説明

Fターム[5E078BA54]の内容

電気二重層コンデンサ等 (17,975) | 電極 (4,664) | 導電材料 (470) | 金属材料 (21)

Fターム[5E078BA54]に分類される特許

1 - 20 / 21


【課題】低抵抗、高出力の電気化学キャパシタを実現するための電気化学キャパシタの電極及びこれを含む電気化学キャパシタを提供する。
【解決手段】本発明によると、ドープされた炭素材料を活物質として使用し、相対的に粒子サイズが大きい活物質の間に粒径サイズが相違した2種の導電材を添加することにより、単位体積当たりの活物質の量を増加させ、高密度の電極を製造することができ、伝導性に優れた導電材の充填密度を高めて低抵抗、高出力の電気化学キャパシタに効果的に使用されることができる。 (もっと読む)


【課題】電気二重層キャパシタの長所を維持しつつ、かつ、単位体積あたりの静電容量、即ちエネルギ密度を従来よりも向上させることが可能な、新規かつ改良された電気二重層キャパシタを提供する。
【解決手段】表面が導電性物質で覆われ、比表面積が300m/g以上である多孔質体を含む複数の電極と、前記複数の電極の間に配置される電解質と、を備える。 (もっと読む)


【課題】
充放電サイクル特性に優れた非水系電気化学素子を提供することである。
【解決手段】
金属微粒子、金属酸化物微粒子及び炭素質微粒子からなる群より選ばれる少なくとも一種の微粒子、並びに分散媒を含んでなる非水系電気化学素子用微粒子分散体であって、式1で表されるポリオキシアルキレン化合物を含むことを特徴とする非水系電気化学素子用微粒子分散体を用いる。

{R-(OX)ni-}mQ (1)

Qは非還元性の二又は三糖類のm個の1級水酸基から水素原子を除いた反応残基、OXは炭素数2〜4のオキシアルキレン基、Rは炭素数1〜4のアルキル基及び/又は水素原子を表し、niは0〜100の整数、mは2〜4の整数、iは1〜mの整数を表し、m個のniは同じでも異なってもよいが少なくとも1個は1以上であり、OXの総数(Σni×m)は20〜100の整数である。 (もっと読む)


【課題】生産性の向上、サイクル特性の向上及び抵抗の低減を図ることのできる電気化学デバイスを提供する。
【解決手段】リチウムイオンキャパシタは、負極20が第1の層21と第2の層22を有し、第1の層21と第2の層22とが積層され、第1の層21と第2の層22との間にリチウム金属シート60が配置されているので、リチウム金属シート60の厚さ方向一方の面が第1の層21に接触し、厚さ方向他方の面が第2の層22に接触することになる。リチウム金属シート60のリチウムは接触部の近傍において活物質にドープされ易いので、リチウム金属シート60の厚さ方向の両面が活物質に接触していることにより、プレドープが効率的に行われ、生産性の向上を図ることが可能となる。 (もっと読む)


【課題】リチウムがシリコン層中に導入された電極を有する蓄電装置及びその作製方法を提供することを課題とする。
【解決手段】集電体上にシリコン層を形成し、シリコン層上にリチウムを含んだ溶液を塗布し、熱処理を行うことで、シリコン層中に少なくともリチウムを導入させることが出来る。リチウムを含んだ溶液を用いることで、複数のシリコンの微粒子で形成されたシリコン層であっても、微粒子と微粒子の隙間にリチウムを含んだ溶液が入り込み、リチウムを含んだ溶液に触れたシリコンの微粒子にリチウムを導入させることが出来る。また、シリコン層が薄膜のシリコンの場合であっても、あるいは複数のウィスカーやウィスカー群を含むシリコン層であっても、溶液を均一に塗布することが可能であり、容易にシリコンにリチウムを含有させることが可能である。 (もっと読む)


【課題】従来よりも大きな容量を備えるキャパシタを提供する。
【解決手段】陽極層10、陰極層20、およびこれら電極層の間に配される硫化物系の固体電解質層3を備えるキャパシタである。このキャパシタ100における陽極層10と陰極層20の少なくとも一方は、硫化物固体電解質とこの硫化物固体電解質中に分散する導電微粒子とを含む。導電微粒子の平均粒径は、1nm〜50nmの微粒子である。電極層の硫化物固体電解質中に、電解質イオンを吸着する導電微粒子が微細に分散しているので、電極層における電解質イオンを吸着させることができる面積が大きい。 (もっと読む)


【課題】高出力密度及び低抵抗の電気二重層キャパシター及びその製造方法を提供する。
【解決手段】電気二重層キャパシターは、互いに対向配置される第1及び第2の電極10A、10Bと、第1及び第2の電極10A、10Bの間に配置されるイオン透過性分離膜と、を含み、第1及び第2の電極10A、10Bのうち少なくとも1つの電極は、内部に空隙を有するように圧着された金属繊維11a、11bと、空隙に充填された電極物質12a、12bと、を含む。他の電気二重層キャパシターは、等価直列抵抗が低く、出力密度が高い。また、電極の厚さを薄く形成することができ、小型化を達成することが可能となる。 (もっと読む)


【課題】高い容量と優れた応答性を発現し得る蓄電デバイス用複合電極、その製造方法、及び蓄電デバイス用複合電極を用いた蓄電デバイスを提供すること。
【解決手段】蓄電デバイス用複合電極は、基材と、該基材の表面に形成され、金属及び金属化合物の一方又は双方を含有するウィスカー又はファイバーと、該ウィスカー又はファイバーの表面に形成され、活物質を含有し、且つ表面に凹凸を有する被覆層とを有する。
蓄電デバイスは、上記蓄電デバイス用複合電極と、電解質とを有する。
蓄電デバイス用複合電極の製造方法は、ウィスカー又はファイバーの構成金属を含む基材原料又はその前駆体を、酸化雰囲気中で加熱処理して、基材上に該ウィスカー又は該ファイバーを形成する工程(1)と、その後に実施され、該ウィスカー又はファイバーの表面に、活物質を含有し且つ表面に凹凸を有する被覆層を形成する工程(2)を含む。 (もっと読む)


【課題】積層されてなる電極のすべてに対して長い時間を要することなく高い均一性をもってドーピング処理を行うことができ、これにより信頼性の高いキャパシタを得ることのできる蓄電デバイス要素、および優れた性能を有すると共に、高い生産性の得られるリチウムイオンキャパシタを提供すること。
【解決手段】蓄電デバイス要素は、貫通孔が複数形成された金属箔よりなる多孔質集電体の一端側に活物質層が積層されてなる活物質層形成部と、当該活物質層形成部に連設する活物質層非形成部とを有する構成正極および負極がセパレータを介して積層されてなる構成を有し、前記正極を構成する多孔質集電体の複数の貫通孔と、当該正極とセパレータを介して互いに隣り合う負極を構成する多孔質集電体の複数の貫通孔とのすべてが、上方から透視した正極および負極の積層方向の投影面上において重なる位置に配設されていることを特徴とする。 (もっと読む)


【課題】電気二重層コンデンサの電気特性であるESRと静電容量について、特に高温環境下における品質向上を達成する。
【解決手段】少なくとも1つの電気化学セルを含む電気二重層コンデンサが提供される。電気化学セルは、各々が電気化学的に活性な粒子(例えば炭素)の多孔質マトリックスを含有する電極(例えば2つの電極)を含む。水ベースの電解質が、多孔質マトリックスに接触するように配置される。本発明によれば、電解質は、特に高温で電気化学的に活性な粒子のためのバインダーとして作用し、これによって電解質損失を減少させる陰イオンポリマーを含む。ポリマーの陰イオンの性質は、腐食性の多価の酸が存在する状況でも安定のままであることを可能にし、電荷密度を増加させるために電解質中で使用される。 (もっと読む)


【課題】
白金溶液を本発明は、より小さいサイズの白金微粒子、出きればサブナノメーターの白金クラスターを高分散で担持した電極用白金クラスター、及び電極用白金クラスターを製造する方法を提供する。
【解決手段】
グラフェンを含む炭素材料に担持された白金(Pt)粒子において、白金(Pt)粒子のサイズ(粒子径)が1nm以下であることを特徴とする電極用白金クラスター及び白金粒子を合成する前駆体である白金溶液と、グラフェン、もしくはグラファイトから単原子層グラファイトを剥離させるプロセスにより合成されるグラフェンが複数重なった層状グラフェンからなる炭素材料とを混合し、次いで白金溶液中の溶媒を蒸発させ、300から500℃で1〜10時間、還元雰囲気中で熱処理を行う電極用白金クラスターの製造方法。
(もっと読む)


本発明は、メソ多孔性ナノ構造疎水性材料を含む第1層と、第1層上に配置されたメソ多孔性ナノ構造親水性材料を含む第2層とからなる電極に言及する。さらなる態様において、本発明は、メソ多孔性ナノ構造疎水性材料とメソ多孔性ナノ構造親水性材料との混合物を含む単一層、または多孔性ナノ構造材料を含む単一層であって、多孔性ナノ構造材料の表面に結合される金属ナノ構造体を含有する単一層からなる電極に言及する。本発明は、これらの電極の製造、並びに金属空気電池、超コンデンサーおよび燃料電池におけるそれらの電極の使用にさらに言及する。
(もっと読む)


【課題】蓄電装置に適用した場合に内部抵抗を低くすることが可能な集電体、その製造方法及び電極を提供すること。
【解決手段】本発明の集電体は、金属製の基材と、基材の表面に形成され、基材と導電性をもつ導電材とが混在した接合層と、接合層上に形成され、導電材を有する導電体層と、を有する蓄電装置用の集電体であって、導電体層の表面側に位置する導電材の粒子径が、接合層の基材側に位置する導電材の粒子径よりも大きいことを特徴とする。 (もっと読む)


【課題】より安定的な挙動を示し、より高エネルギーかつ高出力の電気化学キャパシタ及びその製造方法を提供すること。
【解決手段】対向する一対の電極と、一対の電極の少なくとも一方に形成されるコバルトナノ構造物と、一対の電極の間に充填される電解液と、を有するキャパシタとする。または、対向する一対の電極と、一対の電極の少なくとも一方に形成される酸化コバルトナノ構造物と、一対の電極の間に充填される電解液と、を有するキャパシタとする。 (もっと読む)


粒子の大部分が15μmを超える寸法をもつところの大粒径を有するメソ多孔性の電極材料は、うまくつながった内部メソ孔ネットワークをもち、そして電荷を蓄えるためにインターカレーション機構に頼るバッテリーおよびスーパーキャパシター化学の範囲のためのインターカレーション材料として用いるとき、高パワー能力をもつ。 (もっと読む)


【課題】基板と基板上に配置された複数の微粒子とからなる構造体であって、微粒子の粒子径の増大と微粒子の配置の高密度化とを同時に実現できる構造体を提供する。
【解決手段】本発明の構造体は、基板と、前記基板上に各々が間隔を隔てて面接続されている複数の微粒子とを備え、前記微粒子は、核粒子と前記核粒子の表面を覆う被覆層金属材料で形成されている被覆層とからなり、前記核粒子の表面は、前記被覆層金属材料の融点よりも高い融点を有する核粒子表面金属材料からなる。 (もっと読む)


【課題】内部抵抗を低くすることが可能な集電体を製造する方法の提供。
【解決手段】薄膜基材を表面に密着させて保持する基台を用い、前記薄膜基材を前記基台の表面に密着保持する工程と、粒径が1μm〜9μmである微粒子材料とキャリヤガスとの混合物を前記基台上に保持された前記薄膜基材にノズルから噴射する噴射工程と、を有する。つまり、導電体層を形成する目的で、導電体層を形成する導電性材料から形成され且つ所定の粒径分布をもつ微粒子材料を高圧にてアルミニウムを主成分とする薄膜基材表面に噴射することで、強固に接合した導電体層を薄膜基材表面に形成できる。ノズルから高速で噴射された微粒子材料は、薄膜基材表面に形成された不動態被膜を突き破って薄膜基材内に進入・拡散して導電性材料からなる導電体層を薄膜基材表面に形成する。形成された導電体層は薄膜基材との間における原子の拡散により強固に接合されている。 (もっと読む)


【課題】塗液の性状を変化させることなく、塗工端部の膜厚を均一化し、且つ長手方向の直線性を制御することにより、生産性が高く、均質性に優れた塗工製品を得るための塗工方法を提供する。
【解決手段】所定の厚さを有する連続帯状基材の表面に塗液を塗布する方法は、基材を連続走行させながら、基材の端部に所定の厚さのマスキングテープを貼着してマスキングする工程と、マスキングした基材の表面全体に前記塗液を塗布する工程と、基材を乾燥する工程と、マスキング部と塗工部との境目近傍の塗布膜にスリットを入れる工程と、塗工された基材からマスキングテープを剥がしながら、基材とマスキングテープとを別々に巻き取る工程と、から成る。 (もっと読む)


【課題】高容量および高出力特性を備えるハイブリッド電極およびその製造方法を提供する。
【解決手段】本発明のハイブリッド電極(1)は、基板(12)、電子導体である一次元ナノ構造(14)、および水和酸化ルテニウム(16)を含む。水和酸化ルテニウム(16)は電子導体である一次元ナノ構造(14)の間隙に充填される。該電子導体は無水酸化ルテニウムまたは無水酸化イリジウムとすることができる。また、本発明のハイブリッド電極1は、一次元ナノ構造(14)の一部を還元してなる金属層をさらに含んでいてもよい。本発明のハイブリッド電極は、限られたスペースにおいて高出力と高容量を同時に実現する。 (もっと読む)


【課題】自動車用等に用いる電気化学キャパシタに関し、正極の劣化を抑制して低抵抗化を図ることが可能な電気化学キャパシタを提供する。
【解決手段】集電体上に活性炭主体の分極性電極層を形成した正極と、集電体上に黒鉛の電極層を形成した負極をその間にセパレータを介在させて巻回した素子と、この素子をリチウムイオンを含む有機系電解液と共に収容した金属ケースからなり、上記分極性電極層が形成された正極の表裏面をフッ化アルミニウムで被覆し、かつ、上記有機系電解液の電解質カチオンとしてLi+、電解質アニオンとしてBF3(C25-、PF3(C253-、(CF3SO22-、(C25SO22-、(CF3SO23-、(化1)、(化2)、PF6-のいずれか一つを用いた構成とする。
(もっと読む)


1 - 20 / 21