説明

Fターム[5F045BB16]の内容

気相成長(金属層を除く) (114,827) | 目的 (9,309) | 電気的特性の向上・膜損傷の回避 (910)

Fターム[5F045BB16]に分類される特許

101 - 120 / 910


【課題】耐圧向上を図った電界効果型トランジスタを提供する。
【解決手段】電界効果型トランジスタは、基板101上に、核形成層として機能する第一の窒化物半導体層102と、第一の窒化物半導体層102よりも電子親和力の大きい第二の窒化物半導体層103と、第二の窒化物半導体層103よりも電子親和力の小さい第三の窒化物半導体層104とを順に積層して形成されている。第三の窒化物半導体層104上には中間層106を介して形成されたソース電極107、ドレイン電極108、ゲート電極109が設けられている。第一の窒化物半導体層102には、ホウ素が不純物としてドーピングされている。 (もっと読む)


【課題】垂直共振器面発光レーザ用の半導体基板におけるp型結晶層をV/III比が小さいエピタキシャル条件で形成するとともにp型結晶層の電気抵抗を低減する。
【解決手段】垂直共振器面発光レーザ用の半導体基板であって、半導体基板はコンタクト層として機能するp型結晶層を有し、p型結晶層が、3−5族化合物半導体からなり、2×1018cm−3以上、1×1019cm−3以下の濃度の水素原子を含む半導体基板を提供する。p型結晶層として、p型GaAs層が挙げられる。p型結晶層が、p型不純物原子として炭素原子を含んでもよい。 (もっと読む)


【課題】表面ラフネスの精度をさらに改善でき、進展するコンタクトホールやラインなどの微細化に対応可能なアモルファスシリコンを成膜できる成膜装置を提供すること。
【解決手段】下地を有した被処理体1を収容する処理室101と、処理ガス供給機構114と、加熱装置133と、排気機構132と、コントローラ150とを具備し、コントローラ150が、加熱した下地にアミノシラン系ガスを流し、下地の表面にシード層を形成する工程と、加熱した下地の表面のシード層にアミノ基を含まないシラン系ガスを供給し、アミノ基を含まないシラン系ガスを熱分解させることで、シード層上にアモルファスシリコン膜を形成する工程とが実施されるように処理ガス供給機構114、加熱装置133及び排気機構132を制御し、シード層を形成する工程における下地の加熱温度及び処理時間を、アモルファスシリコン膜を形成する工程におけるそれらよりも低く及び短くする。 (もっと読む)


【課題】中性粒子ビームと平行に原料ガスをウェハに導入でき、ウェハ上に形成される膜の面内均一性を向上することが可能な中性粒子照射型CVD装置を提供する。
【解決手段】コイル18によって希ガスを励起してプラズマを発生させるプラズマ発生部12から中性粒子を取り出して反応室10内のウェハ14に向けて導入できる複数の開口22aを有するカソード電極22と、ウェハ14の直上から前記中性粒子と平行に原料ガスをウェハに供給するガス供給部31と、を具備するCVD装置とする。 (もっと読む)


【課題】信頼性の高いゲート絶縁膜を備えたSiC半導体装置を提供する。
【解決手段】8度以下のオフ角度を有する炭化珪素基板(1)と、この基板上に形成された第1導電型の第1炭化珪素領域(2)と、この領域の表面に形成された第2導電型の第2炭化珪素領域(3)と、この領域の表面に形成され、不純物濃度が第2の炭化珪素領域と同程度に調整された第1導電型の第3炭化珪素領域(4)と、この領域の表面に選択的に形成された第1導電型の第4炭化珪素領域(5)と、第2炭化珪素領域の表面に形成された第2導電型の第5炭化珪素領域(6)と、第1炭化珪素領域から第3炭化珪素領域の少なくとも端部までを覆うように形成されたゲート絶縁膜(7)と、この上に形成されたゲート電極(8)とを具備し、第3炭化珪素領域の表面における、第3と第4炭化珪素領域の境界面は、オフ角度方向と90°以外の角度で交差するように形成されている。 (もっと読む)


【課題】工程システムの運用能力と生産性の向上とともに、半導体層の結晶性を向上させる製造方法を提供する。
【解決手段】第1反応チャンバにおいて、基板101上に第1導電型窒化物半導体層102及びアンドープの窒化物半導体層103を順次に成長させる段階と、前記第1導電型窒化物半導体層及びアンドープの窒化物半導体層が成長した状態の前記基板を第2反応チャンバに移送する段階と、前記第2反応チャンバにおいて、前記アンドープの窒化物半導体層上に追加の第1導電型窒化物半導体層を成長させる段階と、前記追加の第1導電型窒化物半導体層上に活性層105を成長させる段階と、前記活性層上に第2導電型窒化物半導体層106を成長させる段階とを含む発光ダイオードの製造方法を提供する。 (もっと読む)


【課題】カーボン膜上に酸化物膜を形成しても、カーボン膜の膜厚減少を抑制することが可能な、カーボン膜上への酸化物膜の成膜方法を提供する。
【解決手段】被処理体上にカーボン膜を形成する工程(ステップ1)と、前記カーボン膜上に被酸化体層を形成する工程(ステップ2)と、前記被酸化体層を酸化させながら、該被酸化体層上に酸化物膜を形成する工程(ステップ3)と、を具備する。前記ステップ2において、前記カーボン膜上にアミノシラン系ガスを供給しながら被処理体を加熱してシード層を形成し、続いて、前記シード層上にアミノ基を含まないシラン系ガスを供給しながら被処理体を加熱する事で、前記被酸化体層を形成する。 (もっと読む)


【課題】酸化力が強い酸素含有ガスを用いて金属酸化膜を形成する際に、下地の電極の酸化を抑制する。
【解決手段】処理室内に少なくとも1種類の金属含有ガスを供給した後に排気して電極610上に前記金属含有ガスの吸着層を形成するステップの後に、前記処理室内に第1の酸素含有ガスを供給するステップを実施することで電極610の直上に第1の金属酸化層510を形成する工程と、続いて、前期処理室内に前記金属含有ガスを供給した後に排気して第1の金属酸化層510上に前記金属含有ガスの吸着層を形成するステップの後に、前記処理室内に前記第1の酸素含有ガスよりも酸化力が強い第2の酸素含有ガスを供給を供給するステップを実施することで第1の金属酸化層510上に第2の金属酸化層560を形成する工程と、をこの順に実施する。 (もっと読む)


【課題】 高温領域において、膜中の水素濃度が低く、膜厚均一性が良好であり、リーク電流の少ない窒化膜を形成する。
【解決手段】 加熱された大気圧未満の圧力雰囲気下にある処理容器内に酸化膜が形成された基板を収容し原料ガスを供給して酸化膜上に所定元素含有層を形成する工程と、加熱された大気圧未満の圧力雰囲気下にある処理容器内に窒素含有ガスを供給して所定元素含有層を窒化層に変化させる工程とを、その間に処理容器内に不活性ガスを供給してパージする工程を挟んで交互に繰り返して酸化膜上に窒化膜を形成する工程を有し、所定元素含有層を形成する工程では、原料ガスを基板の側方に設けられたノズルを介して供給する際、ノズルを介して不活性ガスまたは水素含有ガスを供給し、基板と平行に流れる原料ガスの流速を、処理容器内をパージする工程において基板と平行に流れる不活性ガスの流速より大きくする。 (もっと読む)


【課題】 良好なデバイス特性を得ることできる、複数の細孔が形成された窒化物半導体を有する構造体の製造方法、および該構造体を備えた発光素子の提供を目的とする。
【解決手段】 Inを含むIII族窒化物半導体からなる第1の半導体層を形成する工程と、第1の半導体層の上に、第1の半導体層よりもIn組成が低いIII族窒化物半導体からなる第2の半導体層を形成する工程を有する。第2の半導体層および第1の半導体層に複数の細孔を形成する工程と、窒素元素を含む雰囲気下で熱処理することにより、複数の細孔が形成された第1の半導体層の側壁の少なくとも一部に、第1の半導体層よりもIn組成が低い半導体結晶構造を形成する。 (もっと読む)


【課題】ZnO系半導体層の新規な製造方法を提供する。
【解決手段】(a)基板上方に、(MgZn1−x(0≦x≦0.6)単結晶膜を成長させる工程と、(b)前記の(MgZn1−x(0≦x≦0.6)単結晶膜を、400℃以下で、活性酸素により酸化して、MgZn1−yO(0≦y≦0.6)単結晶膜を形成する工程と、(c)工程(a)及び(b)を繰り返して、MgZn1−yO(0≦y≦0.6)単結晶膜を積層する工程とを有するZnO系半導体層の製造方法とする。 (もっと読む)


【課題】太陽電池基板のダングリングボンドの終端処理を、太陽電池の製造工程の中で高いスループットで行うことができる方法を提供する。
【解決手段】平行平板型プラズマCVD装置1を用いて、処理用ガス供給装置3から第1処理用ガスを供給するとともに高周波電力源2から高周波電極6に第1周波数の高周波電力を印加し、前記高周波電極と基板電極5との間に水素イオンを含むプラズマを発生させ、この水素イオンによって太陽電池基板8のダングリングボンドを終端させる終端工程と、次いで、前記処理用ガス供給装置から第2処理用ガスを供給するとともに前記高周波電力源から前記高周波電極に前記第1周波数よりも高い第2周波数の高周波電力を印加し、前記高周波電極と前記基板電極との間に前記太陽電池基板表面に反射防止膜を成膜するプラズマを発生させる成膜工程と、を連続して行う。 (もっと読む)


【課題】高い結晶品質を有する量子ドットを高密度に形成しうる半導体装置の製造方法を提供する。
【解決手段】下地層10上に、自己組織化成長により量子ドット16を形成する工程と、量子ドット16を形成する工程の前又は量子ドット16を形成する工程の際に、下地層10の表面にSb又はGaSbを照射する工程と、量子ドット16の表面をAs原料ガスによりエッチングすることにより、量子ドット16の表面に析出したSbを含むInSb層18を除去する工程と、InSb層18が除去された量子ドット16上に、キャップ層22を成長する工程とを有している。 (もっと読む)


【課題】静電容量が大きく、リーク特性に優れたキャパシタを容易に形成する。これにより、データ保持特性にすぐれ、集積度の高いDRAM等の半導体装置を容易に形成する。
【解決手段】キャパシタの容量絶縁膜は、第1領域と第2領域を有する。第1領域は、Sr/Tiの原子組成比が1.2以上1.6以下の範囲であるチタン酸ストロンチウムからなる。第2領域は、Sr/Tiの原子組成比が0.8以上1.2未満の範囲であるチタン酸ストロンチウムからなる。 (もっと読む)


【課題】SiC半導体自立基板上に形成される電子デバイスの耐電圧、オン抵抗、素子寿命等のばらつきを抑えて歩留まりを向上させることが可能なSiC半導体自立基板及びSiC半導体電子デバイスを提供する。
【解決手段】SiC半導体自立基板を構成するSiC半導体結晶3は六方晶系であり、SiC半導体結晶3の格子定数のばらつきを、SiC半導体自立基板の主面内のa軸方向の格子定数の標準偏差をa軸方向の格子定数の平均値で除した値とするとき、格子定数のばらつきが±55ppm以下である。 (もっと読む)


【課題】高効率の半導体発光素子を提供する。
【解決手段】実施形態によれば、n形半導体層と、p形半導体層と、発光部と、を備えた半導体発光素子が提供される。発光部は、n形半導体層とp形半導体層との間に設けられ、第1発光層を含む。第1発光層は、第1障壁層と、n形半導体層と第1障壁層との間に設けられた第1井戸層と、第1井戸層と第1障壁層との間に設けられた第1n側中間層と、第1n側中間層と第1障壁層との間に設けられた第1p側中間層と、を含む。第1n側中間層のIn組成比は、n形半導体層からp形半導体層に向かう第1方向に沿って低下する。第1p側中間層のIn組成比は、第1方向に沿って低下する。第1p側中間層のIn組成比の第1方向に沿った平均の変化率は、第1n側中間層のIn組成比の第1方向に沿った平均の変化率よりも低い。 (もっと読む)


【課題】III 族窒化物半導体発光素子の光取り出し効率を向上させること。
【解決手段】実施例1のIII 族窒化物半導体発光素子は、凹凸形状が形成されたサファイア基板10と、サファイア基板10の凹凸形状側表面上に、バッファ層を介して順に積層された、III 族窒化物半導体からなるn型層、発光層、p型層と、を有している。凹凸形状は、サファイア基板10表面上にx軸方向をストライプ方向とする第1のストライプ形状100が形成され、その上にx軸方向と直交するy軸方向をストライプ方向とする第2のストライプ形状101が重ねて形成された形状である。このような凹凸形状とすることで、従来のIII 族窒化物半導体発光素子よりも光取り出し効率を向上させることができる。 (もっと読む)


【課題】従来よりオン抵抗が低くかつ高い耐圧を有する炭化珪素半導体装置を提供する。
【解決手段】この発明に従ったJFET10は、n型基板11と、p型層2、12と、n型層13と、ソース領域15と、ドレイン領域17と、ゲート領域16とを備える。n型基板11は、{0001}面に対するオフ角が32°以上である主表面11Aを有し、炭化珪素(SiC)からなる。p型層2、12は、n型基板11の主表面11A上に形成され、導電型がp型である。n型層13は、p型層2、12上に形成され、導電型がn型である。ソース領域15およびドレイン領域17は、n型層13において、互いに間隔を隔てて形成され、導電型がn型である。ゲート領域16は、n型層13において、ソース領域15とドレイン領域17との間の領域に形成され、導電型がp型である。 (もっと読む)


【課題】リーク電流が低減された、耐圧性が高い窒化物系化合物半導体素子の製造方法および窒化物系化合物半導体素子を提供すること。
【解決手段】基板上に少なくともガリウム原子を含むIII族原子と窒素原子とからなる窒化物系化合物半導体層をエピタキシャル成長する成長工程と、素子構造形成前に、前記窒化物系化合物半導体層にレーザ光または電離放射線を照射し、前記窒化物系化合物半導体層中のIII族空孔と水素原子との複合体を分解する分解工程と、を含む。 (もっと読む)


【課題】低減された酸素濃度のp型窒化ガリウム系半導体層を有するIII族窒化物半導体素子を提供する。
【解決手段】III族窒化物半導体素子11は、基板13、n型III族窒化物半導体領域15、発光層17、及びp型III族窒化物半導体領域19を備える。基板13の主面13aは、該第1の窒化ガリウム系半導体のc軸に沿って延びる基準軸Cxに直交する面Scから50度以上130度未満の範囲の角度で傾斜する。p型III族窒化物半導体領域19は、第1のp型窒化ガリウム系半導体層21を含み、第1のp型窒化ガリウム系半導体層21の酸素濃度は5×1017cm−3以下である。第1のp型窒化ガリウム系半導体層21のp型ドーパント濃度Npdと酸素濃度Noxgとの濃度比(Noxg/Npd)が1/10以下である。 (もっと読む)


101 - 120 / 910