程 (5,065) | エッチング (1,709) | ウェットエッチング (616)

Fターム[4M112DA04]に分類される特許

81 - 100 / 616


【課題】優れた検出感度を有する物理量センサー素子および物理量センサー、および、この物理量センサーを備える電子機器を提供すること。
【解決手段】本発明の物理量センサー素子1は、基部31と、基部31からY軸方向に延出し、Z軸方向を法線とする板面を有する梁部34と、梁部34の先端部に設けられた質量部35と、梁部34の板面上に第1電極層421、圧電体層422および第2電極層423がこの順で積層され、梁部34のZ軸方向での曲げ変形を検出する検出素子42とを有し、梁部34は、Z軸方向からみたときに、基端側から先端側に向けて幅が漸減する形状をなす。 (もっと読む)


【課題】エアダンピング効果の影響を低減でき、さらに効率よく製造することができるMEMSセンサおよびその製造方法を提供すること。
【解決手段】表面21および裏面22を有し、振動膜7と、当該振動膜7を支持し、当該振動膜7の直下に空間6を区画するフレーム部8と、振動膜7に保持された錘9とを有するSOI基板2において、フレーム部8の底面(底壁)83に、そのフレーム部8の内側面82から外側面81に至る溝10を形成する。 (もっと読む)


【課題】寄生容量や入力容量の影響が低減された高感度なセンサを提供する。
【解決手段】センサは、可動部分を含む第1の電極101と、第1の電極101に対向して配置された第2の電極102とを有し、容量変化により物理量を検知する第1の容量変化検出部100と、反転入力端子121を有する増幅器120と、第1の容量素子20とを備えている。第1の容量変化検出部100と第1の容量素子20とは、増幅器120の反転入力端子121と出力端子123との間で互いに直列に接続されて増幅器120の帰還容量を構成する。 (もっと読む)


【課題】トランスデューサーの製造コストを低減する。
【解決手段】ナノシートトランスデューサ(1)は、溝(100a)と前記溝によって互いに隔てられた電極支持部(101)と厚さ1μm未満のシート状の可撓電極(104)とが形成されたシリコンからなる基板(100)と、前記電極支持部上に形成された導電膜からなる固定電極(103)と、前記固定電極と前記電極支持部との間に形成された絶縁層(102)と、を備え、前記可撓電極は前記基板の主面に対して垂直である。 (もっと読む)


【課題】外力の大きさ及び方向、並びに加速度を検出することができ、簡易な構造で、製造を容易にすることのできる力学量センサ及び力学量センサの製造方法を提供すること。
【解決手段】本発明の一実施形態に係る力学量センサは、基板と、前記基板上に配置された固定部と、前記固定部に一端部が支持されて前記基板から離隔して配置された可動部を含む複数の可動電極と、前記複数の可動電極の他端部にそれぞれ隣接して力学量の検出方向に配置された固定電極と、前記可動電極に電気的に接続された第1端子と、前記固定電極に電気的に接続された第2端子と、を備え、前記複数の可動電極は、それぞれ内部応力を有する薄膜を含み、前記複数の可動電極の前記他端部は、それぞれ対向する前記固定電極と電気的に接触し、前記複数の可動電極の前記他端部は、印加される外力に応じて変位し、前記固定電極と電気的に非接触となることを特徴とする。 (もっと読む)


【課題】板上に慣性センサを取り付けるシステムおよび方法を提供する。
【解決手段】センサパッケージは基板層32、34、センサ層24、およびセンサ層24と基板層32、34との間に配置される絶縁層26、28を有し、基板層32、34の1つにV溝が非等方性エッチングにより形成される。基板層32、34は100結晶面方位にある。センサパッケージは、その後、ウェハから分離され、エッチングにより形成された基板層32または34の表面は、板に取り付けられる。一例において、検出軸が互いに垂直になるように3つのセンサパッケージが板に取り付けられる。 (もっと読む)


【課題】耐荷重性をより一層向上させることのできる静電容量式センサを得る。
【解決手段】静電容量式センサ1は、絶縁基板2、3と、この絶縁基板2,3に接合されたシリコン基板と、を備えている。このシリコン基板には、絶縁基板2,3に接合されるフレーム部40と、一面に可動電極5a,6aが形成された錘部5,6と、当該錘部5,6を回動自在に支持する1対のビーム部7a,7b、8a,8bと、が形成されている。そして、1対のビーム部7a,7b、8a,8bのうちいずれか一方のビーム部7b,8bが他方のビーム部7a,8aよりも太さが太く長さが長くなるように形成されている。 (もっと読む)


【課題】 電極を保護しながら、可動部の形状精度を向上することができる製造方法を提供する。
【解決手段】 本願の半導体装置の製造方法は、まず、第3層16の一部を除去して可動部16bを形成し、次いで、可動部16bを形成するために除去された部位の下方に位置する第2層と、形成された可動部16bの下方に位置する第2層14を除去する。次いで、可動部16bを形成する際に除去された部位に充填材24を埋め込む。次いで、充填材24を埋め込んだ状態で、半導体装置の表面に電極18を形成する。電極18を形成した後、埋め込んだ充填材24を除去する。 (もっと読む)


【課題】導通不良を起こしてしまうのを抑制することのできる静電容量式センサを得る。
【解決手段】静電容量式センサは、固定板2と半導体基板とを接合した際に、固定電極に形成された固定電極側金属接触部25と、半導体基板に形成された半導体基板側金属接触部13とが接触するようになっている。そして、固定電極側金属接触部25および半導体基板側金属接触部13の少なくとも互いに接触する部位をバリアメタル14で被覆するようにした。 (もっと読む)


【課題】突起を形成するための追加の工程を必要としない容量型MEMSセンサおよびその製造方法を提供する。
【解決手段】可動部を構成するダイアフラム膜13上に、犠牲層14と固定電極15を積層形成する。固定電極には貫通孔17を形成し、この貫通孔から等方性のエッチングを行う。その結果、貫通孔から最も遠い位置のダイアフラム膜上に、犠牲層の一部を残すことができる。この犠牲層の一部を突起21として利用し、可動部と固定電極とが貼り付くことを防止する。 (もっと読む)


【課題】拡散のプロセスやウェットエッチング液の性質、状態によらずに振動子を作製するための製造方法を提供する。
【解決手段】基板表面に高濃度不純物層を形成する工程と、高濃度不純物層上にマスクを形成する工程と、マスクを振動子の形状にパターニングする工程と、ドライエッチングによりパターニングした振動子の下方を残して少なくとも基板に達するまで高濃度不純物層を除去する工程と、ウエットエッチングにより高濃度不純物層の下方を除去して梁状の振動子を形成する工程と、高濃度不純物層上に形成したマスクを除去する工程と、
を含んでいる。 (もっと読む)


【課題】MEMS圧力センサ装置を提供する。
【解決手段】微小電気機械システム(MEMS)圧力センサ装置20、62が、基板構造22、64に形成されたキャビティ32、68を有する基板構造22、64、基板構造24に形成された基準素子36を有する基板構造24を含む。検知素子44は、基板構造22、24の間に配置され、基準素子36から離間されている。検知素子44は、基準素子36及び基準素子36に形成された複数の開口38のうちの一つを介して外部環境48に露出される。検知素子44は、環境48からの圧力刺激54に応答して、基準素子36に対して可動である。製造方法76が、キャビティ32、68を有する基板構造22、64を形成すること78、検知素子44を含む基板構造24を製造すること84、基板構造を結合すること92、次いで、基板構造24に基準素子36を形成すること96を含む。 (もっと読む)


【課題】臨床における圧力センサによる接触圧力分布の測定を生体組織に対して低侵襲的に行うことができ、内視鏡視下手術において生体組織内の接触圧力分布を直接測定することができる接触圧力測定システムを提供する。
【解決手段】接触圧力測定システムは、体組織内の接触圧力を測定する圧力センサ10と圧力センサ10が装着された取り回し部20と取り回し部20を体組織内へ導入する導入部と測定システムとを有する。導入部は中空の筒内に細い棒を挿入した構造であり、細い棒の一端に保持部22が装着され、展開部21を保持部22にロール状に巻き取ることにより全体として取り回し部20が保持部22を介して細い棒に巻き付けられている。展開部21は操作部の回転により保持部22から巻き出されスリットを通して測定対象へ展開される。展開部21は操作部の逆の回転により保持部22へ巻き取られて格納される。 (もっと読む)


【課題】エッチングパターンの形状または大きさによらずに、正確に制御された深さの凹部を形成することができる半導体基板のエッチング方法を提供すること。
【解決手段】半導体基板3をエッチングするに際し、まず、それぞれ独立に区画されたエッチング領域87に対向する位置に同一パターンの開口88を多数有するレジスト59をマスクとして、異方性の深掘り反応性イオンエッチングする。これにより、半導体基板3の表面部に、深さがほぼ等しく揃った凹部89が多数形成される。次いで、多数の凹部89を区画する半導体基板3の側壁90を、半導体基板3の表面に平行な横方向にエッチングして除去する。 (もっと読む)


【課題】2方向の加速度を精度よく感知することができ、小型化及び製造コストの低減化を可能とする2軸加速度センサを提供することを目的とする。
【解決手段】本発明は、平板状の錘部、この錘部の側面を囲う枠部、上記錘部の側面と枠部の内面とを連結する1又は複数の梁部、及び上記梁部に付設される歪み感知手段を備える平板状の2軸加速度センサであって、上記梁部の厚さが幅より大きく、上記1又は複数の梁部が、厚さ方向と垂直な直交2方向の正負それぞれの加速度に対する撓みパターンの組合せが異なる少なくとも2つの変形領域を有し、上記歪み感知手段として、上記各変形領域の両端側かつその幅方向両側近傍に二対のピエゾ抵抗素子が配設されていることを特徴とする。 (もっと読む)


【課題】より検出精度の向上を図ることのできる静電容量式センサを得る。
【解決手段】静電容量式センサ1は、絶縁基板2、3と、この絶縁基板2,3に接合されたシリコン基板4と、を備えている。このシリコン基板4には、絶縁基板2,3に接合されるフレーム部40と、一面に開口する凹部53,63と凹部53,63を除く充実部51,61が一体に形成された錘部5,6と、当該錘部5,6を回動自在に支持する1対のビーム部9,10、11,12と、フレーム部40から離間配置されるアンカー部7,8と、が形成されている。そして、1対のビーム部9,10、11,12のうち少なくともいずれか一方のビーム部9,11がアンカー部7,8に連結されている。 (もっと読む)


【課題】MEMS素子が実装基板から応力を受け、その結果、MEMSデバイスの感度低下又は感度バラツキを引き起こす。
【解決手段】MEMSデバイスでは、MEMS素子100が実装基板201に実装されている。MEMS素子100では、シリコン基板101の下面101Bには突起物106が形成されている。突起物106と実装基板201とは接着剤202を介して接続されている。 (もっと読む)


【課題】 帯電による特性悪化を抑制し、信頼度の高い加速度センサを提供する。
【解決手段】 シリコン活性層、埋め込み絶縁層、支持基板からなるSOI基板から形成され、SOI基板の上面から下面へ貫通する窓部10を有するフレーム部11と、SOI基板から形成され、窓部10の内部に配置される可動電極4と、フレーム部11のシリコン活性層と可動電極4のシリコン活性層とを連結し、フレーム部11に対して可動電極を揺動可能に支持するビーム部41,42と、可動電極4と対向する面に可動電極4と離間して配置される固定電極21,22とを備え、可動電極4及びフレーム部11が、それぞれシリコン活性層と支持基板とを電気的に接続するコンタクト部61〜63を備える。 (もっと読む)


【課題】寸法が小型であるばかりでなく、実効的に大量に製造され得る高感度圧力センサを製造する方法を提供する。
【解決手段】センサ及びセンサを製造する方法が開示され、このセンサは一実施形態では、エッチングされた半導体基材ウェーハ(300)を、シリコン積載絶縁体型ウェーハを含むエッチングされたデバイス・ウェーハ(100)に接着して懸吊構造を形成し、この構造の曲げが、埋め込まれた感知素子(140)によって決定されて絶対圧を測定する。センサに埋め込まれた相互接続路(400)によって、他のデバイスとの相互接続性を確保しつつデバイスの滑らかなパッケージ形状を容易にする。 (もっと読む)


【課題】寸法が小型であるばかりでなく、実効的に大量に製造され得る高感度圧力センサを製造する方法を提供する。
【解決手段】センサ、及びセンサを製造する方法が開示され、この方法は一実施形態では、エッチングされた半導体基材ウェーハ(300)を、シリコン積載絶縁体型ウェーハを含むエッチングされた第一のデバイス・ウェーハに接着し、次いでこの接着体をシリコン積載絶縁体型ウェーハを含む第二のデバイス・ウェーハに接着して通気孔付き懸吊構造を形成し、この構造の曲げが、埋め込まれた感知素子(140)によって感知されて差圧を測定する。一実施形態では、センサに埋め込まれた相互接続路(400)によって、他のデバイスとの相互接続性を確保しつつデバイスの滑らかなパッケージ形状を容易にする。 (もっと読む)


81 - 100 / 616