説明

MEMSデバイス及びその製造方法並びにMEMSデバイスを有するパッケージ

【課題】MEMS素子が実装基板から応力を受け、その結果、MEMSデバイスの感度低下又は感度バラツキを引き起こす。
【解決手段】MEMSデバイスでは、MEMS素子100が実装基板201に実装されている。MEMS素子100では、シリコン基板101の下面101Bには突起物106が形成されている。突起物106と実装基板201とは接着剤202を介して接続されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ダイヤフラム構造を備えたMEMS(Micro Electro Mechanical Systems)デバイス及びその製造方法に関し、特に、ダイヤフラム構造の土台であるシリコン基板の下面に複数の突起物を有するMEMSデバイス及びその製造方法に関する。また、本発明は、このようなMEMSデバイスを有するパッケージ(以下では単に「パッケージ」と記すことがある)に関する。
【背景技術】
【0002】
ダイヤフラム構造を有するMEMSデバイスとしては、マイクロフォン、圧力センサ又は加速度センサなどがある。このようなMEMSデバイスは、音圧、圧力又は加速度といった外力をダイヤフラムの変位によって電気信号へ変換するもの(静電容量型又はピエゾ抵抗型など)である。
【0003】
例えば特許文献1には、圧力センサチップ(センサチップ)をリードフレームに実装する技術が記載されている。センサチップをリードフレームに実装するとき、センサチップとリードフレームとの間に熱歪差が発生し、その結果、センサチップのセンサ部に引っ張り力等が働く場合がある。そこで、特許文献1では、上記熱歪差を吸収して緩和するように、所定の厚みを有する弾性材料をセンサチップとリードフレームとの間の仲介固着層として使用している。また、突っ張り用突起をリードフレームに設け、センサチップの電極にワイヤを接続する際にセンサチップの底面から生じる圧力を突っ張り用突起で受けている。さらには、支え用突起をリードフレームに設け、突っ張り用突起に因る歪応力がセンサ部に伝わらないようにしている。
【特許文献1】特開平3−289528号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
センサチップが実装基板に実装されたセンサでは、その用途に応じて、実装基板を、樹脂基板、セラミック基板、及び、リードフレーム等から選択する。しかし、従来技術(特許文献1の技術)では、実装基板を加工して突っ張り用突起などを形成する必要がある。そのため、実装基板の材料が制約されてしまい、よって、用途に応じたセンサを提供できないという課題が招来する。
【0005】
また、センサチップの小型化にともない、シリコン基板からなる支持枠の幅は数百μm程度である。一方、従来技術では、突っ張り用突起及び支え用突起をリードフレームの所定の位置に形成する必要があり、また、突っ張り用突起及び支え用突起がセンサチップの所定の位置に当接されるようにセンサチップをリードフレームに実装させる必要がある。そのため、従来技術では、センサチップの小型化により、突っ張り用突起等の大きさ又はリードフレームにおける突っ張り用突起等の位置が制約されるという課題が招来する。
【0006】
また、実装基板からセンサチップへの応力緩和を高め、且つ、その応力がセンサチップにおいて均一になるようにセンサチップと実装基板とを接着するためには、実装基板の上面において接着剤を塗布する位置、接着剤の塗布量及び実装基板の上面における接着剤の塗布面積等を最適化する必要がある。しかし、従来技術では、接着剤を設けるための凹部がダイパッドに形成されている。そのため、接着剤を塗布する位置、接着剤の塗布量及び接着剤の塗布面積の最適化が難しいという課題が招来する。また、接着剤を凹部内に充填させているので、余分な接着剤が実装基板の上面に塗布される場合がある。
【0007】
本発明は、前記課題に鑑み、実装基板の材料又はMEMS素子の大きさ等に依存することなく、MEMS素子を実装基板に実装したとき(この実装を「実装」と記す)又はMEMSデバイスを基板に実装したとき(この実装を「2次実装」と記す)における実装基板からの応力を低減でき、特性劣化及び特性バラツキが抑制されたMEMSデバイス及びその製造方法並びにパッケージを提供する。
【課題を解決するための手段】
【0008】
本発明に係るMEMSデバイスでは、MEMS素子が実装基板に実装されている。MEMS素子はシリコン基板を有し、シリコン基板の第1面には突起物が形成されている。突起物と実装基板とは接着剤を介して接続されている。
【0009】
上記構成により、本発明に係るMEMSデバイスでは、MEMS素子と実装基板との間にギャップが形成される。これにより、実装基板からMEMS素子への応力を低減でき、また、実装基板からMEMS素子へ応力が伝達されること(「応力伝達」と記すことがある)を防止できる。
【0010】
また、本発明に係るMEMSデバイスでは、突起物は、実装基板ではなくMEMS素子に形成されている。これにより、実装基板を加工する必要がないので、実装基板の材料に制約されない。
【0011】
さらに、本発明に係るMEMSデバイスでは、突起物は、シリコン基板の第1面上に形成されている。これにより、MEMS素子が小型化されてもMEMS素子を突起物に形成できる。
【0012】
本発明に係るMEMSデバイスでは、突起物は、シリコン基板の外周部に形成されていれば良い。
【0013】
本発明に係るMEMSデバイスでは、シリコン基板の第2面上には振動膜が形成されていることが好ましい。この場合には、シリコン基板には、振動膜に達する孔が形成されていれば良く、突起物は、シリコン基板の第1面における孔の開口を囲うように形成されていれば良い。
【0014】
本発明に係るMEMSデバイスでは、突起物の幅は、シリコン基板の第1面側よりも実装基板側の方が狭いことが好ましい。これにより、実装基板からMEMS素子への応力がさらに低減し、応力伝達をさらに防止できる。
【0015】
本発明に係るMEMSデバイスでは、シリコン基板の第1面には、第1の突起物群の外側に第2の突起物群が形成されていることが好ましい。突起物の高さが低いと応力伝達の防止を十分に図ることができない場合がある。しかし、上記構成では、突起物の高さがそれほど高くない場合であっても、応力伝達を防止できる。
【0016】
本発明に係るMEMSデバイスでは、シリコン基板の第1面には、互いに高さが異なる突起物が形成されていることが好ましい。このとき、相対的に低い突起物にのみ接着剤を塗布すれば、接着剤の高さを確保でき、従って、MEMS素子へ印加される応力をさらに低減できる。
【0017】
本発明に係るMEMSデバイスでは、突起物は、シリコン、SiO2及びSiNの少なくとも1つを含んでいれば良い。
【0018】
本発明に係るMEMSデバイスでは、接着剤が突起物と実装基板との間に介在している第1領域と、接着剤が突起物と実装基板との間に介在していない第2領域とが存在していることが好ましい。これにより、余剰な接着剤が実装基板に塗布されることを防止できる。
【0019】
本発明に係るMEMSデバイスが音響デバイスである場合には、固定膜が振動膜に対向してシリコン基板の上に配置されていれば良く、貫通孔が実装基板に形成されていれば良い。
【0020】
本発明に係るMEMSデバイスでは、MEMS素子は実装基板上に設けられたカバーで覆われていることが好ましい。これにより、パッケージを形成し易い。
【0021】
このようなMEMSデバイスは、次に示す方法に従って製造されることが好ましい。
【0022】
本発明に係るMEMSデバイスの製造方法は、MEMS素子を形成する工程(a)と、MEMS素子を実装基板に実装する工程(b)とを備えている。工程(a)は、シリコン基板の第1面に突起物を形成する工程を有している。工程(b)は、突起物と実装基板とを接着剤を介して接続する工程を有している。
【0023】
工程(a)は、シリコン基板の第1面上にマスクパターンを形成する工程と、マスクパターンを介してシリコン基板をエッチングすることにより突起物を形成する工程とを有していることが好ましい。
【0024】
音響デバイスを製造するときには、工程(a)は、シリコン基板の第2面上に振動膜を形成する工程と、振動膜の上に犠牲膜を形成する工程と、犠牲膜の上に孔が形成された固定膜を形成する工程と、シリコン基板の第1面から第2面へ向かってシリコン基板を貫通する貫通孔を形成する工程と、固定膜に形成された孔を通して犠牲膜をエッチングする工程とを有していれば良い。
【0025】
本発明に係るパッケージは、本発明に係るMEMSデバイスが導電性部材を介して電子機器内の基板に実装されて構成されている。
【発明の効果】
【0026】
本発明では、実装基板からMEMS素子への応力の低減を図ることができるので、MEMSデバイスにおける特性劣化を抑制でき、また、その特性のバラツキを抑制できる。
【図面の簡単な説明】
【0027】
【図1】(a)は本発明の一実施形態における第1のMEMS素子の平面図であり、(b)は図1(a)に示すIB−IB線における断面図である。
【図2】(a)は本発明の一実施形態における第2のMEMS素子の平面図であり、(b)は図2(a)に示すIIB−IIB線における断面図である。
【図3】(a)は本発明の一実施形態に係る第1のMEMSデバイスにおけるMEMS素子の平面図であり、(b)は図3(a)に示すIIIB−IIIB線における断面図である。
【図4】(a)は本発明の一実施形態に係る第2のMEMSデバイスにおけるMEMS素子の平面図であり、(b)は図4(a)の一部拡大図であり、(c)は図4(a)に示すIVC−IVC線における断面図である。
【図5】(a)は本発明の一実施形態に係る第3のMEMSデバイスにおけるMEMS素子の一部分の拡大平面図であり、(b)は図5(a)に示すVB−VB線における断面図である。
【図6】(a)〜(d)は、それぞれ、本発明の一実施形態に係るMEMSデバイスの一部分の断面図である。
【図7】(a)〜(b)は、それぞれ、本発明の一実施形態に係るMEMSデバイスの一部分の断面図である。
【図8】本発明の一実施形態に係るパッケージの断面図である。
【図9】(a)は本発明の一実施形態における音響センサチップの平面図であり、(b)は図9(a)に示すIXB−IXB線における断面図である。
【発明を実施するための形態】
【0028】
以下では、図面を参照しながら、本発明の実施形態を説明する。なお、本発明は、以下に示す実施形態に限定されない。例えば、図1〜図9に示す各部材の形状は何れの望ましい例にすぎず、以下の数値は何れも望ましい例にすぎず、以下の材料は何れも望ましい材料にすぎない。発明の趣旨を逸脱しない範囲であれば、以下の記載内容及び図1〜図9に図示された内容に限定されることなく適宜変更可能である。また、以下では、MEMSデバイスの例として音響トランスデューサを用いて説明するが、本発明は、MEMSデバイス全般に適用できる技術である。MEMSデバイスは、後述するが、半導体プロセスを用いて形成され、機械信号等を電気信号等に変換する変換素子(MEMS素子)を有する。MEMSデバイスの例としては、音響トランスデューサ(MEMSマイク)、圧力センサ、加速度センサ又は角速度センサなどが挙げられる。
【0029】
本発明の実施形態では、MEMS素子、MEMSデバイス及びパッケージの構成を簡潔に説明してから、MEMS素子に形成された突起物を説明する。図1(a)は本実施形態に係るMEMS素子の一例を示す下面図であり、図1(b)は図1(a)に示すIB−IB線における断面図である。図8は、本実施形態に係るパッケージの断面図である。
【0030】
本実施形態におけるMEMS素子100は、ダイヤフラム104を有している。具体的には、図1(a)及び図1(b)に示すように、MEMS素子100は、平面視略菱形のシリコン基板101を備えている。シリコン基板101には、貫通孔102がその厚み方向に貫通して形成されており、シリコン基板101の上面(第2面)101Aには、振動膜103が貫通孔102を塞ぐように設けられている。振動膜103は振動電極(不図示)を含んでおり、よって、振動膜103において貫通孔102の上に位置する部分がダイヤフラム104として機能する。ここで、シリコン基板101の上面101Aにおける貫通孔102の開口の形状は六角形であるが、シリコン基板101の下面(第1面)101Bにおける貫通孔102の開口の形状は略菱形であり、よって、ダイヤフラム104は平面視六角形である。貫通孔102の外側に位置するシリコン基板101はダイヤフラム104を支持する支持枠105として機能し、支持枠105の下面(シリコン基板101の下面101B)には突起物106が形成されている。
【0031】
このようなMEMS素子100は、図8に示すように、実装基板201の上面201Aに実装されてMEMSデバイスを構成する。実装基板201の上面201Aには、MEMS素子100の突起物106が接着剤(例えばシリコン系樹脂)202を介して接着されており、また、IC(integrated circuit)素子203が実装されている。IC素子203は、金属細線204を介してMEMS素子100に接続されており、MEMS素子100からの電気信号を変換する。MEMS素子100及びIC素子203は、実装基板201の上面201A上に設けられたカバー205で覆われている。このようなMEMSデバイスは、図8に示すように、半田302を介して二次実装基板(電子機器内の基板)301に電気的に接続されてパッケージを構成している。
【0032】
このように、本実施形態に係るMEMSデバイスでは、MEMS素子100の突起物106が実装基板201の上面201Aに接着されているので、MEMS素子100は突起物106の高さ(Δh1)分だけ実装基板201の上面201Aから離して配置される。よって、突起物106が支持枠105の下面に形成されていない場合に比べて、実装時又は2次実装時等における応力伝達を防止できる。従って、MEMSデバイスの特性劣化(例えば感度劣化)を防止できる。また、応力伝達を防止できるので、MEMSデバイスの高さがばらつくことを防止でき、よって、MEMSデバイスの特性バラツキ(例えば感度バラツキ)を防止できる。
【0033】
また、本実施形態に係るMEMSデバイスでは、突起物106が実装基板201の上面ではなくMEMS素子100の支持枠105の下面に形成されているので、実装基板201の材料等に制約されることなく応力伝達を防止できる。よって、本実施形態では、MEMSデバイスの用途に依存することなく応力伝達を防止できる。
【0034】
それだけでなく、本実施形態に係るMEMSデバイスでは、突起物106が支持枠105の下面上に形成されているので、MEMS素子100が小型になっても突起物106を形成できる。よって、本実施形態では、MEMS素子100の小型化を図りつつ応力伝達を防止できる。
【0035】
さらに、本実施形態に係るMEMSデバイスでは、突起物106が接着剤202を介して実装基板201の上面201Aに接着されることにより、MEMS素子100が実装基板201の上面201Aに接着されている。これにより、本実施形態に係るMEMSデバイスでは、突起物が設けられていないMEMS素子を実装基板の上面に接着する場合に比べて接着面積が大きいので、MEMS素子100と実装基板201との接着力の向上を図ることができる。
【0036】
さらに、接着剤202としてシリコン系樹脂を用いると、シリコン系樹脂はそれ以外の接着剤に比べてヤング率が低いため、応力伝達をさらに和らげることができる。
【0037】
では、突起物106を説明する。まず、図1(a)〜図5(b)を用いて、突起物の平面視形状を説明する。図2(a)は本実施形態における別のMEMS素子の下面図であり、図2(b)は図2(a)に示すIIB−IIB線における断面図である。図3(a)は本実施形態に係る別のMEMSデバイスにおけるMEMS素子の下面図であり、図3(b)は図3(a)に示すIIIB−IIIB線における断面図である。図4(a)は本実施形態に係るまた別のMEMSデバイスにおけるMEMS素子の下面図であり、図4(b)は図4(a)の一部拡大図であり、図4(c)は図4(a)に示すIVC−IVC線における断面図である。図5(a)は本実施形態に係る更に別のMEMSデバイスにおけるMEMS素子の一部分の拡大下面図であり、図5(b)は図5(a)に示すVB−VB線における断面図である。なお、図3(b)、図4(c)及び図5(b)では、実装基板201の上面上の電極層の図示を省略している。
【0038】
図1(a)〜(b)に示すように突起物106が支持枠105の下面における貫通孔102の開口を囲むように形成されていても良いし、図2(a)〜図3(b)に示すように複数の突起物106が支持枠105の周方向において互いに間隔(間隔Y,図2(b)参照)を開けて形成されていても良い。後者の場合には、各突出物106は、図2(a)〜(b)に示すように支持枠105の周方向に沿って延びていても良いし、図3(a)〜(b)に示すように支持枠105の幅方向に延びていても良い。また、突起物106の個数は図2(a)又は図3(a)における個数に限定されず、MEMS素子100が実装基板201に対して平行に配置されるように、且つ、実装基板201からの応力がMEMS素子100に均一に加わるように、突起物106の個数を決めれば良い。何れの場合であっても、上述の効果を得ることができる。
【0039】
支持枠105が実装基板201からの応力によって歪むことを考慮して、図4(a)〜(c)に示す突起物106を形成しても良い。具体的には、実装基板201からの応力によって支持枠105が歪む方向としては、図4(a)〜(b)に示すB−B方向、図4(c)に示すC−C方向及び図4(a)〜(b)に示すA−A方向に対して捩れる方向等が挙げられる。これらの方向に対して垂直に突起物を形成すれば、実装基板201からの応力により支持枠105が歪むことを防止できるので、MEMS素子100に印加される歪みを低減できる。そこで、図4(a)〜(c)に示すように、支持枠105の下面には突起物106Aと複数の突起物106Bとを形成することが好ましい。突起物106Aは、支持枠105の周方向に亘って形成されており、つまり、図1(a)〜(b)に示す突起物106である。これにより、支持枠105が実装基板201からの応力によってB−B方向及びC−C方向に歪むことを防止できる。複数の突起物106Bは支持枠105の周方向に互いに間隔を開けて形成されており、各突起物106Bは支持枠105の幅方向に延びている。別の言い方をすると、複数の突起物106Bは、図3(a)〜(b)に示す突起物106である。これにより、支持枠105が実装基板201からの応力によってA−A方向に対して捩れる方向及びC−C方向に歪むことを防止できる。
【0040】
突起物106は、図5(a)及び(b)に示すように、支持枠105の周方向に対してジグザグに延びていても良い。
【0041】
次に、図6(a)〜(d)を用いて、突起物106の幅及びその高さを順に説明する。図6(a)〜(d)は本実施形態に係るまた別のMEMSデバイスの一部分の断面図である。なお、図6(a)〜(d)では、実装基板201の上面上の電極層の図示を省略している。
【0042】
突起物106の幅は、図6(a)等に示すように支持枠105の幅(Z)よりも狭く、図6(a)に示すように突起物106の高さ方向において略同一であっても良いし(W1)、図6(b)及び(d)に示すように実装基板201側の方がシリコン基板101側よりも狭くても良いし(W2<W1)、図6(c)に示すようにシリコン基板101から実装基板201へ向かうにつれて徐々に狭くなっても良い。しかし、図6(b)〜(d)に示す突起物106が支持枠105の下面に形成されていれば、図6(a)に示す突起物106が支持枠105の下面に形成されている場合に比べて、応力伝達をさらに緩和できる。その理由は以下に示す通りである。
【0043】
後述するように、実装時又は2次実装時には、熱処理を行う。ここで、シリコン基板101の材料と実装基板201の材料とでは熱膨張係数が異なる。そのため、実装時又は2次実装時に熱処理を行うと、その熱膨張係数差に起因する応力が実装基板201に発生し、発生した応力が接着剤202及び突起物106を介してMEMS素子100へ伝達される。これにより、突起物106の下面が小さければ、MEMS素子100と実装基板201との接触面積が小さくなり、よって、応力伝達の更なる防止を図ることができる。従って、突起物106は図6(a)に示す形状よりも図6(b)〜(d)の何れかに示す形状を有している方が好ましい。
【0044】
突起物106の高さ(Δh1)は高い方が好ましい。これにより、シリコン基板101の下面101Bと実装基板201の上面201Aとの距離が長くなるので、応力伝達を更に防止できる。しかし、突起物106の高さが高くなると、突起物106の機械的強度を確保できない場合がある。そのため、突起物106の高さ(Δh1)は、シリコン基板101の高さT(図1(b)参照)の1〜10%程度であることが好ましく、具体的には数μm以上数十μm以下であれば良い。
【0045】
なお、シリコン基板101の厚みが厚いときには、ダイヤフラム104への応力伝達を抑制できるので、突起物106を低くできる。逆に、シリコン基板101の厚みが薄いときには、ダイヤフラム104への応力伝達が抑制されにくく、よって、突起物106を高くする必要がある。
【0046】
また、突起物106の加工もしくは形成上の理由から、又は、突起物106の機械的強度を確保する等の理由から、突起物106を低く形成する場合がある。この場合には、図6(d)に示すように突起物106を支持枠105の幅方向に複数本形成すれば、実装基板201からMEMS素子100への応力を分散できる。このとき、内周側に位置する突起物106(第1の突起物群)は、図1(a)〜(b)に示す突起物106であっても良いし、図2(a)〜(b)に示す突起物106であっても良い。また、内周側に位置する突起物106の外側には、図1(a)〜(b)に示す突起物106(第2の突起物群)が設けられていても良いし、図2(a)〜(b)に示す突起物106(第2の突起物群)が設けられていても良い。
【0047】
続いて、突起物106の材料を説明する。突起物106は、シリコンからなっても良く、MEMSデバイスを形成するときに使用される膜(例えばSiO膜又はSiN膜)からなっても良く、シリコン、SiO及びSiNの少なくとも1つを含んでいても良い。また、突起物106としては次に示す膜を用いて形成しても良い。MEMS素子100を形成するとき又はエアギャップ113(図9参照)を介して固定膜111(図9参照)を振動膜103に対向させて形成するときには、CVD(Chemical Vapor Deposition)法などの手法により数μmの厚みを有する膜をシリコン基板101の上面101A上に形成する。このとき、シリコン基板101の上面101A上に形成された膜と同一の膜がシリコン基板101の下面101B上にも形成されるので、このようにしてシリコン基板101の下面101B上に形成された膜を用いて突起物106を形成しても良い。
【0048】
続いて、図3(a)〜図5(b)及び図7(a)〜(b)を用いて、接着剤202の塗布位置を説明する。図7(a)〜(b)は、本実施形態に係るMEMSデバイスの一部分の断面図である。なお、図7(a)〜(b)では、実装基板201の上面上の電極層の図示を省略している。
【0049】
接着剤202は、図7(a)に示すように突起物106の外側面全体を被覆していても良いし、図7(b)に示すように突起物106の外側面のうち実装基板201側に位置する部分を被覆していても良い。別の言い方をすると、接着剤202の高さ(Δh2)は、図7(a)に示すように突起物106の高さ(Δh1)と同じであっても良く、図7(b)に示すように突起物106の高さ(Δh1)よりも低くても良い。しかし、図7(b)に示す場合には、接着剤202がシリコン基板101の下面101Bに付着することを防止できるため、余剰の接着剤202がMEMS素子100に付着することを防止でき、よって、MEMS素子100の性能悪化を防止できる。また、少ない接着剤202の量でMEMS素子100を実装基板201に接着させることができる。よって、接着剤202は突起物106の外側面のうち実装基板201側に位置する部分を被覆していることが好ましい。
【0050】
全ての突起物106が接着剤202を介して実装基板201の上面201Aに接着しても良いし、図3(a)〜図5(b)に示すように一部の突起物106のみが接着剤202を介して実装基板の上面201Aに接着していても良い。例えば、図3(a)〜図4(b)では、接着剤202は、平面視において、シリコン基板101の中心線L1,L2に対して対称となる位置(4箇所)に設けられている。
【0051】
一部の突起物106のみが接着剤202を介して実装基板の上面201Aに接着している場合、図3(a)に示すように、接着剤202が突起物106と実装基板201との間に介在している領域(第1領域)A1と、接着剤202が突起物106と実装基板201との間に介在していない領域(第2領域)A2とが存在する(図3(a)には不図示であるが、領域A1では接着剤202は突起物106と実装基板201との間に介在している。後述のように接着剤202を実装基板201の上面201に塗布してからその接着剤202の上にMEMS素子100を設置するためである。)。領域A2にも突起物106を形成する理由は、MEMS素子100を実装基板201に対して平行に実装させるためであり、また、実装時にはMEMS素子100に対して均一に外力が働くようにするためである。
【0052】
また、一部の突起物106のみが接着剤202を介して実装基板の上面201Aに接着している場合には、図4(c)に示すように、接着剤202が塗布される突起物(第2の突起物)106Dの高さ(Δh3)は接着剤202が塗布されない突起物(第1の突起物)106Cの高さ(Δh1)よりも低い方が好ましい。これにより、接着剤202の高さ(Δh2)を(Δh1−Δh3)以上とすることができる。つまり、接着剤202が塗布される突起物106と接着剤202が塗布されない突起物106とで高さが同一である場合に比べて、接着剤202の高さを確保でき、よって、MEMS素子100へ印加される応力を低減できる。例えば、相対的に高い突起物106Cの高さが16μmであるときには、相対的に低い突起物106Dの高さを14μmとすれば良い。
【0053】
なお、図4(c)に示す場合、相対的に低い突起物106Dを支持枠105の下面の一部分に集中して設けると、MEMS素子100を実装基板201に対して平行に配置することが難しい場合があり、また、実装時又は2次実装時に発生する応力がMEMS素子100に対して均一に印加され難い場合がある。相対的に低い突起物106Dの個数が多すぎる場合にも同様の不具合の発生が考えられる。そのため、MEMS素子100が実装基板201に対して平行に配置されるように、且つ、実装時又は2次実装時に発生する応力がMEMS素子100に対して均一に印加されるように、支持枠105の下面における相対的に高い突起物106Cの位置を決定することが好ましく、相対的に高い突起物106Cと相対的に低い突起物106Dとの個数比を決定することが好ましい。
【0054】
また、図2(a)〜図3(b)等に示すように複数の突起物106が互いに同一の高さを有している場合には、接着剤202の高さは、MEMS素子100を実装基板201へ押圧するときの圧力又はリリース高さ(その押圧から開放されたときの実装基板201の上面201Aからの高さ)等により決まる。
【0055】
図9は、図1(a)〜(b)に示すMEMS素子100を音響センサチップとして用いた場合の音響センサチップの一例を示す断面図である。
【0056】
本実施形態における音響センサチップでは、振動膜103の上には固定膜111がエアギャップ113を介して配置されており、振動膜103と固定膜111とがコンデンサとして機能する。固定膜111は固定電極(不図示)を含んでおり、また、固定膜111には多数の音孔(音を通過させるための孔)112が形成されている。
【0057】
このような音響センサチップでは、音圧が音孔112を介して固定膜111に伝わって振動膜103を振動させる。これにより、固定膜111と振動膜103との距離が変動するので、コンデンサの容量が変化する。コンデンサの容量変化を読み取ることにより、音をセンシングしている。
【0058】
以下には、本実施形態における音響センサチップ、この音響センサチップを有する音響デバイス、及び、この音響デバイスを有するパッケージの製造方法を順に示す。なお、音響センサチップ以外のMEMS素子は、以下に示す方法に倣って作製すれば良い。
【0059】
まず、例えばCVD法により、シリコン基板101の上面101A上に振動膜103を形成する。シリコン基板101としては、貫通孔102の形成し易さの観点から、(110)面方位のシリコン基板を使用することが好ましい。また、振動膜103は、振動電極を含んでいれば良く、絶縁膜(不図示)と振動電極との積層膜であってもかまわない。振動電極の具体例としては不純物がドープされたポリシリコンなどを挙げることができ、絶縁膜の具体例としてはシリコン酸化膜又はシリコン窒化膜などを挙げることができる。
【0060】
次に、例えばCVD法により、振動膜103の上に犠牲膜(不図示)を形成する。この犠牲膜は後の工程でエッチングされ、エアギャップ113として機能する。
【0061】
次に、例えばCVD法により、犠牲膜の上に固定膜111を形成する。固定膜111は、固定電極を含んでいれば良く、絶縁膜(不図示)と固定電極との積層膜であってもかまわない。固定電極の具体例としては不純物がドープされたポリシリコンなどを挙げることができ、絶縁膜の具体例としてはシリコン酸化膜又はシリコン窒化膜などを挙げることができる。なお、固定膜111には、複数の音孔112が形成されている。
【0062】
次に、シリコン基板101の下面101B上にレジストマスクなどからなるマスクパターン(不図示)を配置して、そのマスクパターンに沿ってシリコン基板101をエッチングする。これにより、突起物106が形成される。
【0063】
ここで、振動膜103又は固定膜111が絶縁膜を含んでいる場合には、シリコン基板101の下面101B上にも振動膜103又は固定膜111中の絶縁膜が形成されることとなる。この場合には、マスクパターンに沿ったエッチングにより、シリコン酸化膜又はシリコン窒化膜などの絶縁膜からなる突起物106が形成される。なお、シリコン基板101の下面101B上に形成された絶縁膜の膜厚が薄い場合には、その絶縁膜とシリコン基板101とで突起物106を形成する。そのため、突起物106が絶縁膜とシリコン膜との積層膜となることもある。
【0064】
一方、振動膜103又は固定膜111が絶縁膜を含んでいない場合には、又は、振動膜103又は固定膜111が絶縁膜を含んでいるがシリコン基板101の下面101B上に形成された絶縁膜をエッチングによりあらかじめ除去した場合には、マスクパターンに沿ったエッチングにより、シリコンからなる突起物106が形成される。
【0065】
また、異方性エッチングにより突起物106を形成したときには、図6(a)に示す突起物106が得られる。また、異方性エッチングを2段階に分けて行ったときには、図6(b)又は図6(d)に示す突起物106が得られる。また、等方性エッチングにより突起物106を形成したときには、図6(c)に示す突起物106が得られる。また、エッチングを行って複数の突起物106を形成してから、そのうちの一部の突起物106に対してエッチングをさらに行うと、図4(c)に示すように突起物106C,106Dが得られる。
【0066】
次に、シリコン基板101の下面101B上にマスクパターンを再度形成して、シリコン基板101をその厚み方向に貫通する貫通孔102を形成する。具体的には、シリコン基板101の下面101B上に例えば平面視菱形状のマスクパターンを形成した後、例えばKOH等を用いてシリコン基板101をウエットエッチングする。すると、(110)面に比べてエッチングレートが50〜100倍程度遅い(111)面を露出させながら、(110)面がエッチングされる。このようにして、シリコン基板101に貫通孔102が形成され、振動膜103の下面側が露出する。
【0067】
次に、固定膜111の音孔112からHF等のエッチング液を犠牲膜に供給し、犠牲膜を除去する。これにより、固定膜111と振動膜103との間にエアギャップ113が形成される。なお、犠牲膜を完全に除去しても良いし、犠牲膜の一部を残存させても良い。後者の場合には、残存した犠牲膜を、固定膜111を支持する支持部として機能させることができる。このようにして、音響センサチップが作製される(工程(a))。
【0068】
次に、実装基板201の上面201Aにおいて突起物106が当接する部分に接着剤202を塗布する。このとき、接着剤202を、図4(a)等に示す位置に塗布しても良いし、支持枠105の周方向となる方向に沿って塗布しても良い。
【0069】
次に、実装基板201の上面201Aに音響センサチップを配置し、その状態で熱処理を行う。これにより、接着剤202が硬化し、音響センサチップが実装基板201の上面201Aに接着される(工程(b))。また、IC素子203を実装基板201の上面201Aに実装し、音響センサチップとIC素子203とを金属細線204で接続する。その後、音響センサチップ及びIC素子203をカバー205で蓋し、このカバー205を実装基板201の上面201Aに固定する。これにより、音響デバイスが作製される。
【0070】
次に、半田302を用いて音響デバイスの実装基板201を2次実装基板301の上面に接着する。これにより、パッケージが作製される。このように、カバー205が実装基板201の上面201Aに固定された音響デバイスは、別の電子機器(例えば、携帯電話又はデジタルカメラ等)の基板(2次実装基板)301へ実装可能である。
【0071】
ところで、図8に示すMEMSデバイスを音響デバイスとして機能させるためには、実装基板201及びカバー205の少なくとも一方に音孔が形成されていることが好ましい。別の言い方をすると、音が音響センサチップの下側から音響デバイス内に入ってくるように音孔を形成しても良いし、音が音響センサチップの上側から音響デバイス内に入ってくるように音孔を形成しても良い。音が音響センサチップの下側から入ってくる場合には、音孔は、実装基板201に形成されていれば良く、実装基板201において音響センサチップの直下に位置する部分に形成されていることが好ましい。音が音響センサチップの上側から入ってくる場合には、音孔は、カバー205に形成されていれば良く、カバー205において音響センサチップの直上に位置する部分に形成されていることが好ましい。
【0072】
一般に、背気室が大きいほど音響特性の向上を図ることができる,と言われている。ここで、背気室とは、音が入ってくる方向(音孔側)とは逆側に位置する閉じられた空間である。つまり、背気室は、音が音響センサチップの下側から入ってくる場合には音響センサチップとカバー205とで閉ざされた空間であるが、音が音響センサチップの上側から入ってくる場合には音響センサチップと実装基板201とで閉ざされた空間である。よって、音が音響センサチップの下側から入ってくるように音孔を形成した方が、音響特性の向上を図ることができる。
【産業上の利用可能性】
【0073】
以上説明したように、本発明のダイヤフラム構造とその製造方法は、実装基板からの応力を緩和することができるので、高性能で特性ばらつきの小さなセンサチップの実現に有用である。
【符号の説明】
【0074】
100 MEMS素子
101 シリコン基板
101A 上面(第2面)
101B 下面(第1面)
102 貫通孔(シリコン基板に形成された孔)
103 振動膜
106 突起物
106C 突起物(第1の突起物)
106D 突起物(第2の突起物)
111 固定膜
112 音孔(固定膜に形成された孔)
201 実装基板
201A 上面
202 接着剤
205 カバー
301 2次実装基板(基板)
302 半田(導電部材)

【特許請求の範囲】
【請求項1】
第1面と前記第1面とは反対側に位置する第2面とを備えたシリコン基板を有するMEMS素子と、
前記MEMS素子を実装する実装基板とを備え、
前記シリコン基板の前記第1面には、突起物が形成されており、
前記突起物と前記実装基板とは、接着剤を介して接続されていることを特徴とするMEMSデバイス。
【請求項2】
前記突起物は、前記シリコン基板の外周部に形成されていることを特徴とする請求項1に記載のMEMSデバイス。
【請求項3】
前記シリコン基板の前記第2面上には、振動膜が形成されており、
前記シリコン基板には、前記振動膜に達する孔が形成されており、
前記突起物は、前記孔を囲うように配置されていることを特徴とする請求項1又は2に記載のMEMSデバイス。
【請求項4】
前記突起物の幅は、前記シリコン基板の前記第1面側よりも前記実装基板側の方が狭いことを特徴とする請求項1〜3のいずれか1項に記載のMEMSデバイス。
【請求項5】
前記シリコン基板の前記第1面には、複数の前記突起物からなる第1の突起物群と、複数の前記突起物からなる第2の突起物群とが形成されており、
前記第2の突起物群は、前記第1の突起物群を囲むように配置されていることを特徴とする請求項1〜4のいずれか1項に記載のMEMSデバイス。
【請求項6】
前記シリコン基板の前記第1面には、複数の前記突起物が形成されており、
前記複数の突起物には、第1の高さを有する突起物と、第1の高さとは異なる第2の高さを有する突起物とが含まれていることを特徴とする請求項1〜5のいずれか1項に記載のMEMSデバイス。
【請求項7】
前記突起物は、シリコン、SiO2及びSiNの少なくとも1つを含んでいることを特徴とする請求項1〜6のいずれか1項に記載のMEMSデバイス。
【請求項8】
前記接着剤が前記突起物と前記実装基板との間に介在している第1領域と、前記接着剤が前記突起物と前記実装基板との間に介在していない第2領域とが存在していることを特徴とする請求項1〜7のいずれか1項に記載のMEMSデバイス。
【請求項9】
前記シリコン基板の上には、前記振動膜に対向する固定膜が設けられていることを特徴とする請求項3〜8のいずれか1項に記載のMEMSデバイス。
【請求項10】
前記実装基板上には、前記MEMS素子を覆うカバーが設けられていることを特徴とする請求項1〜9のいずれか1項に記載のMEMSデバイス。
【請求項11】
前記実装基板には、開口部が形成されていることを特徴とする請求項1〜10のいずれか1項に記載のMEMSデバイス。
【請求項12】
請求項1〜11のいずれか1項に記載の前記MEMSデバイスが導電性部材を介して電子機器内の基板に実装されて構成されていることを特徴とするパッケージ。
【請求項13】
第1面と前記第1面とは反対側に位置する第2面とを備えたシリコン基板を有するMEMS素子を形成する工程(a)と、
前記MEMS素子を実装基板に実装する工程(b)とを備え、
前記工程(a)は、前記シリコン基板の前記第1面に突起物を形成する工程を有し、
前記工程(b)は、前記突起物と前記実装基板とを接着剤を介して接続する工程を有していることを特徴とするMEMSデバイスの製造方法。
【請求項14】
前記工程(a)は、
前記シリコン基板の前記第1面上にマスクパターンを形成する工程と、
前記マスクパターンを介して前記シリコン基板をエッチングすることにより、前記突起物を形成する工程とを有していることを特徴とする請求項13に記載のMEMSデバイスの製造方法。
【請求項15】
前記工程(a)は、
前記シリコン基板の前記第2面上に振動膜を形成する工程と、
前記振動膜の上に犠牲膜を形成する工程と、
前記犠牲膜の上に孔が形成された固定膜を形成する工程と、
前記シリコン基板の前記第1面から前記第2面へ向かって前記シリコン基板を貫通する貫通孔を形成する工程と、
前記固定膜に形成された前記孔を通して、前記犠牲膜をエッチングする工程とを有していることを特徴とする請求項13または14に記載のMEMSデバイスの製造方法。
【請求項16】
前記突起物は、シリコン、SiO2及びSiNの少なくとも一つを含んでいることを特徴とする請求項13〜15のいずれか1項に記載のMEMSデバイスの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−6092(P2012−6092A)
【公開日】平成24年1月12日(2012.1.12)
【国際特許分類】
【出願番号】特願2010−141710(P2010−141710)
【出願日】平成22年6月22日(2010.6.22)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】