説明

Fターム[5E078AB03]の内容

電気二重層コンデンサ等 (17,975) | 種別 (2,895) | 電気化学キャパシタ (2,456) | 疑似容量を用いたもの (135)

Fターム[5E078AB03]の下位に属するFターム

Fターム[5E078AB03]に分類される特許

21 - 40 / 58


【課題】空孔率が高く、ろ水処理膜を初めとする分離用多孔膜として有用なフッ化ビニリデン系樹脂多孔膜の製造方法を提供する。
【解決手段】フッ化ビニリデン系樹脂と有機液状体との混合物の膜状成形体(a)をハロゲン化溶媒に浸漬して有機液状体を抽出除去してその抜け跡の空孔中にハロゲン化溶媒を含有する膜状成形体(b)を形成し、これを実質的に乾燥させることなく、フッ化ビニリデン系樹脂に対して膨潤性を有さない溶媒に浸漬してハロゲン化溶媒を置換させ、その後、乾燥させることを特徴とするフッ化ビニリデン系樹脂多孔膜の製造方法。 (もっと読む)


【課題】蓄電デバイスの電極の形成にアルカリ金属を用いる場合であっても安全な方法で電極を作製する。
【解決手段】集電体の表面にアルカリ金属イオンの吸蔵及び放出が可能な層であるアルカリ金属イオン吸蔵放出層を形成し、アルカリ金属イオン吸蔵放出層の表面にアルカリ金属膜を減圧下で形成し、アルカリ金属膜をイオン化させつつ、イオン化されたアルカリ金属をアルカリ金属イオン吸蔵放出層に含浸させることにより負極を作製する。 (もっと読む)


【課題】 出力密度が高く、かつ低コスト化が図られた蓄電デバイスを提供する。
【解決手段】 正極1にアニオンまたはカチオンを可逆的に担持可能な電極、負極2にリチウムイオンを可逆的にドープ可能な電極が用いられ、正極1と負極2の間にはセパレータ3は配置され、また正極および負極には電荷を取り出すための正極集電体4、負極集電体5が配置され、負極2が最外部になるように、負極2と正極1はセパレータを介して交互に積層したユニットで構成され、リチウムイオンを含有する非水系電解液7が含浸された構成となっている蓄電デバイスにおいて、正極集電体4、負極集電体5に箔を用い、かつユニット最外部にリチウムイオン供給源6を配置し、負極2と平行に対向させる。 (もっと読む)


【課題】大容量であり、且つ充放電による劣化が少ない電気化学キャパシタに適したカーボンナノチューブを用いた電気化学キャパシタ及びその製造方法を提供することを課題とする。
【解決手段】本電気化学キャパシタは、第1基板11と、第1集電電極12と、正極である第1電極13と、セパレータ14と、負極である第2電極15と、第2集電電極16と、第2基板17と、をこの順に備え、第1電極と第2電極との間に充填された、貴金属、鉄及びクロムのイオンを少なくとも含有する電解液18を具備し、第1電極及び第2電極は、炭化ケイ素膜を熱分解して得られたカーボンナノチューブが複数立設したカーボンナノチューブ層を具備することを特徴とする。このような各イオンを電解質に含有する電気化学キャパシタは、充放電によって各イオンが殆ど減らず、各イオンがない場合比べてより効果的により多くの電荷を蓄積とすることができる。 (もっと読む)


【課題】蓄電装置に使用した場合にイオンのインターカレーションの量を増大させ、蓄電装置の高容量化を実現することができる炭素質材料を提供する。
【解決手段】本発明の炭素質材料は、層状構造を有する炭素質材料であって、(002)面に非晶質部が複数個分散しており、非晶質部の平均面積が1.5nm以上である、ことを特徴としている。または、本発明の炭素質材料は、層状構造を有する炭素質材料であって、(002)面に非晶質部が複数個分散しており、(002)面内における非晶質部の総面積の、(002)面内における非晶質部及び結晶質部の面積の合計に対する割合が、30%以上である、ことを特徴としている。このような炭素質材料の構造により、例えばこの炭素質材料を蓄電装置に使用した場合に、インターカレーション量を増大させることができ、容量を増大させることができる。 (もっと読む)


【課題】本発明は、スーパーキャパシタに関する。
【解決手段】本発明のスーパーキャパシタは、第一電極、第二電極、電解液、セパレーター及びハウジングからなる。前記第一電極、第二電極、電解液及びセパレーターが前記ハウジングの中に設置され、前記第一電極と前記第二電極が分離して前記電解液の中で設置され、前記セパレーターが前記第一電極と前記第二電極の間に設置され、該第一電極と該第二電極と分離し、前記第一電極又は/及び前記第二電極が、カーボンナノチューブ構造体からなる。 (もっと読む)


【課題】釘等が刺さって孔が開いてしまった場合でも液漏れやガス漏れが起こりにくい蓄電デバイスを提供すること。
【解決手段】本発明の蓄電デバイス11は、正極21と負極31とセパレータ41とを含んで構成され、それらを積層、折畳または捲回してなる電極構造体45を有する。電極構造体45は外装容器46に収納され、外装容器内46内には電解質が充填される。外装容器46の外表面46aにおいて少なくとも電極構造体45の主面45aに対応した箇所を覆うべく、弾性体層51を配置する。弾性体層51は面内方向の収縮力が4MPa以上である。外装容器46の外表面46aと弾性体層51との間に粘着剤層52を配置する。 (もっと読む)


【課題】内部抵抗が低く、自己放電特性に優れる、キャパシタ用セパレータ電極一体型蓄電素子及び、それを用いてなるキャパシタを提供することにある。
【解決手段】セパレータを電極表面に接合一体化してなるキャパシタ用セパレータ電極一体型蓄電素子において、該セパレータが電気絶縁性無機粉体とゴム系バインダーを含有してなる多孔質層Aからなることを特徴とするキャパシタ用セパレータ電極一体型蓄電素子、及び該セパレータが電気絶縁性無機粉体とバインダーを含有してなる多孔質層Bと電気絶縁性樹脂を含有してなる多孔質層Cとからなることを特徴とするキャパシタ用セパレータ電極一体型蓄電素子、並びに該キャパシタ用セパレータ電極一体型蓄電素子を用いてなるキャパシタ。 (もっと読む)


【課題】ハイブリッドタイプのスーパーキャパシタが有する、全体セルポテンシャルの増加によりエネルギー及び出力密度が増加するという長所をそのまま保持しながら、電流集電体及びバインダのない一体型電極を用いることにより、電極内部抵抗及びESRを最小化できるハイブリッドスーパーキャパシタを提供する。
【解決手段】炭素エアロゲルアノードと、遷移金属酸化物エアロゲルカソードとを含む、ハイブリッドスーパーキャパシタである。 (もっと読む)


エネルギー貯蔵デバイス内の電極表面上に形成したメソポーラスカーボン材料、およびメソポーラスカーボン材料を形成する方法を開示する。メソポーラスカーボン材料は、エネルギー貯蔵デバイス用の大表面積イオンインターカレーション媒体として機能し、フラーレン/カーボンナノチューブ(CNT)ハイブリッド基質中で相互接続されたCVD堆積したカーボンフラーレン「オニオン」およびカーボンナノチューブから作られる。フラーレン/CNTハイブリッド基質は、かなりの量の電気的エネルギーを貯蔵するのに有用な濃度にリチウムイオンを保持することが可能な高気孔率材料である。一実施形態によれば、本方法は、高分子量炭化水素前駆体を蒸発させるステップと、伝導性基板上にメソポーラスカーボン材料を形成するために伝導性基板上へと蒸気を導くステップとを含む。
(もっと読む)


【課題】導電性の高い電極膜、ならびにそれを用いた電極および蓄電デバイスを提供すること。
【解決手段】粒径が2μm以上、50μm以下である活物質と、粒径が1nm以上、2μm未満である導電イオン含有無機粒子とを含み、前記活物質が前記導電イオン含有無機粒子により結着されている電極膜。前記電極膜が集電体上に積層されてなる電極。前記電極を有する蓄電デバイスであって、2枚の電極が各々の電極膜同士が対向するように配置されており、両電極は、各々の電極膜の間にセパレーターが介在した状態で巻回または積層されており、前記電極とセパレーターとが電解液と共に金属ケースに封入されている蓄電デバイス。 (もっと読む)


活性炭材料の製造方法は、天然の非リグノセルロース性炭素前駆体と無機化合物の水性混合物を形成し、前記混合物を不活性または還元性雰囲気下で加熱し、前記加熱した混合物を冷却して第1の炭素材料を形成し、前記無機化合物を除去して活性炭材料を生成する、各工程を有してなる。活性炭材料は、高エネルギー密度装置に使用するための、改善された炭素系電極を形成するのに適している。
(もっと読む)


【課題】本発明は、静電容量が大きく、耐久性に優れたキャパシタを安価に提供することを課題とする。
【解決手段】本発明に係るキャパシタは、少なくとも、金属多孔体に活性炭を主体とした正極活物質を充填した正極と、金属箔にリチウムイオンを吸蔵脱離できる炭素材料を主体とした負極活物質を塗布した負極と、リチウム塩を含む非水電解液を備え、負極にリチウムイオンを化学的あるいは電気化学的手法で吸蔵させたことを特徴とする。 (もっと読む)


【課題】導電性の高い電極膜、ならびにそれを用いた電極および酸化還元性蓄電デバイスを提供すること。
【解決手段】酸化還元性活物質と無機粒子とを含み、前記酸化還元性活物質が前記無機粒子によって結着されている電極膜。前記電極膜が集電体上に積層されてなる電極。前記電極を有する酸化還元性蓄電デバイスであって、2枚の電極を電極膜同士が対向するように配置し、両電極膜間にセパレーターを介在させて巻回または積層し、電解液と共に金属ケースに封入してなる酸化還元性蓄電デバイス。 (もっと読む)


【課題】電極が金属電極であり、比容量が大きく、エネルギー密度が高い高容量蓄電素子を提供する。
【解決手段】分子電解質と分極性電極とを備えた蓄電素子であって、前記分極性電極が前記高分子電解質との界面を備え、前記分極性電極が金属電極であり、前記分極性電極の負極電極が、前記高分子電解質との界面において、該負極電極に含まれる金属成分とのリチウム合金を有し、前記リチウム合金が可逆的な電気化学的酸化還元反応によりリチウムイオンを放出することができる合金であることを特徴とする蓄電素子。 (もっと読む)


【課題】高温フローティング試験など、充電電圧上限に高温で長時間保持するような場合であっても、正極表面での電解液の酸化分解を抑えつつ、負極表面で電解質カチオンの還元分解を低減し、キャパシタの充放電性能低下を抑制した電気二重層キャパシタを提供する。
【解決手段】非水系電解液と両極に分極性電極を用いた最大印加電圧が3.0V以上の電気二重層キャパシタであって、前記電解液が式(1)で表される第4級アンモニウム塩からなり、溶媒を含まず、かつ、該分極性電極の、該電解液中での自然電位がLi金属極に対して(対Li/Li+)3.2V以上3.6V以下である電気二重層キャパシタ。


(式中、R〜Rは、メチル基又はエチル基を示す。Xは、含フッ素アニオンを示す。) (もっと読む)


【課題】多数の枚数を有する金属箔からなる集電体と、これよりも厚肉平板状の集電タブとを抵抗溶接によって接続する際に、安定した溶接電流を得ることができ、よって当該接続部における製品品質が向上した蓄電デバイスを提供する。
【解決手段】正極側の集電タブ10と正極板3の金属箔からなる多数の集電体1および/または負極側の集電タブ11と負極板6の金属箔からなる多数の集電体4が、集電タブ10(11)に形成された集電体側に向けて突出する凸部12を間に挟んで上記積層方向の両面側に配置された一対の溶接電極Wにより抵抗溶接されることによって接続されている。 (もっと読む)


【課題】容量密度の大きなエネルギー貯蔵デバイスを提供する。
【解決手段】0.1M以上の濃度で電解液中に溶解したビオロゲン誘導体塩、もしくビピリジル誘導体塩を負極活物質として用い、正極として遷移金属錯体、アニリン系低分子化合物、中性ラジカル化合物、π共役高分子から選択された少なくとも一つの活物質を使用し、さらに電極として、活性炭素、繊維状炭素、多孔質炭素等を電極として使用する。例えば、少なくとも正極、負極、電解液、セパレータ、少なくとも一部が前記電解液中に溶解した活物質からなり、該活物質が含窒素芳香族化合物、及び/または含窒素芳香族化合物の四級化アンモニウム塩である事を特徴とするエネルギー貯蔵デバイスである。 (もっと読む)


【課題】 電気化学素子の電子移動抵抗および内部抵抗を低減し、出力密度を高めることを可能とする電気化学素子用電極および該電極を使用した電気化学素子を提供すること。
【解決手段】 本発明に係る電気化学素子用電極は、ヘテロ元素を含有する導電性炭素および結着剤を含んでなる導電性接着剤層を介して、集電体上に電極組成物層が形成されてなることを特徴としている。ここで、導電性炭素に含まれるヘテロ元素は、ホウ素または窒素であることが好ましく、該導電性炭素の体積平均粒子径は0.001μm〜100μmであることが好ましい。また、導電性炭素におけるヘテロ元素含有量は、0.01〜20重量%であることが好ましい。本発明の電気化学素子は、電極として、上記電気化学素子用電極を有する。
(もっと読む)


【課題】容量密度の大きなエネルギー貯蔵デバイスを提供する。
【解決手段】多孔質状または/および繊維状の炭素を含む正極2、四級アンモニウム塩またはリチウム塩、および0.2M以上2.4M以下の濃度で電解液中に溶解したラジカル化合物、イオン交換膜セパレータ4、負極5からなるエネルギー貯蔵デバイスとする。負極をリチウムイオンがプリドープされたグラファイト電極、または活性炭電極とする。ラジカル化合物は、酸素原子上、窒素原子上、炭素原子上のいずれかにラジカルを有する化合物であることが好ましい。 (もっと読む)


21 - 40 / 58