説明

Fターム[5F102GR01]の内容

接合型電界効果トランジスタ (42,929) | 素子構造 (2,911) | 素子形成にあたり、結晶軸、面方位を選択したもの (450)

Fターム[5F102GR01]に分類される特許

101 - 120 / 450


【課題】従来よりも反りの値を低減させたIII族窒化物エピタキシャル基板を提供することを目的とする。
【解決手段】Si基板と、上記Si基板上に形成された超格子積層体と、上記超格子積層体上にエピタキシャル成長されたIII族窒化物積層体とを具え、上記超格子積層体が、上記Si基板側からAlN材料を含む第1層、AlxGa1-xN(0<x<1)材料を含む第2層、およびAlyGa1−yN(0≦y<1)材料を含む第3層(但し、第2層のAl組成xおよび第3層のAl組成yは、y<xの関係を有する)を順に有する積層体を複数組そなえることを特徴とする。 (もっと読む)


【課題】本発明は、ソース電極およびドレイン電極の熱耐久性を向上させて、かつ製造過程においてオーミック性に与える不安定要因を取り除き信頼性および量産性の高いGaN系HEMTを提供する。
【解決手段】GaN系HEMTは、基板と、窒化ガリウム系半導体と、融点が3000℃と高融点金属のタンタルと低融点金属のアルミニウムが前記窒化ガリウム系半導体上に積層されてなる前記ソースおよび前記ドレイン電極を備えている。前記ソース電極および前記ドレイン電極は、前記タンタルと前記アルミニウムの積層膜厚の比(前記アルミニウム膜厚/前記タンタル膜厚)を10以上にし、積層後のアニール処理温度が510℃以上、600℃未満で処理されて成る。 (もっと読む)


【課題】出力を大きくすることが可能な半導体装置を提供すること。
【解決手段】半導体基板10上に設けられ、ソースパッド12aと、ソースパッド12aと接続された一端から他端に向けて長さが小さくなる階段状の側部12cを有するソースフィンガー12bと、を含むソース電極12と、ドレインパッド14aと、ドレインパッド14aと接続された一端から他端に向けて長さが小さくなり、側部12cと対向する側部14cを有するドレインフィンガー14bと、を含むドレイン電極14と、ソースフィンガー12bの段差12dと、ドレインフィンガー14bの段差14dとの間に屈曲部16cを有し、ソースフィンガー12a及びドレインフィンガー14aに沿って屈曲するゲート電極16と、を具備し、側部12cの形状と側部14cの形状とは、ソースフィンガー12bの他端とドレインフィンガー14bの他端とを結ぶ線分9の中点に対して対称である半導体装置。 (もっと読む)


【課題】GaN系半導体層内に形成される電子トラップ濃度を低減する。
【解決手段】Si基板10上に接して形成されたAlNを主成分とする下地層12と、前記下地層12上に形成され、前記下地層12上に形成され、前記下地層12から圧縮応力を受ける第1バッファ層14と、前記第1バッファ層14上に形成された第2バッファ層16と、前記第2バッファ層16上に形成されたAlの組成比が0.1以下のGaN系半導体層18と、を具備し、前記第2バッファ層16における前記第1バッファ層14側の面の結晶軸長に対し前記第1バッファ層14と反対の面の結晶軸長が前記GaN系半導体層18に近く、前記第2バッファ層16の伝導帯底エネルギーが前記GaN系半導体層18より高い半導体装置。 (もっと読む)


【課題】反りの小さな半導体基板および半導体装置を提供する。
【解決手段】Si基板10上に接して形成されたX線回折による(002)面のロッキングカーブ半値幅が1500秒以下のAlN層12と、AlN層12上に形成されたGaN系半導体層14と、を具備する半導体基板であって、その反りの曲率半径は±25m以上であり、反り量は、半導体基板の大きさを4インチとした場合、±50μm以下である。GaN系半導体層14はAlN層12から圧縮応力を受ける。 (もっと読む)


【課題】GaN系半導体層のグレインサイズを大型化することが可能な半導体装置を提供すること。
【解決手段】本発明は、(111)面から0.1度以下のオフ角度で傾斜した面を主面とするSi基板10と、Si基板10の主面に接して設けられ、(002)面のX線回折におけるロッキングカーブの半値幅が2000sec以下であるAlN層12と、AlN層12上に設けられたGaN系半導体層20と、を備える半導体装置100である。 (もっと読む)


【課題】好適なAlN層を成長することが可能な半導体装置の製造方法を提供すること。
【解決手段】本発明は、N原料を供給せずにAl原料を供給するステップと、Al原料を供給するステップの後にAl原料とN原料とを供給するステップとを行って、Siからなる基板10上にAlN層12を成長する工程と、AlN層12を成長する工程の後に、AlN層12上にGaN系半導体層21を成長する工程と、を有し、AlN層12を成長する工程は、AlN層12の膜厚をx、AlN層12の(002)面ロッキングカーブの半値幅をyとすると、
76500/x0.81<y<53800/x0.83
となるAlN層12を成長する工程である半導体装置の製造方法である。 (もっと読む)


【課題】高耐圧化した窒化物半導体装置を提供する。
【解決手段】窒化物半導体装置200は、シリコン基板201上に形成されたバッファ層220と、バッファ層220上に形成された第1の窒化物超格子層204aと、第1の窒化物超格子層204a上に形成された活性領域層230とを備え、バッファ層220は、不純物がドープされた第2の窒化物超格子層204bと、第2の窒化物超格子層204b上に形成され、不純物がドープされた第1の窒化物半導体層205と、第1の窒化物半導体層205上に形成され、第1の窒化物半導体層205よりもAl組成及び不純物の濃度が高い第2の窒化物半導体層206とを有する。 (もっと読む)


【課題】シリコン基板上に優れた結晶性の窒化物半導体層が形成された窒化物半導体装置を提供する。
【解決手段】シリコン基板10と、シリコン基板10に接するとともにシリコン基板10上の一部分に形成された窒化シリコンからなる選択成長マスク層20とを備え、選択成長マスク層20が形成されていないシリコン基板10上に、当該シリコン基板10に接するように窒化物半導体層30が形成されている。 (もっと読む)


【課題】オン抵抗が低く耐圧および信頼性が高い電界効果トランジスタを提供する。
【解決手段】基板1上に形成されたキャリア走行層3と、前記キャリア走行層上に形成され前記キャリア走行層よりもバンドギャップエネルギーが高いキャリア供給層4a、4bと、前記キャリア供給層から前記キャリア走行層の表面または内部に到る深さまで形成されたリセス部5と、前記キャリア供給層上に形成されたドレイン電極11と、前記リセス部に形成され、前記ドレイン電極側のキャリア供給層と重畳するように延設したゲート電極7と、前記リセス部の底面と前記ゲート電極との間に形成された第1絶縁膜6と、前記ゲート電極と前記ドレイン電極側のキャリア供給層との間に形成され前記第1絶縁膜よりも誘電率が高い第2絶縁膜8aとを備える。 (もっと読む)


【課題】 発光効率が高く信頼性の高い窒化物半導体発光素子を提供する。
【解決手段】本発明の実施の形態の窒化物半導体素子は、第1の主面上の面内方向に形成された複数の凸部1aと、隣接する前記凸部の間の凹部1bと、を有する基板1と、前記基板1の前記凹部1a及び前記凸部1b上に形成されたAlx1Ga1−x1N(0≦x1≦1)第1埋込層2と、前記第1埋込層2上に形成されたInAlGa1−y−zN(0<y≦1、0≦z≦1)埋込層3と、前記埋込層3上に形成されたAlx2Ga1−x2N(0≦x2≦1)第2埋込層4と、を備える。前記第1埋込層2の前記凹部1bの上に形成された部分と、前記第1埋込層2の前記凸部1aの上に形成された部分とは、互いに結合しない。前記埋込層3の前記凹部1bの上に形成された部分と、前記埋込層3の前記凸部1aの上に形成された部分とは、互いに結合している。 (もっと読む)


【課題】LEDや高電子移動度トランジスタなどのデバイス用として有用なIII−V族窒化物品の提供。
【解決手段】自立III−V族窒化物基板上に堆積したIII−V族窒化物ホモエピタキシャル層を含むホモエピタキシャルIII−V族窒化物品であって、前記III−V族窒化物ホモエピタキシャル層が1E6/cm2未満の転位密度を有しており、(i)前記III−V族窒化物ホモエピタキシャル層と前記自立III−V族窒化物基板の間に酸化物を有するか、(ii)前記III−V族窒化物ホモエピタキシャル層と前記自立III−V族窒化物基板の間にエピ中間層を有するか、
(iii)前記自立III−V族窒化物基板がオフカットされており、前記III−V族窒化物ホモエピタキシャル層が非(0001)ホモエピタキシャルステップフロー成長結晶を含むことを特徴とする。 (もっと読む)


【課題】微細化と、オン特性を改善する、炭化珪素トランジスタ装置の製造方法の提供。
【解決手段】高濃度n型炭化珪素基板2上に、低濃度n型ドリフト層3と高濃度p型層10をエピタキシャル成長する工程と、高濃度p型層10の一部を除去離間した複数の高濃度p型ゲート領域4を形成する工程と、互いに隣り合った高濃度p型ゲート領域4の間に位置するチャネル領域7、高濃度p型ゲート領域4及びゲート電極領域10の全面を覆う低濃度n型ドリフト層3よりも低い不純物濃度の低濃度n型領域11をエピタキシャル成長する工程と、低濃度n型領域11の一部を除去する工程と、低濃度n型領域11の表面にイオン注入し高濃度n型ソース領域5を形成する工程と、高濃度n型ソース領域5上にソース電極6を、高濃度n型炭化珪素基板2の裏面にドレイン電極1を、ゲート電極領域10にゲート電極8を形成する工程を含む炭化珪素トランジスタ装置の製造方法。 (もっと読む)


【課題】高周波モジュール中におけるスイッチング素子として用いられるHEMT素子を小型化する。
【解決手段】GaAsからなる基板1の主面上の素子分離部9で規定された活性領域内において、ゲート電極17は、1本で形成し、ソース電極13とドレイン電極14との間では紙面上下方向に延在し、それ以外の部分では左右方向に延在するようにパターニングすることにより、活性領域外に配置されるゲート電極17の割合を減じ、ゲートパッド17Aの面積を減じる。 (もっと読む)


【課題】Id―max特性低下を低減可能なIII族窒化物半導体電子デバイスが提供される。
【解決手段】III族窒化物半導体電子デバイス11では、チャネル層21はAlGaNからなると共に、バリア層23はチャネル層21より大きなバンドギャップのAlGaNからなる。チャネル層21が、GaNではなく、AlGaNからなるので、III族窒化物半導体電子デバイス11においてId―max特性低下を低減可能である。また、第1及び第2の電極17、19は、それぞれ、チャネル層21の第1及び第2の部分21a、21b上に設けられる。チャネル層21において第1の部分21aの不純物濃度が第2の部分21bの不純物濃度と同じであるから、チャネル層21における第1の部分にイオン注入が行われていない。半導体積層15に部分的にイオン注入を行っていない。このイオン注入の使用回避により、Id―max特性低下を更に低減可能である。 (もっと読む)


【課題】 リーク電流の増加を抑制しつつ、基板上のIII族窒化物半導体の超格子構造の周期数を増やした場合でもクラックの発生を抑制できる窒化物半導体素子を提供する。
【解決手段】 基板2上に、GaN層10およびAlN層11が複数対交互に積層された第1GaN/AlN超格子層8を形成し、この第1GaN/AlN超格子層8に接するように、GaN層12およびAlN層13が複数対交互に積層された第2GaN/AlN超格子層9を形成する。第2GaN/AlN超格子層9上には、GaN電子走行層6およびAlGaN電子供給層7からなる素子動作層を形成する。これにより、HEMT1を構成する。このHEMT1において、第1GaN/AlN超格子層8のc軸平均格子定数LC1と、第2GaN/AlN超格子層9のc軸平均格子定数LC2と、GaN電子走行層6のc軸平均格子定数LC3とが、式(1)LC1<LC2<LC3を満たすようにする。 (もっと読む)


【課題】電力損失を低減した窒化物半導体トランジスタを実現できるようにする。
【解決手段】窒化物半導体トランジスタは、分極が互いに異なる複数の窒化物半導体層が積層されたヘテロ接合層124と、ヘテロ接合層124の上に形成されたゲート電極113とを備えている。ヘテロ接合層とゲート電極との間には、p型の導電性を有し、正孔電流を流し且つ電子電流を抑制する電子電流抑制層125が形成されている。 (もっと読む)


【課題】高い絶縁性を有する窒化物系半導体層を有する窒化物系半導体ウエハを安定的に提供する。
【解決手段】絶縁性基板上に、抵抗率が10MΩcm以上100MΩcm以下、膜厚が0.1μm以上1.5μm以下である半絶縁性窒化物系半導体層を有する。 (もっと読む)


【課題】室温(300K)以上において正孔濃度が1.0×1015cm‐3以上で、かつ、ドーパント原子濃度が1.0×1021cm‐3以下である実用的なp型ダイヤモンド半導体デバイスとその製造方法を提供すること。
【解決手段】単結晶ダイヤモンド基板1−1の上に形成された単結晶ダイヤモンド薄膜1−2の中には、二次元の正孔または電子チャンネル1−3が形成される。基板1−1の面方位と基板1−1の結晶軸「001」方向との成す角度をαs、ダイヤモンド薄膜1−2の面方位と単結晶ダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαd、チャンネル1−3の面方位とダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαcとする。単結晶ダイヤモンド薄膜1−2の表面上には、ソース電極1−4、ゲート電極1−5、ドレイン電極1−6が形成される。 (もっと読む)


【課題】主面をm面とするIII 族窒化物半導体で構成されたHFETにおいて、正のしきい値電圧を高めること。
【解決手段】HFET100は、凹凸加工されたa面サファイア基板101上に、m面を主面とするGaNからなるバッファ層102、ノンドープのGaNからなるチャネル層103、ノンドープのAlGaNからなる障壁層104、酸素ドープのn−AlGaNからなるキャリア供給層105を有している。キャリア供給層105は2つの領域に分離して形成されている。キャリア供給層105は、障壁層104上に選択的に再成長させて形成した層である。ゲート電極109にバイアスを印加しない状態では、ゲート電極109直下に2DEGが形成されないため、正のしきい値電圧を高めることができる。 (もっと読む)


101 - 120 / 450